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The spectrum of a group G is the set ω(G) of its element orders. The spectrum of a finite

group G together with its order retains a substantial part of the information on the structure

of G but, as demonstrated by the example of the dihedral group D8 of order 8 and the

quaternion group Q8, does not necessarily determine G uniquely. In [1] W. Shi conjectured

that the desired uniqueness will be achieved for finite simple groups. A. S.Kondrat′ev posed

this conjecture in [2, Question 12.39] in the following form:

Is it true that a finite group and a finite simple group are isomorphic if they have equal

orders and the same set of orders of elements ?

Later, for brevity, it was suggested to refer to a finite group G that is isomorphic to

every finite group H with ω(H) = ω(G) and |H| = |G| as recognizable by spectrum and

order. In this terminology Shi’s question sounds as follows:

Is it true that all finite simple groups are recognizable by spectrum and order ?

The answer to this question is obviously affirmative for abelian simple groups. In a series

of papers[1, 3–8], the affirmative answer was obtained for all nonabelian simple groups except

the symplectic groups, orthogonal groups of odd dimension and orthogonal groups of type

Dn with n even. In the present article we prove the recognizability by spectrum and order

for this remaining groups. Thus Shi’s conjecture is confirmed and the following theorem

holds.

THEOREM. If G is a finite simple group, H is a finite group with ω(H) = ω(G) and

|H| = |G|, then H ' G.
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Observe that we consider the problem of recognizing a finite simple group by spectrum

and order from the point of view of a more general and, in our opinion, more interesting

problem of recognizing by spectrum alone. As a result of such an approach, we managed to

prove a number of assertions related to the recognition of symplectic and orthogonal groups

by spectrum. These assertions, which play a considerable part in proving the main result of

the present article, became the subject of a separate paper [9].

§ 1. Preliminaries

Our notation for sporadic and simple groups of Lie type follows [10]. In this connection

if a group of Lie type L is denoted by tXn(q) [10, p. xiv, xv], we say that L is a group of

rank n over a field of order q. In particular, the rank of a twisted group is supposed to be

equal to that of the associated untwisted group. Sometimes, for brevity, we use notation f ,

where f and f . The alternating group of degree n is denoted by Altn.

For a natural number n, π(n) denotes the set of prime divisors of n. For a prime r, nr

denotes the r-part of n, i. e., the largest power of r that divides n, while nr′ denotes the r′-

part of n, i. e., the ratio n/nr. The greatest common divisor and the least common multiple

of natural numbers m1,m2, . . . , mk are denoted by (m1,m2, . . . , mk) and [m1,m2, . . . , mk]

respectively. If m > 2 and n are coprime natural numbers, then we write e(m,n) to denote

the multiplicative order of n modulo m. Given an odd n, we put e(2, n) = 1 if n ≡ 1 (mod 4)

and put e(2, n) = 2 if n ≡ 3 (mod 4).

Let n > 1. A prime r is said to be a primitive prime divisor of the difference ni − 1 if

e(r, n) = i.

LEMMA 1.1 (Zsigmondy [11]). Let n > 1 be a natural number. Then for every natural

number i, there is a prime r with e(r, n) = i, except when n = 2 and i = 1, n = 3 and i = 1,

n = 2 and i = 6.

In what follows the notation ri(n) means a primitive prime divisor of ni − 1 if such

exist. The product of all primitive divisors of ni − 1 taken with multiplicities is said to be

the greatest primitive divisor and denoted by ki(n). Note that for a divisor, the property of

being primitive depends on the pair (n, i) and is not determined by the number ni− 1. For
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example, k6(2) = 1, k3(4) = 7, k2(8) = 9, and k1(64) = 63.

It is not hard to check that k1(n) = (n− 1)/2 if n ≡ 3 (mod 4), and k1(n) = n− 1 in all

other cases; and also that k2(n) = (n + 1)/2 if n ≡ 1 (mod 4), and k2(n) = n + 1 otherwise.

It follows from [12] that for i > 2

ki(n) = Φi(n)/(r, Φir′ (n)), (1.1)

where Φi(x) is the ith cyclotomic polynomial and r is the largest prime dividing i, and if

ir′ does not divide r − 1, then (r, Φir′ (n)) = 1.

Now we give an upper bound for element orders in simple groups of Lie type. We make

use of the following number-theoretic

LEMMA 1.2. Let m be a natural number, m = m1 + m2 + · · ·+ ms be an expansion of

m into a sum of nonzero summands, and u be an even natural number.

(1) If um1 + 1, um2 + 1, . . . ums + 1 are pairwise coprime then

a = (um1 + 1)(um2 + 1) . . . (ums + 1) 6 (um′
1 + 1)(um′

2 + 1) . . . (um′
t + 1),

where m′
1 + m′

2 + · · ·+ m′
t is the binary expansion of m. In particular, if m̃ is the 2-part of

m then a 6 (um+em − 1)/(uem − 1).

(2) The number a = [um1 ± 1, um2 ± 1, . . . , ums ± 1], where signs can be chosen

independently, does not exceed (um+1 − 1)/(u− 1).

Proof. (1) We proceed by induction on m. If m = 1, the assertion is obvious.

Let all mi be even. By the inductive hypothesis

a 6 ((u2)m′
1 + 1)((u2)m′

2 + 1) . . . ((u2)m′
t + 1),

where m′
1 + m′

2 + · · ·+ m′
t is the binary expansion of m/2. Since 2m′

1 + 2m′
2 + · · ·+ 2m′

t is

the binary expansion of m, in this case the required inequality holds.

Suppose that not all mi are even. If mi and mj are odd then umi + 1 and umj + 1 are

not coprime. Thus there is exactly one odd number among mi. We assume that this is m1.

Suppose that m1 = 1. By the inductive hypothesis

a 6 (u + 1)(um′
1 + 1)(um′

2 + 1) . . . (um′
t + 1),
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where m′
1 +m′

2 + · · ·+m′
t is the binary expansion of the even number m−1. Since 1+m′

1 +

m′
2 + · · ·+ m′

t is the binary expansion of m, in this case the required inequality holds.

Suppose that m1 > 3. Put l = m−m1 and denote the 2-part of l by l̃. Then l̃ > 2. By

the inductive hypothesis

a 6 (um1 + 1)
ul+el − 1

uel − 1
6 (um1 + 1)(ul + ul−2 + · · ·+ u2 + 1).

Since m1 is odd and l is even, we have

(um1 + 1)(ul + ul−2 + · · ·+ u2 + 1) 6 um + um−2 + um−3 + · · ·+ 1 6 um + um−1.

It remains to observe that the binary expansion m′
1 + m′

2 + · · ·+ m′
t of m contains 1, so the

polynomial (um′
1 + 1)(um′

2 + 1) . . . (um′
t + 1) contains um−1 in addition to um.

Let m = m1 +m2 + · · ·+ms be the binary expansion of m. We claim that a 6 (um+em−
1)/(uem − 1), where m̃ is equal to the 2-part of m. We can assume that m̃ = m1. Also

a = (um1 + 1) . . . (ums + 1) =
∑

umi1
+···+mil , where the sum runs over all distinct subsets

{i1, . . . , il} of {1, . . . , s}. The numbers mi are pairwise different but every natural number

can be uniquely expanded as a sum of pairwise different powers of two, hence each coefficient

in the expansion of a by powers of um1 is equal to 0 or 1. Thus a 6 um + um−m1 + · · ·+ 1 =

(um+m1 − 1)/(um1 − 1).

(2) We proceed by induction on m. The assertion is obvious if m = 1.

Suppose that there is a minus among the signs. Assume that the minus enters into

um1 ± 1 . Then by the inductive hypothesis

a 6 (um1 − 1)[um2 ± 1, . . . , ums ± 1]

6 (um1 − 1)
um−m1+1 − 1

u− 1
=

um+1 − um1 − um−m1+1 + 1

u− 1
,

and the required inequality follows.

