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Abstract The goal of this article is to survey new results on the recognition
problem. We focus our attention on the methods recently developed in this
area. In each section, we formulate related open problems. In the last two
sections, we review arithmetical characterization of spectra of finite simple
groups and conclude with a list of groups for which the recognition problem
was solved within the last three years.
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0 Introduction

For a group G, the set of element orders of G is called the spectrum of G
and denoted by ω(G). Two groups are isospectral if their spectra coincide.
A finite group G is said to be recognizable by spectrum if every finite group
H with ω(H) = ω(G) is isomorphic to G. Denoting by h(G) the number
of isomorphism classes of finite groups isospectral to G, the condition for G
to be recognizable is written as h(G) = 1. A finite group G is said to be
almost recognizable by spectrum if h(G) is finite and more than one, and
to be irrecognizable by spectrum if h(G) is infinite. Given a finite group G,
the recognition problem for G is to determine whether G is recognizable, or
almost recognizable, or irrecognizable; and a stronger form of this problem
is to determine the value of h(G).

By Corollary 4 in Ref. [19], every finite group with a nontrivial normal
soluble subgroup is irrecognizable. Among finite groups without nontrivial
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normal soluble subgroups, the finite simple groups are of the prime interest.
Since Shi showed in 1986 that the alternating group of degree 5 is recogniz-
able by spectrum [18], the recognition problem has been investigated for a
numerous number of simple groups. Thus, it has been solved for all sporadic
simple groups, for all Ree and Suzuki groups, for simple linear and unitary
groups of dimension at most 3, and for alternating groups of degrees p, p+1
and p + 2, where p is prime (see the references in Refs. [13,14]). A few years
ago, Mazurov conjectured that almost all finite simple groups are almost
recognizable, or, more exactly, that every finite group of Lie type (alternat-
ing group) is recognizable or almost recognizable provided its Lie rank (its
degree) is sufficiently large.

The goal of this article is to survey new results on the recognition prob-
lem. We focus our attention on the methods recently developed in this area
(Sections 1–3). In Section 4, we review arithmetical characterization of spec-
tra of finite simple groups. We conclude with a list of groups for which the
recognition problem was solved within the last three years. In each section
we formulate related open problems.

For the notation of the finite simple groups, we follow Ref. [6].

1 Composition structure of a finite group isospectral to a simple group

Let L be a finite nonabelian simple group. Given a finite group G with
ω(G) = ω(L), the first question to ask is if L and G have the same nonabelian
composition factors. Applying this logic, L is said to be quasirecognizable if
every finite group G with ω(G) = ω(L) has a unique nonabelian composition
factor and this factor is isomorphic to L. The smallest nonabelian simple
group that is not quasirecognizable is Alt6 (see Ref. [2]).

Note that groups with the same spectra have coincident prime graphs.
The prime graph GK(G) of a finite group G is defined as follows. The vertex
set of this graph is the set π(G) of prime divisors of |G|; primes r and s in
π(G) are adjacent if rs ∈ ω(G). K. W. Gruenberg and O. Kegel introduced
this graph (also called the Gruenberg–Kegel graph) in the middle of the 1970s
and gave a characterization of finite groups with disconnected prime graph
(we denote the number of connected components of GK(G) by s(G)). This
deep result and a classification of finite simple groups with s(G) > 1 obtained
by Williams [27] and Kondratiev [12] implied a series of important corollaries.
Concerning the recognition problem, they allow to assert that a finite group
G, which is isospectral to a simple group L with disconnected prime graph,
contains a unique nonabelian composition factor S and s(S) > s(L). However,
this technique cannot be applied if the prime graph of L is connected. On
the other hand, among finite simple groups, those with disconnected prime
graph are rather an exception than a rule.