Thus all signs are pluses. Suppose that there are non-coprime numbers among umi + 1.

Let (um1 +1, um2 +1) 6= 1. If m1 = m2 then a 6 (um−m1+1−1)/(u−1) < (um+1−1)/(u−1),

so we can assume that m1 < m2. By (um1 +1, um2 +1) > u+1 and the inductive hypothesis,
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we have

a 6 (um1 + 1)(um2 + 1)

u + 1
· um−m1−m2+1 − 1

u− 1

6 um+1 + um−m1+1 + um−m2+1 + um−m1−m2+1 − u− 1

(u + 1)(u− 1)
,

whence

a 6 um+1 + um + um−1 + um−2 − u− 1

(u + 1)(u− 1)
6 um+2 + um+1 − u− 1

(u + 1)(u− 1)
=

um+1 − 1

u− 1
.

The lemma is proved.

LEMMA 1.3. Let S be a simple group of Lie type of rank m over a field of

characteristic v and order u.

(1) If S is a Ree or Suzuki group distinct from the Tits group 2F4(2)′, then element

orders of S is at most v/(v − 1) · um/2.

(2) If S = E8(u) then element orders of S is at most (u + 1)/(u− 1) · u8.

(3) If S is distinct from Ree and Suzuki groups and from E8(u), then element orders of

S is at most u/(u− 1) · um.

Proof. (1) The periods of maximal tori of 2F4(u), 2G2(u), and 2B2(u) do not exceed

u2 + u
√

2u + u +
√

2u + 1, u +
√

3u + 1, and u +
√

2u + 1 respectively (see [13, Tables 3–6]).

By hypothesis v < u, therefore every of these numbers is bounded above by the sum of

geometric series with the ratio v, the first term equal to 1 and the last term equal to um/2.

This sum is equal to (vum/2 − 1)/(v − 1) and so does not exceed v/(v − 1) · um/2.

By [14, Prop. 0.5], the largest order of v-elements in 2F4(u), 2G2(u) and 2B2(u) is equal

to 16, 9 and 4 respectively; in particular, it is not larger than um/2.

It follows from [13, Table 3] that orders of elements of mixed type in 2F4(u) are at most

v2(u +
√

2u + 1). Since u > v3, this number is less than v/(v − 1) · um/2. The order of

every element of mixed type in 2G2(u) is equal to 6 and, since u > 27, does not exceed

v/(v − 1) · um/2. There is no elements of mixed type in 2B2(u).

(2) It follows from [15] that periods of maximal tori of E8(u) are at most (u5 − 1)(u +

1)(u2 + u + 1) = u8 + 2u7 + 2u6 + u5 − u3 − 2u2 − 2u − 1, therefore, they are less than

u8 + 2u8/(u− 1) = (u + 1)/(u− 1) · u8.
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By [14, Prop. 0.5], orders of v-elements of E8(u) are at most u5. Using information from

[16, Table 2], it is not hard to check that orders of elements of mixed type do not exceed

v(u7 + 2u7/(u− 1)) = (u + 1)/(u− 1) · vu7.

(3) Let S be an exceptional group of Lie type distinct from Ree and Suzuki groups and

from E8(u). Using [14, Prop. 0.5; 16, Tables 1; 13], it is not hard to check that element

orders of S do not exceed um + um−1 + · · ·+ 1, therefore, they are less than u/(u− 1) · um.

So S is a classical group in what follows.

Let S = Aε
m(u). By [17, 18], ω(S) is contained in the set of divisors of the following

numbers:

(um+1 − ε1)/(u − ε1), [um1 − (ε1)m1 , . . . , ums − (ε1)ms ], where m1 + · · · + ms = m + 1

and s > 2;

vl+1[um1 − (ε1)m1 , . . . , ums − (ε1)ms ], where l > 0 and vl + 1 + m1 + · · ·+ ms = m + 1;

vl+1, if vl = m.

Note that (um+1 − ε1)/(u− ε1) < (um+1 − 1)/(u− 1) < um+1/(u− 1). Furthermore, for

every m1, . . . , ms such that m1 + · · ·+ ms = m + 1 and s > 2, we have

[um1 − 1, . . . , ums − 1] 6 (um1 − 1) . . . (ums − 1)

u− 1
6 um+1

u− 1
, (1.2)

[um1 − (−1)m1 , . . . , ums − (−1)ms ] 6 (u + 1)
um1 − (−1)m1

u + 1
. . .

ums − (−1)ms

u + 1

6 (u + 1)um1−1 . . . ums−1 = (u + 1)um+1−s <
um+1

u− 1
. (1.3)

Hence the order of a semisimple element of S is at most um+1/(u− 1).

Let a = vl+1[um1−(ε1)m1 , . . . , ums−(ε1)ms ], where l > 0 и vl +m1 + · · ·+ms = m. Since

l + 1 6 vl < m and it follows from (1.2) and (1.3) that [um1 − (ε1)m1 , . . . , ums − (ε1)ms ] 6
um1+···+ms + 1, we have a 6 uvl

(um1+···+ms + 1) = um + uvl 6 um + um/u < um+1/(u − 1).

If vl = m then a = vl+1 6 uvl
= um. Thus the assertion is proved for linear and unitary

groups.

Let S be a symplectic or orthogonal group. Observe that ω(Dε
m(u)) ⊆ ω(Bm(u)),

because Bm(u) contains the section isomorphic to Dε
m(u) and ω(Bm(u)) ⊆ ω(Cm(u)) by

[19, Cor. 1, 3]. It suffices therefore to handle the symplectic groups.

6



Let S = Cm(u), where u is odd. By [19, Cor. 1], the spectrum of S coincides with the

set of divisors of the following numbers:

(um ± 1)/2, [um1 ± 1, . . . , ums ± 1], where m1 + · · ·+ ms = m и s > 2;

vl+1[um1 ± 1, . . . , ums ± 1], where l > 0 and (vl + 1)/2 + m1 + · · ·+ ms = m;

vl+1, and vl + 1 = 2m.

It follows by [20, Lemma 9(1)] that for m > 4, the order of a semisimple element of S is

at most um + 1. For m = 2, 3 this fact can be established by direct calculation.

Let a = vl+1[um1 ± 1, . . . , ums ± 1], where (vl + 1)/2 + m1 + · · ·+ ms = m. Suppose that

l > 2. Then l +1 6 (vl−1)/2. Together with the estimate of orders of semisimple elements,

this yields

a 6 u(vl−1)/2(um1+···+ms + 1) = um−1 + u(vl−1)/2 < um.

If l = 0 then a 6 v(um−1 + 1) 6 um + u. If l = 1 then m > 3 and a 6 u2(um−2 + 1) =

um + u2 6 um · u/(u− 1). If vl + 1 = 2m then a = vl+1 6 u(vl+1)/2 = um.

Let S = Cm(u), where u is even. By [19, Cor. 2], the spectrum of S coincides with the

set of divisors of the following numbers:

[um1 ± 1, . . . , ums ± 1], where m1 + · · ·+ ms = m;

2[um1 ± 1, . . . , ums ± 1], where m1 + · · ·+ ms = m− 1;

2l+1[um1 ± 1, . . . , ums ± 1], where l > 1 and 2l−1 + 1 + m1 + · · ·+ ms = m;

2l+1, and 2l−1 = m.

Lemma 1.2 implies that the order of a semisimple element of Cm(u) is at most (um+1 −
1)/(u− 1).

Let a = 2l+1[um1 ± 1, . . . , ums ± 1], where l > 1 and 2l−1 + 1 + m1 + · · ·+ ms = m. Since

l 6 2l−1 and [um1 ± 1, . . . , ums ± 1] 6 (um1+···+ms+1 − 1)/(u− 1), we have

a 6 u2l−1+1um1+···+ms+1 − 1

u− 1
=

um+1 − u2l−1+1

u− 1
6 um+1 − 1

u− 1
.

The cases when a = 2[um1 ± 1, . . . , ums ± 1] or a = 2l+1 can be handled in a similar manner.

The lemma is proved.

The orders of simple groups of Lie type are well-known, so it is easy to check that the

following two lemmas are valid.
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LEMMA 1.4. Let S be a simple group of Lie type of rank m over a field of

characteristic v and order u, and V be a Sylow v-subgroup of S. Put σ(m,S) = 2 logu |V |/m
if S is a Ree or Suzuki group, and σ(m,S) = logu |V |/m otherwise.

(1) If S = 2B2(u) then |V | = u2 and σ(m, S) = 2.

(2) If S = 2G2(u) then |V | = u3 and σ(m, S) = 3.

(3) If S = 2F4(u) then |V | = u12 and σ(m,S) = 6.

(4) If S = G2(u) then |V | = u6 and σ(m,S) = 3.

(5) If S = F4(u) then |V | = u24 and σ(m,S) = 6.

(6) If S = Eε
6(u) then |V | = u36 and σ(m,S) = 6.

(7) If S = E7(u) then |V | = u63 and σ(m,S) = 9.

(8) If S = E8(u) then |V | = u120 and σ(m,S) = 15.

(9) If S = Aε
m(u) then |V | = um(m+1)/2 and σ(m,S) = (m + 1)/2.

(10) If S = Bm(u) or S = Cm(u) then |V | = um2 and σ(m,S) = m.

(11) If S = Dε
m(u) then |V | = um(m−1) and σ(m,S) = m− 1.

LEMMA 1.5. Let S be a simple group of Lie type of rank larger than 1 over a field of

characteristic v, and let V be a Sylow v-subgroup of S. Then |V |8/3 > |S|.
LEMMA 1.6. Let L be one of the groups Bn(q), Cn(q), Dε

n(q), v ∈ π(L) and (v, q) = 1.

Then the order of a Sylow v-subgroup V of L does not exceed f(q)3n/2, where the function

f(q) is defined as follows:

(1) for v > 3, put f(q) = q if q is odd or v 6= qi + 1, and put f(q) = q + 1 if q is even

and v = qi + 1;

(2) for v = 3, put f(q) = q if q 6= 2, 8, and put f(q) = q + 1 if q = 2, 8;

(3) for v = 2, put f(q) = (q2 − 1)2; if none of q± 1 is a power of 2 then f(q) 6 (q + 1),

and in all cases f(q) 6 2(q + 1).

More precisely, |V | 6 f(q)n · vδ(n,v), where δ = δ(n, v) =
∑∞

l=1[
n
vl ].

Proof. The order of L divides qn2 ∏n
j=1(q

2j − 1), therefore

|V | 6
n∏

j=1

(q2j − 1)v.
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Let i be the multiplicative order of q2 modulo v and vk = (q2i − 1)v. If i does not divide

j, then (q2j − 1)v = 1. If i divides j then (q2j − 1)v = (q2 − 1)v(j/i)v = vk(j/i)v (cf. [21,

Lemma 1]). Among natural numbers less than or equal to n, there are exactly [n/i] numbers

divisible by i; among them, there are exactly [n/ivl] numbers divisible by ivl. Hence the

order of V is at most vk[n/i]+t, where t =
∑∞

l=1

[
n/ivl

]
. We have

t =
∞∑

l=1

[ n

ivl

]
6 1

i

∞∑

l=1

[ n

vl

]
=

δ

i
6 1

i

[ ∞∑

l=1

n

vl

]
=

1

i

[
n

v − 1

]
.

Now we estimate vk = (qi − 1)v(q
i + 1)v in terms of q.

Let v 6= 2. Then (qi − 1, qi + 1)v = 1, and so vk divides either qi + 1 or qi − 1. If q is

odd and vk 6= qi + 1 then vk < qi + 1, hence vk 6 qi. If q is even and vk = qi + 1 then

vk 6 (q + 1)i. Observe that the equality vk = qi + 1 is possible for v > 3 only if k = 1, and

for v = 3 it is possible only if q = 2, 8.

If v = 2 then i = 1, so vk = (q2 − 1)2 = (q − 1)2(q + 1)2 6 2(q + 1). If neither q − 1 nor

q + 1 is a power of 2, then vk = (q − 1)2(q + 1)2 6 2(q + 1)/3 < q + 1.

In all cases vk 6 f(q)i, therefore

|V | 6 vk[n/i]+δ/i 6 vkn/i · vδ/i 6 f(q)n · vδ/i,

and so the last assertion of the lemma holds. Since

vδ/i 6 v[n/(v−1)]/i 6 f(q)[n/(v−1)]/k

and k > 3 for v = 2, we derive that vδ/i 6 f(q)n/2. Thus |V | 6 f(q)3n/2. The lemma is

proved.

LEMMA 1.7. Let S be a finite nonabelian simple group whose Sylow p-subgroup P has

order pγ. If |S| < |P |3 then S is one of the following groups:

(1) a group of Lie type over a field of characteristic p;

(2) an alternating or sporadic group;

(3) A1(u);

(4) 2A2(3), where γ = 5 and p = 2;

(5) 2A4(2), where γ = 5 and p = 3.
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Proof. The claim follows from [22, Lemmas 1, 2].

LEMMA 1.8 [23, Lemma 1]. Let G be a finite group, K be a normal subgroup of G,

G/K be a Frobenius group with kernel F and cyclic complement C. If (|F |, |K|) = 1 and

F is not contained in KCG(K)/K, then r|C| ∈ ω(G) for some prime divisor r of |K|.

§ 2. Gruenberg — Kegel graph and groups isospectral to simple groups

The Gruenberg — Kegel graph GK(G), or the prime graph, of a finite group G is the

graph with vertex set π(G) in which two distinct vertices p and q are adjacent if and only if

pq ∈ ω(G). Obviously, the graph GK(G) is uniquely determined by the spectrum ω(G) of G.

The number of connected components of GK(G) is denoted by s(G), and the connected

components are denoted by πi(G) with 1 ≤ i ≤ s(G). If G has even order, then by default

2 ∈ π1(G). According to this partition, ωi(G) is the subset of πi(G)-numbers of ω(G) for

every 1 ≤ i ≤ s(G).

LEMMA 2.1 (Gruenberg — Kegel [24]). If G is a finite group with s(G) > 1 then one

of the following holds:

(1) s(G) = 2, G is a Frobenius group;

(2) s(G) = 2, G = ABC, where A, AB are normal subgroups of G, B is a normal

subgroup of BC, and AB, BC are Frobenius groups;

(3) there is a nonabelian simple group S such that S ≤ G = G/K ≤ Aut S for some

nilpotent normal subgroup K of G; moreover, K and G/S are π1(G)-groups, s(S) ≥ s(G),

and for every 1 < i ≤ s(G) there is 1 < j ≤ s(S) such that ωi(G) = ωj(S).

Finite simple groups with disconnected prime graph were described in [24, 25]. The

complete list of these groups, with corrected inaccuracies, can be found in [26, Tables 1a–

1c]. By results of [24, 25], if S is a simple group and s(S) > 1 then for every 1 < i ≤ s(S) the

set ωi(S) has a unique maximal under divisibility element. In the tables mentioned above

and in the present paper, this maximal element is denoted by ni(S).

Recall that an independent set of vertices, or a coclique, in a graph Γ is a set of vertices

that are pairwise non-adjacent to each other in Γ. We write t(Γ) to denote the independence

number of Γ, i. e., the maximal number of vertices in its cocliques. Given a group G, put
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t(G) = t(GK(G)). By analogy, given a prime r, define the r-independence number t(r,G)

to be the maximal number of vertices in cocliques of GK(G) containing the vertex r.

LEMMA 2.2 [27, 28]. Let L be a finite non-abelian simple group such that t(L) ≥ 3

and t(2, L) ≥ 2, and G be a finite group with ω(G) = ω(L). Then the following hold.

(1) There exists a nonabelian simple group S such that S ≤ G = G/K ≤ Aut S, where

K is the maximal normal soluble subgroup of G.