The proof of the Gruenberg–Kegel Theorem relies substantially upon the
fact that in disconnected prime graph of an insoluble group there is an odd
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prime which is disconnected with 2. It turned out that disconnectedness could
be successfully replaced in most cases by a weaker condition for the prime 2
to be nonadjacent to at least one odd prime. Denote by t(G) the maximal
number of primes in π(G) pairwise non-adjacent in GK(G). In other words,
t(G) is a maximal number of vertices in cocliques, i.e., independent sets,
of GK(G). In graph theory, this number is usually called the independence
number of the graph. By analogy we denote by t(r, G) the maximal number
of vertices in cocliques of GK(G) containing a prime r. We call this number
the r-independence number. The following structure theorem was proved by
Vasilev [22] (here we give a refine version of this result from Ref. [24]).

Theorem 1 Let G be a finite group with t(G) > 3 and t(2, G) > 2. Then

(1) There exists a finite simple nonabelian group S, such that

S 6 G = G/K 6 Aut(S)

for maximal soluble normal subgroup K of G.

(2) For every independent subset ρ of π(G) with |ρ| > 3, at most one

prime in ρ divides the product |K| · |G/S|. In particular, t(S) > t(G) − 1.

(3) One of the following holds :

(a) every prime r ∈ π(G) non-adjacent in GK(G) to 2 does not divide

the product |K| · |G/S|; in particular, t(2, S) > t(2, G);

(b) there exists a prime r ∈ π(K) non-adjacent in GK(G) to 2; in which

case t(G) = 3, t(2, G) = 2, and S ' Alt7 or A1(q) for some odd q.

The following result by Vasilev and Gorshkov [24] shows that the excep-
tional case (b) of the statement (3) of Theorem 1 can be omitted when we
apply the theorem to recognition of finite nonabelian simple groups.

Theorem 2 Let L be a finite nonabelian simple group with t(L) > 3 and

t(2, L) > 2, and let G be a finite group with ω(G) = ω(L). Then

(1) There exists a finite simple nonabelian group S, such that

S 6 G = G/K 6 Aut(S)

for maximal soluble normal subgroup K of G.

(2) For every independent subset ρ of π(G) with |ρ| > 3, at most one

prime in ρ divides the product |K| · |G/S|. In particular, t(S) > t(G) − 1.

(3) Every prime r ∈ π(G) non-adjacent in GK(G) to 2 does not divide

the product |K| · |G/S|. In particular, t(2, S) > t(2, G).

The answer to the question which simple groups satisfy the conditions
of Theorem 2 was provided by Vasilev and Vdovin. In Ref. [26], they gave
arithmetic criteria of adjacency in prime graphs of finite simple groups; us-
ing the criteria they described maximal independent sets and obtained the
independent and 2-independent numbers for all these groups. It turned out
that t(2, L) > 2 for all nonabelian simple groups excepting the alternating
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groups of degree n, where there is no primes among n, n − 1, n − 2, n − 3;
and t(L) > 3 for all nonabelian simple groups with connected prime graph
excepting the alternating group of degree 10.

If a nonabelian simple group L satisfies the conditions t(L) > 3 and
t(2, L) > 2, then so does a group G with the same spectrum. Item (1) of
Theorem 2 asserts that G contains a unique nonabelian composition factor S,
while items (2) and (3) impose restrictions on S. These restrictions together
with information from Ref. [26] serve as the basis for proving S ' L, i.e.,
for proving L to be quasirecognizable. Examples of employing this technique
can be found in Refs. [8–10,15,25].

We formulate the question that seems crucial for proving quasirecogniz-
ability of simple groups of Lie type.

Problem 1 Let L be a finite simple classical group of Lie rank at least 24
over field of characteristic p, and let G be a finite group with ω(G) = ω(L).
Is it true that the unique nonabelian composition factor of G is a group of
Lie type over field of characteristic p?

We conclude with the following rather interesting problem.

Problem 2 Finite groups G and H are said to be section-free if neither
of them contains a subgroup isomorphic to a section of another. Determine
whether or not there exist two section-free finite isospectral groups G and H,
such that h(G) = h(H) is finite?