(2) For every coclique ρ of GK(G) of size at least 3, at most one prime of ρ divides the

product |K| · |G/S|. In particular, t(S) ≥ t(G)− 1.

(3) Every prime r ∈ π(G) not adjacent to 2 in GK(G) does not divide the product

|K| · |G/S|. In particular, t(2, S) ≥ t(2, G).

If Γ is a prime graph and π is a set of natural numbers, we write Γ \ π to denote the

maximal subgraph of Γ all whose vertices do not lie in π. Observe that assertion (2) of

Lemma 2.2 yields, alongside the inequality t(S) ≥ t(G)− 1, the inequality t(GK(S) \ π) ≥
t(GK(G) \ π)− 1 for every set of primes π.

LEMMA 2.3. Let L be one of the simple groups Bn(q) with n ≥ 2 and (n, q) 6= (2, 3),

Cn(q) with n ≥ 3, Dn(q), 2Dn(q) with n ≥ 4, and G be a finite group with ω(G) = ω(L).

Then there exists a simple nonabelian group S such that

S ≤ G = G/K ≤ Aut S,

where K is the soluble radical of G. Furthermore, G, K and S satisfy assertions (2) and

(3) of Lemma 2.2.

Proof. If n > 2 and L 6= D4(2) then it follows from [29] that L satisfies t(L) ≥ 3 and

t(2, L) ≥ 2, so Lemma 2.2 implies the assertion. Let n = 2 or L = D4(2). Then L has

disconnected prime graph, therefore, the claim follows by the Gruenberg — Kegel theorem

and the main result of [30] together with the fact that in this case t(L) = 2. The lemma is

proved.

Note that the assertion of Lemma 2.3 is false for B2(3)(' C2(3)). As it is shown in

[31], there exists a soluble group isospectral to L. The fact that B2(3) is recognizable by

spectrum and order will be established in §3.
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In what follows in this section, L is a finite simple symplectic or orthogonal group

distinct from B2(3), and G is a finite group with the same spectrum (in other words, L and

G are isospectral). Then it follows from the last lemma that G satisfies the conclusion of

Lemma 2.2 and, in particular, contains a unique nonabelian composition factor S.

LEMMA 2.4 [9, Thm. 1]. Let L be one of the simple groups Bn(q) with n ≥ 2 and

(n, q) 6= (2, 3), Cn(q) with n ≥ 3, and Dn(q), 2Dn(q) with n ≥ 4. Then there are no

alternating groups among nonabelian composition factors of finite groups isospectral to L.

LEMMA 2.5 [9, Thm. 2]. Let L be one of the simple groups Bn(q) with n ≥ 2 and

(n, q) 6= (2, 3), Cn(q) with n ≥ 3, and Dn(q), 2Dn(q) with n ≥ 4. Then there are no sporadic

groups nor the Tits group 2F4(2)′ among nonabelian composition factors of finite groups

isospectral to L.

LEMMA 2.6 [9, Thm. 3]. Let q be a power of a prime p, L be one of the simple

groups Bn(q) with n ≥ 2 and (n, q) 6= (2, 3), Cn(q) with n ≥ 3, and Dn(q), 2Dn(q) with

n ≥ 4, G be the finite group with ω(G) = ω(L). Suppose that there is a factor S among

nonabelian composition factors of G which is isomorphic to a group of Lie type over a field

of characteristic p.

(1) If L = B2(q), where q > 3, then S is isomorphic to one of the groups A1(q
2), B2(q).

(2) If L ∈ {B3(q), C3(q), D4(q)}, then S is isomorphic to one of the groups

A1(q
3), B3(q), C3(q), D4(q), G2(q).

(3) If n ≥ 4 and L ∈ {Bn(q), Cn(q), 2Dn(q)}, then S is isomorphic to one of the groups

Bn(q), Cn(q), 2Dn(q).

(4) If n ≥ 6 is even and L = Dn(q), then S is isomorphic to one of the groups

Bn−1(q), Cn−1(q), Dn(q).

(5) If n ≥ 5 is odd and L = Dn(q), then S is isomorphic to L.

These results implies that the unique nonabelian composition factor S of a group G

isospectral to L must be a group of Lie type; moreover, when L and S are defined over

fields of the same characteristic, the number of possibilities for S is small. For a number of

symplectic and orthogonal groups of small orders, there are some stronger assertions on G

and S obtained by various authors.

12



LEMMA 2.7. Let L be one of the groups Bn(q), Cn(q), Dn(q), and G be a finite group

with ω(G) = ω(L).

(1) If L = B3(2) then G ' B3(2) or G ' D4(2) (see [26, 32]).

(2) If L = B3(3) then G ' B3(3) or G ' D4(3) (see [32]).

(3) If L = B4(2) then G has a unique nonabelian composition factor S and S ∈
{B4(2), 2D4(2)} (see [33]).

(4) If L = B4(3) then G has a unique nonabelian composition factor S and S ∈
{B4(3), 2D4(3)} (see [20]).

(5) If L = C3(3) then G ' C3(3) (see [23]).

(6) If L = C4(3) then G has a unique nonabelian composition factor S and и S ∈
{C4(3), 2D4(3)} (see [20]).

(7) If L = D4(2) then G ' B3(2) or G ' D4(2) (see [26, 32]).

(8) If L = D4(3) then G ' B3(3) or G ' D4(3) (see [32]).

It follows by Lemma 2.2 that many properties of the prime graph of L can be transferred

to the graph of S in some way or other. For that reason, our proof of the main result uses

an adjacency criterion of prime graphs of simple groups from [29] (with amendments from

[34, § 4]). For symplectic and orthogonal groups, this criterion is formulated in terms of the

function η : N→ N defined by

η(n) =





n, if n is odd

n/2 otherwise.

LEMMA 2.8 [9, Lemma 2.2]. Let L, G, S and K be as in Lemma 2.3.

(1) Suppose L = Bn(q) or L = Cn(q), where n > 3 and (n, q) 6= (3, 2). If there exists i

such that n/2 < η(i) ≤ n and ki(q) 6∈ ω(S) then for every j 6= i with n/2 ≤ η(j) ≤ n, the

number kj(q) is coprime to |K| · |G/S| and lies in ω(S).

(2) Suppose L = Dn(q), where n ≥ 4 and (n, q) 6= (4, 2). If there exists i 6= 2n such

that n/2 < η(i) ≤ n and ki(q) 6∈ ω(S) then for every j 6∈ {i, 2n} with n/2 ≤ η(j) ≤ n, the

number kj(q) is coprime to |K| · |G/S| and lies in ω(S).

(3) Suppose L = 2Dn(q), where n ≥ 4 and (n, q) 6= (4, 2), (5, 2). If there exists i 6= n
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such that n/2 < η(i) ≤ n and ki(q) 6∈ ω(S) then for every j 6∈ {i, n} with n/2 ≤ η(j) ≤ n,

the number kj(q) is coprime to |K| · |G/S| and lies in ω(S).

LEMMA 2.9. Let L be one of the simple groups Bn(q), where n > 2 and (n, q) 6= (2, 3),

Cn(q), where n > 3, Dn(q), where n is even and n > 4; G be a finite group with ω(G) = ω(L),

and S and K be as in Lemma 2.3. Then S contains an element of order at least h(q), where

h(q) is defined by the following:

(1) If L = Bn(q), Cn(q), where n > 7, or L = Dn(q), where n > 8, then

h(q) =





(q7 + 1)/(q + 1), if 7 - q2 − 1;

(q7 + 1)/7(q + 1), if 7 | q2 − 1.

(2) If L is one of the groups B4(q), C4(q), B5(q), C5(q), B6(q), C6(q), D6(q), then

h(q) = (q4 + 1)/2.

(3) If L is one of the groups B2(q), B3(q), C3(q), D4(q), where q > 2, then h(q) =

(q2 + 1)/2.

Proof. (1) Let n < 14. By Lemma 2.8 at least one of the numbers k7(q), k14(q) lies in ω(S).

We compare these numbers using (1.1). If 7 - q2 − 1 then k7(q) > k14(q) = (q7 + 1)/(q + 1).

If 7 | q2 − 1 then each of the numbers k14(q), k7(q) is at least (q7 + 1)/7(q + 1).

Let n > 14. There exist two distinct primes i and j such that n/2 < i < j < n.

By Lemma 2.8 at least one of the numbers ki(q), kj(q) lies in ω(S). On the other hand,

ki(q) > (qi − 1)/(q − 1)2 > (q11 − 1)/(q − 1)2 > (q7 + 1)/(q + 1), therefore, S contains an

element of the required order.

(2) For B4(q) and C4(q) the assertion follows by the Gruenberg — Kegel theorem and

[26, Table 1a], so we can assume that n = 5, 6. Lemma 2.8 implies that at least two of the

numbers k10(q), k5(q), k8(q) lie in ω(S). Compare these numbers. If q is even and 5 - q − 1

then k5(q) and k8(q) are greater than (q4 + 1)/2; and if 5 | q − 1 then k10(q) and k8(q) are

greater than (q4 +1)/2. If q is odd and 5 - q2−1 then k8(q) = (q4 +1)/2 is the least number

among k5(q), k10(q), and k8(q); and if 5 | q2 − 1 then k8(q) is the second largest among

them.

(3) For B2(q) the assertion follows by he Gruenberg — Kegel theorem and [26, Table 1a],
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so we can assume that n = 3, 4. By Lemma 2.8 at least two of the numbers k6(q), k3(q), and

k4(q) lie in ω(S). The further argument is similar to the proof of (2). The lemma is proved.

§ 3. Proof of the theorem: Reduction

Let L be a finite simple group and G be a finite group with ω(G) = ω(L) and |G| = |L|.
The conclusion of the theorem obviously holds for groups of prime order, therefore, we can

assume that L is nonabelian. For sporadic and alternating groups the assertion was proved

in [1] and [3] respectively. Also the theorem was proved for Suzuki and Ree groups in [4]

and for exceptional groups of Lie type in [5]. Furthermore, the conclusion of the theorem

holds if L is a simple linear group [6], unitary group [7], orthogonal group 2Dn(q), where n is

arbitrary, or orthogonal group Dn(q), where n is odd [8]. Thus, in view of the classification

of the finite simple groups, to complete the prove of the theorem, it suffices to establish the

following result.

THEOREM 3.1. If L if one of the simple groups Bn(q), where n > 2, Cn(q), where

n > 3, and Dn(q), where n is even and n > 4, and G is a finite group with ω(G) = ω(L)

and |G| = |L|, then G ' L.

It is precisely the assertion we prove in what follows.

PROPOSITION 3.1. If L = B2(3) and G is a finite group with ω(G) = ω(L) and

|G| = |L| then G ' L.

Proof. We have |L| = 26 · 34 · 5. The graph GK(L) has two connected components

and n2(L) = (32 + 1)/2 = 5. Suppose that G 6' L. By the Gruenberg — Kegel theorem,

G is either Frobenius, or 2-Frobenius, or a nonsoluble group having a unique nonabelian

composition factor S. In the last case S is isomorphic to one of the alternating groups A5

and A6, because π(S) ⊆ π(L) = {2, 3, 5} and S 6' L. In all cases G includes a subgroup

isomorphic to a Frobenius group with kernel A being a 3-group and complement of order 5.

Since |G|3 = 34, the inequality |A| 6 34 holds. On the other hand, e(5, 3) = 4, so A is an

elementary abelian group of order 34 and is a Sylow 3-subgroup of G. Therefore the 3-period

of G is equal to 3, and hence 9 ∈ ω(L) \ ω(G); a contradiction.

By Proposition 3.1 we can assume that L 6= B2(3). By Lemma 2.3 for a finite group G
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with ω(G) = ω(L), there is a nonabelian simple group S such that S 6 G = G/K 6 Aut S,

where K is the soluble radical of G. Lemmas 2.4 and 2.5 imply that S is neither alternating

nor sporadic. Thus S is a group of Lie type other than the Tits group.

Now we prove a number of auxiliary results. In each of them we assume that G is a finite

group with ω(G) = ω(L) and |G| = |L|, while S, K and G are as in the previous paragraph.

LEMMA 3.1. Suppose that q = pα, where p is a prime, L is one of the simple groups

Bn(q), Cn(q), (n, q) 6= (2, 3), or is Dn+1(q), n is odd.

(1) If the order of the soluble radical K of G is divisible by p then the order of a Sylow

p-subgroup of K is equal to q2nγ, where γ is a positive integer.

(2) If p divides |G/S| then a Sylow p-subgroup of G/S is cyclic for odd p and is either

cyclic or a general quaternion group for p = 2. In particular, if the p-period of L is equal

to pδ then |G/S|p is at most pδ for odd p and at most 2δ+1 for p = 2. Moreover, if p divides

the order of K then |G/S|p 6 pδ−1 for odd p and |G/S|2 6 2δ for p = 2.

Proof. (1) If L = Bn(q) or L = Cn(q) and n is even then every primitive prime

divisor r2n(q) is not adjacent to 2 in GK(G), therefore, k2n(q) is coprime to |K| · |G/S|
by Lemma 2.2(3). Note that r2n(q) is not adjacent to p either. If n is odd and L is one

of the groups Bn(q), Cn(q) or Dn+1(q), then {p, rn(q), r2n(q)} is a coclique in GK(G) (by

Lemma 2.7 we can assume that L 6= B3(2), D4(2), and so k2n(q) 6= 1). By hypothesis

p ∈ π(K) and then Lemma 2.2(2) implies that k2n(q) is coprime to |K| · |G/S|. Thus in all

cases k2n(q) is coprime to |K| · |G/S| and so lies in ω(S).

Let P be a Sylow p-subgroup of K and N be its normalizer in G. Among prime divisors

of k2n(q) we choose a prime r that satisfies not only the condition e(r, pα) = 2n but also

a stronger condition e(r, p) = 2nα. In other words, r = r2nα(p). By the Frattini argument

G = G/K ' N/N ∩K, hence G contains an element x of order r normalizing P . Since r

is not adjacent to p, x induces a automorphism of P , which acts fixed-point-freely. Thus

|K|p = p2nαγ = q2nγ for a positive integer γ.

(2) Suppose that p divides |G/S|. Reasoning as in (1), it is easy to establish that k2n(q)

lies in ω(S) and is coprime to |K| · |G/S|. Since the orders of L and G coincide, a cyclic

subgroup H of order k2n(q) is a Hall subgroup of S. Since every prime divisor of k2n(q) is
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non-adjacent to p, a Sylow p-subgroup A of the normalizer N of H in G acts on H freely.

Then H : A is a Frobenius group with kernel H and complement A, and hence A is cyclic if

p is odd and either cyclic or a general quaternion group if p = 2. By the Frattini argument

N/N ∩ S ' G/S. So a Sylow p-subgroup of G/S is isomorphic to a section of A. Thus it is

either cyclic or a general quaternion group. Obviously, the p-period of G/S does not exceed

the p-period of G and hence the p-period of L as well.

Let p divide the order of K and x be an element of A of order pκ. By the Frattini argument

the normalizer of a Sylow p-subgroup P of K includes a Frobenius group isomorphic to

H : 〈x〉. Considering the action of this Frobenius group on the factor group P/Φ(P ) of P

by its Frattini subgroup and applying Lemma 1.8, we infer that G contains an element of

order pκ+1. This proves the last assertion of the lemma.

LEMMA 3.2. Let L ∈ {B3(q), C3(q), D4(q)}, where q is a power of a prime p and

q > 3. Suppose that p divides the order of the soluble radical K of G. Then k3(q)k4(q)k6(q)

is coprime to |K| · |G/S|.
Proof. Let L be one of the groups B3(q), C3(q), D4(q). For every prime divisors r3 = r3(q)

and r6 = r6(q) the set {p, r3, r6} is a coclique in GK(L). By our assumption, p ∈ π(K).