2 Spectra of covers

If L is a quasirecognizable nonabelian simple group and G is a finite group
with ω(G) = ω(L), then

S 6 G/K 6 AutS,

where K is the soluble radical of G; therefore, G includes a cover of L.
We say that a group G is a cover for a group L, or that G covers L, if L
is a homomorphic image of G. A finite group L is called recognizable (by
spectrum) from its covers if every finite cover G of L with ω(G) = ω(L) is
isomorphic to L. Obviously, every recognizable group is recognizable from its
covers.

Mazurov and Zavarnitsine [29] proved that all simple alternating groups
are recognizable from covers. Since the recognition problem is solved for all
sporadic simple groups, the simple groups of Lie type remain to be considered.
Let L be a finite simple group of Lie type over field of characteristic p and let
G be a cover for L with ω(G) = ω(L). To prove that G ' L using induction
on |G|, it suffices to consider the case when G is of the form V h L, where V
is an elementary abelian r-group for some prime r. It is natural to distinguish
between the modular case r = p and the non-modular case.

Recently, Mazurov and Zavarnitsine [30,32] obtained a powerful result
concerning the modular case of covers of linear and unitary groups. Here we
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give the final statement from Ref. [32]. For convenience, we put

L+
n (q) = Ln(q), L−

n (q) = Un(q),

and use this convention throughout the paper.

Theorem 3 Let ε ∈ {+,−}, q = pm, n > 4 and L = Lε
n(q). Assume

that q is either prime or even if n = 4. If L acts on a vector space V of

characteristic p, then ω(V h L) 6= ω(L).

As observed in Ref. [32], the action of Lε
4(q) in the defining characteristic

turned out to be a more subtle issue.

Problem 3 For which q is the simple group Lε
4(q) recognizable from its

covers?

Since for linear groups the non-modular case was done earlier by Zavar-
nitsine [31], Theorem 3 results in

Theorem 4 Let L = Ln(q) be a simple linear group. If either n 6= 4, or q
is prime, or q is even then L is recognizable by spectrum from its covers.

Keeping in mind Theorem 3, it is natural to pose the following problem.

Problem 4 Let L = Un(q) and n > 5. Is it true that L is recognizable from
its covers?

3 Spectra of automorphic extensions

Let L be a finite nonabelian simple group. If L is proved to be both quasirec-
ognizable and recognizable from its covers, then every finite group G with
ω(G) = ω(L) may be assumed satisfying L 6 G 6 AutL. Therefore, the
recognition problem substantially includes studying orders of elements in ex-
tensions of simple groups by automorphisms.

If L is an alternating or sporadic group and L < G 6 AutL then, using
only number-theoretic considerations and Ref. [6], one can verify that ω(G) 6=
ω(L). One of the most fruitful ways of studying spectra of finite groups of
Lie type, as well as spectra of their automorphic extensions, is to consider
these groups as centralizers of Frobenius endomorphisms in algebraic groups
(see Chapter 1 in Ref. [5]). In Ref. [28], Zavarnitsine derived a general
formula which expresses the spectrum of some automorphic extensions of a
finite group of Lie type in terms of spectra of its certain subgroups.

Theorem 5 Let G be a connected linear algebraic group over an alge-

braically closed field of characteristic p and τ be a surjective endomorphism

of G. For a natural number r, put Gr = CG(τr). If for some r the group Gr

is finite, then τ is an automorphism of Gr of order r and

ω(Gr〈τ〉) =
⋃

k|r

r

k
ω(Gk).
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Suppose that the subgroup Sc(G) of G consisting of all scalar matrices is

τ -invariant and put

Gr = Gr/(Gr ∩ Sc(G)).

Then

ω(Gr〈τ〉) =
⋃

k|r

r

k
ω(Gk).

In the same paper, applying Theorem 5, Zavarnitsine obtained the fol-
lowing result on extensions of finite linear and unitary groups.