It follows by Lemma 2.2(2) that the numbers k3 = k3(q) = (q2 + q + 1)/(3, q − 1) and

k6 = k6(q) = (q2− q +1)/(3, q +1) lie in ω(S) and are coprime to |K| · |G/S|. Denote cyclic

subgroups of S of orders k3 and k6 by H1 and H2 respectively. Observe that the equality of

the orders of G and L implies that H1 and H2 are Hall subgroups of S. By Lemma 3.1 the

order of a Sylow p-subgroup P of K is equal to q6 if L = B3(q) or L = C3(q) and equal to

q6 or q12 if L = D4(q).

Let r be an arbitrary prime divisor of k4(q) = (q2 + 1)/(2, q − 1). Note that r > 3.

Suppose that r divides |G/S|. Then the normalizers N1, N2 of H1, H2 in G contain elements

of order r. Since r is non-adjacent to divisors of k3 and k6 in GK(L), G includes Frobenius

groups with kernels of orders k3 and k6 and complements of order r. Hence r divides k3− 1

and k6 − 1. At least one of the numbers q2 + q + 1 and q2 − q + 1 is not divisible by 3,

so one of the numbers q2 + q and q2 − q must be a multiple of r. On the other hand,

(q2 ± q, (q2 + 1)/(2, q − 1)) = (q ± 1, (q2 + 1)/(2, q − 1)) = 1; a contradiction.
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Now we prove that (k4(q), |K|) = 1 by exploiting the following lemma.

LEMMA 3.3. Let q be a natural number, q > 3, r be a prime and rδ divide k4(q) =

(q2 + 1)/(2, q − 1) for a natural number δ. Then a cyclic subgroup of order k, where k =

k3(q) = (q2 + q + 1)/(3, q − 1) or k = k6(q) = (q2 − q + 1)/(3, q + 1), cannot act freely on a

group of order rδ.

Proof. Otherwise, rδ − 1 is divisible by k and, in particular, k < rδ. If rδ 6= (q2 +

1)/(2, q − 1) then, since ((q2 + 1)/(2, q − 1), 6) = 1 and q > 3, we have rδ 6 k4(q)/5 6
min{k3(q), k6(q)} 6 k; a contradiction. Thus rδ = k4(q) and so k divides k4(q) − 1, which

is equal to q2 if q is even and to (q2 − 1)/2 if q is odd. Both cases are impossible, since

(q2, q2 ± q + 1) = 1 and (q2 − 1, q2 ± q + 1) = (q2 − 1, 3). The lemma is proved.

We return to the proof of Lemma 3.2. Suppose that a prime divisor r of k4(q) divides the

order of K. Let rδ be the largest power of r that divides (q2+1)/(2, q−1). Then the r-period

of L is equal to rδ and the order of a Sylow r-subgroup of L is equal to rδ if L = B3(q), C3(q)

and to r2δ if L = D4(q). Let V1, V2 be normal subgroups of G, V1 6 V2 6 K, V = V1/V2 be a

chief factor of G and |V | = rγ. Since S includes cyclic subgroups H1 and H2 of orders k3(q)

and k6(q) respectively, (|K|, k3(q)k6(q)) = 1 and r is adjacent to none of the prime divisors

of k3(q)k6(q), it follows that H1 and H2 acts freely on V by conjugation. By Lemma 3.3

we have γ > δ + 1. This is immediately yields that L = D4(q) and V is the unique chief

r-factor of K.

If δ = 1 then V is isomorphic to a Sylow r-subgroup of G, which has order r2, and so

r does not divide |G|. A simple nonabelian group S is a section of Aut V = GL2(r) and is

not isomorphic to Alt5. Therefore r must divide the order of S; a contradiction.

Thus δ > 1. In particular, q 6= 4 since otherwise k4(q) = q2 + 1 = 17. Since V is

elementary abelian, G contains an element of order rδ−1. Therefore r2δ/rδ−1 > |V | > rδ+1.

Hence |V | = rδ+1. The subgroups H1, H2 acts freely on V , so |V | − 1 = rδ+1− 1 is divisible

by the least common multiple of k3(q) and k6(q), which is equal to (q4 + q2 + 1)/(3, q2− 1).

This contradicts the chain of inequalities |V | 6 ((q2 + 1)/(2, q − 1))(3/2) < (q4 + q2 + 1)/3

valid for q > 5.

Thus (k4(q)k3(q)k6(q), |K| · |G/S|) = 1. The lemma is proved.
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Proposition 3.2. Let q be a power of a prime p, L be one of the simple groups Bn(q),

where n > 2 and (n, q) 6= (2, 3), Cn(q), where n > 3, and Dn(q), where n is even and

n > 4. Let G be a finite group with ω(G) = ω(L) and |G| = |L|. Suppose that the unique

nonabelian composition factor S of G is isomorphic to a group of Lie type over a field of

characteristic p. Then L ' S = G.

Proof. Since the spectra of L and G coincide, we can apply Lemma 2.6.

Let L = Dn(q), where n is even and n > 4. It follows by Lemma 2.4(2),(4) that S ∈
{Bn−1(q), Cn−1(q), Dn(q)}, and if n = 4 then alongside the listed possibilities, S can be

isomorphic to one of the groups A1(q
3), G2(q). Suppose that S ∈ {Bn−1(q), Cn−1(q)}. Then

|L|p = qn(n−1) and |S|p = q(n−1)2 . Furthermore, |G/S|p 6 |Out S|p 6 logp q. Therefore

|G/S|p 6 q and hence |G|p < |L|p. So p divides the order of K. It follows by Lemma 3.1

that |K|p > q2(n−1), whence |G|p > |K|p · |S|p > q(n+1)(n−1) > qn(n−1) = |L|p; a contradiction.

It remains therefore to consider the cases when n = 4 and S is one of the groups A1(q
3),

G2(q).

By Lemma 2.7 we can assume that q > 3. Estimating the p-part of |G/S| in terms of

the p-period of L by Lemma 3.1, we derive the inequality |G/S|p 6 q2. Since |A1(q
3)|p = q3

and |G2(q)|p = q6, if S ' A1(q
3) then q3 6 |G|p 6 q5 and if S ' G2(q) then q6 6 |G|p 6 q8.

In both cases |G|p < q12 = |L|p. So p divides the order of K. It follows by Lemma 3.2 that

k4(q) = (q2 + 1)/(2, q − 1) must divide the order of S. But |S| = q3(q6 − 1)/(2, q − 1) for

S ' A1(q
3) and |S| = q6(q2 − 1)(q6 − 1) for S ' G2(q), so (|S|, k4(q)) = 1; a contradiction.

Thus S ' Dn(q) and hence L ' G.

Let L = B2(q) and S ' A1(q
2). Since q > 3, Lemma 3.1 and [14, Prop. 0.5] imply that

|G/S|p 6 q. Therefore |G|p 6 |S|p · |G/S|p 6 q3. Thus p divides the order of K. It follows

by Lemma 3.1 that q4 = |L|p divides the order K, which is not the case since the order of

S is divided by p as well.

Let L ∈ {Bn(q), Cn(q)}, n > 3. The groups Bn(q) and Cn(q) for n > 3 have the same

orders. Hence if S ∈ {Bn(q), Cn(q)} then G = S. On the other hand, it is shown in [35, 36]

that ω(Bn(q)) 6= ω(Cn(q)) provided that Bn(q) 6' Cn(q). Thus if S ∈ {Bn(q), Cn(q)}, then
L ' S = G.
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Suppose now that n > 4 and S ' 2Dn(q). Then |L|p = qn2 , |S|p = qn(n−1). Furthermore,

|G/S|p 6 |Out S|p 6 2 logp q. Hence |G/S|p 6 q and so |G|p < |L|p. Thus p divides the

order of K. It follows by Lemma 3.1 that |K|p > q2n and therefore |G|p > |K|p · |S|p >
qn(n+1) > |L|p; a contradiction.

Thus to complete the prove, it remains to eliminate the cases when n = 3 and S ∈
{A1(q

3), D4(q), G2(q)}. If S ' D4(q) then |G| > |S| > |L|, which is impossible. Therefore

S ∈ {A1(q
3), G2(q)} and by Lemma 2.7 we can assume that q > 3. We have |L|p = q9.

Reasoning similarly to the case when L = D4(q), we derive that |G/S|p 6 q2 and so

|G|p < |L|p. Thus p divides |K|. It follows by Lemma 3.2 that k4(q) = (q2 + 1)/(2, q − 1)

must divide the order of S, which is not the case. The proposition is proved.

§ 4. Proof of the theorem: Cross-characteristic case

Let L be one the simple groups Bn(q), where n > 2, (n, q) 6= (2, 3), Cn(q), where n > 3,

and Dn(q), where n > 4 is even, q be a power of a prime p. Let G be a finite group with

ω(G) = ω(L) and |G| = |L|, S be the unique nonabelian composition factor of G according

to Lemma 2.3. By results of the previous section, we can assume that S is a group of Lie

type over a field of characteristic not equal to p. In particular, Lemma 2.7 implies that

L 6∈ {B3(q), C3(q), B4(q), C4(q), D4(q) | q = 2, 3}.
Let S be a group of Lie type of rank m over a field of order u and characteristic v,

where v 6= p. Lemma 2.9 asserts that S contains an element whose order is at least a

sufficiently large number h(q). It follows by Lemma 1.3 that h(q) does not exceed the

number v/(v − 1) · um/2 if S is a Ree or Suzuki group; the number (u + 1)/(u − 1) · um if

S ' E8(u); and the number u/(u− 1) · um in other cases. The number um can be expressed

in terms of the order of a Sylow v-subgroup V of S. The order of V does not exceed the

order of a Sylow v-subgroup of G, and so the order of a Sylow v-subgroup of L as well,

which is in its turn can be estimated in terms of f(q) and n according to Lemma 1.6. We

show that the chain of these estimates results in a contradiction if n is sufficiently large.

And if n is small it enables us to substantially narrow the scope of possibilities for S.

Proposition 4.1. Let L be one of the groups Bn(q), Cn(q), where n > 7, and Dn(q),
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where n > 8 is even; q be a power of a prime p; G be a finite group with ω(G) = ω(L) and

|G| = |L|. Then the unique nonabelian composition factor S of G is not a group of Lie type

over a field of characteristic other than p.

Proof. Assume the opposite. By Lemma 2.9, S contains an element whose order is

bounded from below by a polynomial h(q) in q of degree 6.

Let V be a Sylow v-subgroup of S. Let σ(m) = σ(m,S) be as in Lemma 1.4. The equality

|G| = |L| and Lemma 1.6 implies that |V | is at most f(q)3n/2. Therefore

um/2 6 f(q)3n/2σ(m) (4.1)

for Ree and Suzuki groups,

um 6 f(q)3n/2σ(m) (4.2)

for other groups. By Lemma 1.3 and the inequalities (u + 1)/(u− 1) 6 (v + 1)/(v − 1) and

u/(u− 1) 6 v/(v − 1), it follows from (4.1) and (4.2) that

h(q) 6 Cf(q)3n/2σ(m), (4.3)

where C = v/(v − 1) for S 6' E8(u) and C = (v + 1)/(v − 1) for S ' E8(u).

We show that the ratio n/σ(m) is at most 2. Then the left-hand side of (4.3) contains a

polynomial in q of degree 6, while the right-hand side contains a polynomial in q of degree

3. Thus we derive a contradiction for all sufficiently large q. The case of small q will be

handled separately.

To estimate the ratio n/σ(m), we use Lemma 2.2(2) and the information on cocliques

of prime graphs of finite simple groups from [29, 34].

Since t(Bn(q)) = t(Cn(q)) = [(3n + 5)/4] > 6 for n > 7 and t(Dn(q)) = [(3n + 1)/4] > 6

for even n > 8, it follows by Lemma 2.2 that t(S) > t(L)−1 > 5. In particular, S is either a

classical group or a group of one of the types Eε
m, F4, 2F4, and 2G2. Observe that S 6' 2G2(u)

since every coclique of GK(2G2(u)) of size 5 contains the vertex 3, while the prime graph

of L always includes a coclique of size 6 and without the vertex 3. Furthermore, S is other

than 2D5(2), F4(2) and 2F4(8) because t(2D5(2)) = 3 and t(F4(2)) = t(2F4(8)) = 4.
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Suppose that S ' Aε
m(u). It follows from t(S) > 5 that m > 8. For such m, the

independent number of the prime graph of S is equal to [(m+2)/2]. Therefore (m+2)/2 >
[(3n+1)/4]−1 > (3n−2)/4−1 and so n 6 (2m+10)/3. On the other hand, by Lemma 1.4,

we have σ(m) = (m + 1)/2. Thus n/σ(m) 6 (4m + 20)/(3m + 3) = 4/3 + 16/(3m + 3) 6
4/3 + 16/27 < 2.

Suppose that S is isomorphic to one of the groups Bm(u), Cm(u), Dε
m(u). By t(S) > 5,

the rank m is at least 5. Since t(S) 6 [(3m+5)/4], it follows that (3m+5)/4 > [(3n+1)/4]−
1 > (3n − 2)/4 − 1. Then n 6 m + 11/3, i. e., n 6 m + 3. By Lemma 1.4, σ(m) > m − 1.

Therefore n/σ(m) 6 (m + 3)/(m− 1) = 1 + 4/(m− 1) 6 2.

If S ' E8(u) then t(S) = 12. Thus t(L) 6 13 and so n 6 18. Taking into account that

σ(m) = 15, we obtain that n/σ(m) 6 6/5.

If S ' E7(u) then t(S) = 8 and so n 6 12. Since σ(m) = 9, the inequality n/σ(m) 6 4/3

holds.

If S ' Eε
6(u), S ' F4(u) or S ' 2F4(u) then t(S) 6 5, and so n 6 8. For all these

groups, σ(m) = 6. Therefore n/σ(m) 6 4/3.

Thus in all cases under consideration except when S ' E8(u), (4.3) yields h(q) 6
v/(v−1)·f(q)3, while in the case S ' E8(u), it yields h(q) 6 (v+1)/(v−1)·f(q)9/5. We show

that the second inequality is stronger than the first one. Indeed, (v + 1)f(q)9/5/(vf(q)3) =

(v + 1)/(vf(q)6/5) 6 3/(2f(q)) < 1 and so the right-hand side of the second inequality is

less than the corresponding side of the first one. Hence for all groups S, we have

h(q) 6 v

v − 1
f(q)3. (4.4)

LEMMA 4.1. Let q be a prime power, v be a prime coprime to q, f(q) be the function

defined in Lemma 1.6, and h(q) be the function defined in Lemma 2.9(1). If h(q) 6 v/(v −
1) · f(q)3, then q = 3 and v = 2.

Proof. Since h(q) > (q7 + 1)/7(q + 1), v/(v − 1) 6 2 and f(q) 6 2(q + 1), the inequality

in the statement yields

q7 + 1 6 7(2(q + 1))4,

and hence q 6 5. If q 6 5 then 7 - q2 − 1, so h(q) = (q7 + 1)/(q + 1), and the inequality in
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the statement yields

q7 + 1 6 (2(q + 1))4,

whence q 6 3.

Let q = 3 and v > 3. Then f(q) = q = 3, therefore, 37 + 1 6 2 · 33(3 + 1), and so

34 6 2(3 + 1), but this is false. Thus if q = 3 then v = 2.

Let q = 2. Then v > 3 and so v/(v − 1) 6 3/2. Since f(q) = q + 1 = 3, we derive that

27 + 1 6 3/2 · 34, which is false. The lemma is proved.