Theorem 6 Let X ∈ {GLε
n, PGLε

n, SLε
n, PSLε

n} and let q be a power of a

prime p.
(1) Assume that r ∈ N is arbitrary if ε = +, and is odd if ε = −. If τ is

a field automorphism of X(qr), then

ω(X(qr)〈τ〉) =
⋃

k|r

r

k
ω(X(qk)).

(2) Let ε = + and r ∈ N be even. If τ is the product of the field

automorphism of X(qr) of order r and the inverse-transpose automorphism

of order 2, then

ω(X(qr)〈τ〉) =
⋃

k|r

r

k
ω(X(−)k

(qk)).

In view of Theorem 6, one can compare the spectrum of a linear or uni-
tary group with the spectrum of its extension by a field automorphism only
by number-theoretical means, providing that spectra of linear and unitary
groups are described (see Section 4). Using this approach, Grechkoseeva [8]
obtained the following result.

Theorem 7 Let L = Ln(q) where n > 4, q = pk, and let d = (n, q −
1). Suppose that τ is a field automorphism of L and π(|τ |) ⊆ π(d). Then

ω(L〈τ〉) = ω(L) if and only if n 6= pm + 1 and |τ | divides (q − 1)/d.

The following problem seems to be the main difficulty in investigating
spectra of automorphic extension of linear groups.

Problem 5 Suppose that L = Ln(q) where n > 4 and q is odd, and let G
be a group such that

L 6 G 6 AutL, |G : L| = 2.

Give a criterion for G to satisfy ω(G) = ω(L).

4 Spectra of finite groups of Lie type

The problem of recognition by spectrum, especially when put for a whole
series of groups at once, often results in a new problem of determining whether
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a given natural number arises as the order of an element in a given simple
group. Since the latter problem is easy for the alternating groups, and Ref.
[6] provides an exhaustive description of spectra of the sporadic ones, only
groups of Lie type are to be investigated.

Let G be a finite group of Lie type over field of characteristic p. It is known
that G can be represented as Op′

(CG(σ)), where G is a suitable connected
simple linear algebraic group over an algebraically closed field of characteristic
p, and σ is a suitable Frobenius map. The Jordan decomposition for G states
that for each x ∈ G, there exists a unique pair of semisimple element xs ∈ G
and unipotent element xu ∈ G, such that

x = xsxu = xuxs

(see Chapter 1 in Ref. [5]). One of the ways to describe the spectrum of G
is to find orders of its semisimple and unipotent elements, and then, having
obtained this information, to find ’mixed orders’, i.e., orders of elements that
are neither semisimple nor unipotent. Since semisimple elements of G are
exactly p′-elements, while its unipotent elements are exactly p-elements, we
single out two special subsets in ω(G): the subset ωp(G) of p-powers and the
subset ωp′(G) of numbers coprime to p. Also, for brevity, we put

ωmix(G) = ω(G) \ (ωp(G) ∪ ωp′(G)).

In 1995, Testerman [21] described the set ωp(G) for each finite group G
of Lie type in terms of the root system of G (note that by the root system of
a twisted group we understand the system of the corresponding split group).
Recall that there exists a unique root α0 of maximum height in each inde-
composable root system. The height ht(α0) is equal to n for type An, to
2n − 1 for types Bn and Cn, to 2n − 3 for type Dn, and to 11, 17, 29, 11, 5
for types E6, E7, E8, F4, G2, respectively (see Ref. [1]). The following result
is a direct consequence of Proposition 0.5 in Ref. [21].

Theorem 8 Let G be a finite group of Lie type over field of characteristic p.
Suppose that α0 is the highest root in the root system of G. Then pk ∈ ω(G)
if and only if pk−1 6 ht(α0).

Since each semisimple element of G arises as an element of some maxi-
mal tori of G (see Chapter 3 in Ref. [5]), to describe ωp′(G) it is sufficient
to determine periods of maximal tori of G. Each maximal torus T being a
finite abelian group can be represented as a direct product of cyclic groups.
We refer to determining terms of such a decomposition as describing cyclic
structure of T. The cyclic structure of maximal tori of the exceptional groups
of Lie type is known (see Ref. [11] for details). For the classical groups the
problem was solved by Buturlakin and Grechkoseeva [4].

Quite recently, Buturlakin [3] described the set ωmix(G) for all finite linear
and unitary groups. Thus, he provided an arithmetic criterion for a natural
number to lie in the spectrum of a given simple linear or unitary group.
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Theorem 9 Let G = Lε
n(q) where n > 2 and q be a power of a prime p,

and let d = (n, q − ε1). The set ω(G) is exactly the set of all divisors of the

following numbers :

(1) qn−(ε1)n

d(q−ε1) ;

(2) [qn1−(ε1)n1 ,qn2−(ε1)n2 ]
(n/(n1,n2),q−ε1) for all n1, n2 > 0 such that n1 + n2 = n;

(3) [qn1 − (ε1)n1 , qn2 − (ε1)n2 , . . . , qns − (ε1)ns ] for each s > 3 and all

n1, n2, . . . , ns > 0 such that n1 + n2 + · · · + ns = n;

(4) pk qn1−(ε1)n1

d for all k, n1 > 0 such that pk−1 + 1 + n1 = n;

(5) pk[qn1 − (ε1)n1 , qn2 − (ε1)n2 , . . . , qns − (ε1)ns ] for each s > 2 and all

k, n1, n2, . . . , ns > 0 such that pk−1 + 1 + n1 + n2 + · · · + ns = n;

(6) pk if k > 0 and pk−1 + 1 = n.

For simple symplectic and orthogonal groups, such criteria are not ob-
tained yet. Nevertheless, one of the most interesting questions on spectra of
these groups has been recently clarified. It is well known that for every n and
every q orders of groups Bn(q) and Cn(q) are equal. Furthermore, graphs
GK(Bn(q)) and GK(Cn(q)) were proved to coincide by Vasilev and Vdovin
(Proposition 7.5 in Ref. [26]). The result on maximal tori by Buturlakin and
Grechkoseeva together with Theorem 8 imply that the spectra of Bn(q) and
Cn(q) are very close; namely, if q is a power of a prime p, then

ωp(Bn(q)) = ωp(Cn(q)), ωp′(Bn(q)) = ωp′(Cn(q)).

Thus, the question about whether the spectra of non-isomorphic groups Bn(q)
and Cn(q) differ arises. The question was answered independently by Shi [20]
and Grechkoseeva [7].

Theorem 10 Let n > 2 and q be a power of an odd prime p. Then

p(qn−1 + 1) ∈ ω(Cn(q)) \ ω(Bn(q)).

We conclude the section with the following natural problem.

Problem 6 Suppose that G is a finite simple orthogonal, or symplectic,
or exceptional group of Lie type. Give an arithmetic criterion for a natural
number to lie in the spectrum of G.

5 Recent results on recognition of groups with connected prime graph

The last attempt to compile a full list of finite groups with solved recognition
problem was made by Mazurov [13] in 2004 (his survey [14] is available only
in Russian). We do not intend to give the contemporary version of this list
in the present paper; we rather concentrate on the finite groups for which
methods of solving the recognition problem have recently appeared, i.e., on
groups with connected prime graph (see Section 2).



Recognition by spectrum for finite simple groups of Lie type 9

In 2005, Vasilev [22] proved that the simple orthogonal groups O−
4n(2m)

are quasirecognizable for n > 8, thus providing the first example of an infinite
series of quasirecognizable groups with connected prime graph.

The same year Vasilev and Grechkoseeva [25] established that the simple
linear groups Ln(2m) are recognizable for n = 2k > 32. Thus, an infinite series
of recognizable groups with connected prime graph was obtained for the first
time. Groups L16(2

m) were proved to be recognizable by the same authors
and Shi [10]. Quite recently, Chen and Mazurov [15] showed that groups
L4(2

m) and U4(2
m) are recognizable for m > 1. Shen, Shi and Zinov’eva [17]

showed that groups Bp(3) are recognizable for p > 3.
We make a special emphasis on the following result for its generality.

Theorem 11 For every natural n > 2 the simple linear group Ln(2) is

recognizable by spectrum.

When n < 9 the prime graph of Ln(2) is disconnected, and the assertion
of Theorem 8 for the corresponding groups was proved in 2003 in a number of
papers (see Ref. [9] for details). In 2005, Grechkoseeva, Mazurov, Moghad-
damfar, Lucido, and Vasilev [9] proved that Ln(2) are quasirecognizable for
all n > 9. In 2006, after having investigated covers of simple linear and uni-
tary groups, Mazurov and Zavarnitsine [30] completed the proof of Theorem
11.

The latest and most general result on recognition of linear groups over
arbitrary finite fields of characteristic 2 was obtained by Grechkoseeva [8].

Theorem 12 Let L = Ln(q) where q = 2m and 11 6 n 6 17 or n > 24.
If either n = 2k + 1 for some natural m or (n, q−1

(n,q−1) , m) = 1, then L is

recognizable by spectrum. Otherwise, h(L) is equal to the number of divisors

of (n, q−1
(n,q−1) , m).

In view of the listed results, to give the ultimate solution of the recognition
problem for simple linear groups over fields of characteristic 2, it remains to
solve the following problem.

Problem 7 Suppose that L = Ln(2m) where m > 1 and 5 6 n 6 10 or
18 6 n 6 24. Determine the value of h(L) in terms of n and m.

As mentioned above, the most part of simple classical groups of Lie type
has connected prime graph. For simple exceptional groups of Lie type a rule
is quite the opposite. Namely, groups E7(q) where q > 3 have connected
prime graph, while the prime graphs of the remaining exceptional groups are
disconnected. Recently, Vasilev [23] proved that groups E7(q) with q > 3
are quasirecognizable by spectrum. This result, together with the previous
works on recognition of exceptional groups (see Ref. [23] for details), implies
the following general theorem.

Theorem 13 Let L be a finite simple exceptional group of Lie type. If G
is a finite group with ω(G) = ω(L), then

L 6 G/K 6 AutL,
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where K is the maximal normal soluble subgroup of G. In particular, L is

quasirecognizable by spectrum.

Note that the problem of the existence of a finite simple exceptional group
of Lie type which is not recognizable by spectrum (see Question 16.24 in Ref.
[16]) is still open.

We observe that the above results by Vasilev and Vdovin [22,26] can
be employed to solve the recognition problem for groups with disconnected
prime graph as well. By using these results together with Gruenberg–Kegel
Theorem, Shen, Shi and Zinovyeva [17] showed that groups Bp(3) are recog-
nizable for p > 3.
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tique). Paris: Hermann, 1968; Translation: Lie Groups and Lie Algebras: Chapters
4–6 (Elements of Mathematics). Berlin: Springer, 1989

2. Brandl R, Shi W J. Finite groups whose element orders are consecutive integers. J
Algebra, 1991, 143: 388–400

3. Buturlakin A A. Spectra of finite linear and unitary groups. Algebra and Logic (in
press)

4. Buturlakin A A, Grechkoseeva M A. The cyclic structure of maximal tori of the
finite classical groups. Algebra and Logic, 2007, 46(2): 73–89

5. Carter R W. Finite Groups of Lie Type: Conjugacy Classes and Complex Charac-
ters. New York: John Wiley & Sons, 1985

6. Conway J H, Curtis R T, Norton S P, et al. Atlas of Finite Groups. Oxford: Claren-
don Press, 1985

7. Grechkoseeva M A. On difference between the spectra of the simple groups Bn(q)
and Cn(q). Sib Math J, 2007, 48(1): 73–75

8. Grechkoseeva M A. Recognition by spectrum of finite simple linear groups over fields
of characteristic 2. Algebra and Logic (in press)

9. Grechkoseeva M A, Lucido M S, Mazurov V D, et al. On recognition of the pro-
jective special linear groups over the binary field. Sib Electron Math Rep, 2005, 2:
253–263 (http://semr.math.nsc.ru)

10. Grechkoseeva M A, Shi W J, Vasilev A V. Recognition by spectrum of L16(2m).
Algebra Colloq, 2007, 14(4): 585–591

11. Kantor W M, Seress A. Prime power graphs for groups of Lie type. J Algebra, 2002,
247: 370–434

12. Kondratiev A S. On prime graph components for the finite simple groups. Mat
Sbornik, 1989, 180(6): 787–797 (in Russian)

13. Mazurov V D. Characterization of groups by arithmetic properties. Algebra Colloq,
2004, 11(1): 129–140

14. Mazurov V D. Groups with a prescribed spectrum. Izv Ural Gos Univ Mat Mekh,
2005, 36(7): 119–138 (in Russian)



Recognition by spectrum for finite simple groups of Lie type 11

15. Mazurov V D, Chen G Y. Recognizability of finite simple groups L4(2m) and U4(2m)
by spectrum. Algebra and Logic (in press)

16. Mazurov V D, Khukhro E I. The Kourovka Notebook: Unsolved Problems in Group
Theory. 16th ed. Novosibirsk: Sobolev Inst Mat, 2006

17. Shen R L, Shi W J, Zinovyeva M R. Characterization of simple groups Bp(3). (in
press)

18. Shi W J. A characteristic property of A5. J Southwest-China Normal Univ, 1986,
11: 11–14 (in Chinese)

19. Shi W J. A characterization of the sporadic simple groups by their element orders.
Algebra Colloq, 1994, 1(2): 159–166

20. Shi Wujie. Pure quantitative characterization of finite simple groups. Frontiers of
Mathematics in China, 2007, 2(1): 123–125

21. Testerman D M. A1-Type overgroups of order p in semisimple algebraic groups and
the associated finite groups. J Algebra, 1995, 177(1): 34–76

22. Vasil’ev A V. On connection between the structure of finite group and properties of
its prime graph. Sib Math J, 2005, 46(3): 396–404

23. Vasilev A V. On the recognition by spectrum of finite simple exceptional groups of
Lie type. Algebra and Logic (in press).

24. Vasilev A V, Gorshkov I B. On recognition of finite simple groups with connected
prime graph. Sib Math J (in press)

25. Vasil’ev A V, Grechkoseeva M A. On recognition of finite simple linear groups by
spectrum. Sib Math J, 2005, 46(4): 593–600

26. Vasil’ev A V, Vdovin E P. An adjacency criterion for the prime graph of a finite
simple group. Algebra and Logic, 2005, 44(6): 381–406

27. Williams J S. Prime graph components of finite groups. J Algebra, 1981, 69: 487–
513

28. Zavarnitsin A V. Recognition of the simple groups U3(q) by element orders. Algebra
and Logic, 2006, 45(2): 106–116

29. Zavarnitsin A V, Mazurov V D. Element orders in coverings of symmetric and al-
ternating groups. Algebra and Logic, 1999, 38(3): 159–170

30. Zavarnitsin A V, Mazurov V D. On orders of elements in coverings of simple groups
Ln(q) and Un(q). Proceedings of the Steklov Institute of Mathematics, 2007, Suppl
1: 145–154

31. Zavarnitsine A V. Element orders in coverings of the groups Ln(q) and recognition
of the alternating group A16. NII Diskret Mat Inform, Novosibirsk, Preprint No.
48, 2000 (in Russian)

32. Zavarnitsine A V. Properties of element orders in cover of Ln(q) and Un(q). Sib

Math J (in press)