By the above lemma, the inequality (4.4) leads to a contradiction provided that (q, v) 6=
(3, 2). Let q = 3 and v = 2. Then f(q) = 8. Let S ' 2F4(u). Then u > 32 and n/σ(m) 6 4/3.

On the other hand, it follows from (4.1) that u2 6 f(q)2 = 26; a contradiction. Let S be

isomorphic to one of the groups E8(u), E7(u), Eε
6(u) and F4(u). Then n/σ(m) 6 4/3, and

the inequality (4.2) implies that um 6 f(q)2 = 26. Since S 6' F4(2), we have S ' Eε
6(2), and

so n 6 8. The group E6(2) contains an element of order 31 and the group 2E6(2) contains

an element of order 19. Since e(31, 3) = 15 and e(19, 3) = 18, there are no elements of

orders 31 and 19 in L; a contradiction. Let S be a classical group. Recall that if S is a linear

or unitary group then m > 8, and if S is a symplectic or orthogonal group then m > 5.

Since n/σ(m) 6 2, it follows from (4.2) that um 6 f(q)3 = 29. Therefore u = 2 and m 6 9,

so n 6 12. Since S 6' 2D5(2), S contains an element of order r5(2) = 31 or an element of

order r14(2) = 43 but L does not contain elements of those orders; a contradiction. The

proposition is proved.

We proceed to the case when n 6 6. Now h(q) is a polynomial in q of forth or second

degree depending on L, and we need more accurate estimate of the order of a Sylow v-

subgroup of L. By Lemma 1.6, its order is at most f(q)n ·vδ(n,v), where δ(n, v) =
∑∞

l=1[n/vl].

Therefore

um/2 6 vδ(n,v)/σ(m)f(q)n/σ(m) (4.5)

for Ree and Suzuki groups,

um 6 vδ(n,v)/σ(m)f(q)n/σ(m) (4.6)
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for other groups, and in either case

h(q) 6 Cvδ(n,v)/σ(m)f(q)n/σ(m), (4.7)

where, as above, C = v/(v − 1) for S 6' E8(u) and C = (v + 1)/(v − 1) for S ' E8(u).

If the ratio n/σ(m) is less than the degree of h(q), the inequality (4.7) holds true only

for finitely many values of q. Thus either σ(m) is small as compared to n or q takes finitely

many values.

LEMMA 4.2. Let q be a prime power, v be a prime coprime to q, f(q) be the function

defined in Lemma 1.6, and h(q) = (q4 + 1)/2.

(1) If h(q) 6 vδ(6,v)/2 · v/(v − 1) · a(q)3 then either q = 2, 4, 8, or v > 2 and q = 3, 5, 7,

or v = 2 and q = 3, 5, 7, 9, 11, 13, 17, 31, 127.

(2) If h(q) 6 v2δ(6,v)/5 ·v/(v−1) ·f(q)12/5 then either q = 2, 4, or v = 2 and q = 3, 5, 7, 9.

(3) If h(q) 6 vδ(6,v)/3 · v/(v − 1) · f(q)2 or h(q) 6 vδ(4,v)/2 · v/(v − 1) · f(q)2 then either

q = 2, or v = 2 and q = 3, 5, 7.

Proof. (1) Since vδ(6,v)/2 6 4, v/(v − 1) 6 2 and f(q) 6 2(q + 1), the inequality in the

statement implies that q4 + 1 6 16(2(q + 1))3, whence q 6 128.

Suppose that q is not equal to 9 and distinct from the Mersenne and Fermat primes.

Then neither q + 1 nor q − 1 is a power of 2, so f(q) 6 q + 1 and q4 + 1 6 16(q + 1)3, and

hence q 6 17. Thus either q = 127 or q = 31 or q 6 17.

Let q = 2, 4, 8, 16. Then v > 3, and so vδ(6,v)/2 6 3, v/(v − 1) 6 3/2 and f(q) 6 q + 1.

We have q4 + 1 6 9(q + 1)3, which is false for q = 16. Thus q = 2, 4, 8.

Let q = 3, 5, 7, 9, 11, 13, 17, 31, 127 and v > 2. Then vδ(6,v)/2 6 3, v/(v − 1) 6 3/2 and

f(q) 6 q. We have q4 + 1 6 9q3, which is false for q > 7. Thus q = 3, 5, 7.

(2) The inequality in (2) is stronger than that in (1), so the conclusion of (1) holds.

Let v > 2 and q = 2, 3, 4, 5, 7, 8. Then v2δ(6,v)/5 6 34/5, v/(v−1) 6 3/2. Since f(q) 6 q+1

for even q and f(q) 6 q for odd q, we deduce that even numbers must satisfy the inequality

q4 + 1 6 34/5 · 3(q + 1)12/5, while odd ones must satisfy q4 + 1 6 34/5 · 3q12/5. The first

inequality is false for q = 8 and the second one is false for q = 5, 7, therefore q = 2, 3, 4. Let

q = 3. Then v > 5, so v2δ(6,v)/5 6 52/5, v/(v − 1) 6 5/4, and hence 2(q4 + 1) 6 52/5 · 5q12/5,
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but this is false for q = 3. Thus q = 2, 4.

Let v = 2. Then v2δ(6,v)/5 = 28/5, v/(v − 1) = 2 and f(q) = (q2 − 1)2, so the inequality

q4 + 1 6 28/5 · 4((q2 − 1)2)
12/5 must be true. A direct check shows that it is false for

q = 11, 13, 17, 31, 127.

(3) Both inequalities in (3) are stronger than the inequality in (2), so the conclusion

of (2) holds.

Let q = 2, 4. Then vδ(4,v)/2 6 vδ(6,v)/3 6 32/3, v/(v − 1) 6 3/2 and f(q) 6 q + 1. We

derive that q4 + 1 6 32/3 · 3(q + 1)2, which is false when q = 4.

Let v = 2. Then vδ(6,v)/3 6 vδ(4,v)/2 = 23/2, v/(v− 1) = 2 and f(q) = (q2− 1)2. It follows

that q4 + 1 6 23/2 · 4((q2 − 1)2)
2, whence q 6 7. The lemma is proved.

Proposition 4.2. Let L be one of the groups B4(q), C4(q), B5(q), C5(q), B6(q), C6(q),

D6(q), where q is a power of a prime p, and G be a finite group with ω(G) = ω(L) and

|G| = |L|. Then the unique nonabelian composition factor S of G is not a group of Lie type

over a field of characteristic other than to p.

Proof. Assume the opposite. By Lemma 2.9, h(q) = (q4 + 1)/2.

I. Let L be one of the groups B6(q), C6(q), B5(q), C5(q), and L 6= B5(2). Then t(L) =

5. Moreover, GK(L) contains a coclique of size 5a and without the vertices 2 and 3. It

follows that GK(S) \ {2, 3} must contain a coclique of size 4. Therefore S is distinct from
2B2(u), G2(u), B2(u), B3(u), C3(u), D4(u), 3D4(u) and Aε

m(u), where m 6 5, and from

B4(2), 2D4(2), 2D5(2), A6(2), A7(2) as well. In particular, σ(m) > 3, so n/σ(m) 6 2 and

vδ(n,v)/σ(m) 6 vδ(6,v)/3. Therefore if S 6' E8(u) then (4.7) yields h(q) 6 v/(v−1)·vδ(6,v)/3f(q)2,

while if S ' E8(u) it yields h(q) 6 (v + 1)/(v − 1) · vδ(6,v)/15f(q)2/5. It easy to verify that

the second inequality if stronger than the first one, so in either case

h(q) 6 v

v − 1
vδ(6,v)/3f(q)2.

By Lemma 4.2(3), either q = 2, or v = 2 and q = 3, 5, 7.

Let q = 2. Then f(q) 6 3, and it follows from (4.5), (4.6) that um/2 6 24/3 · 9 for Ree

and Suzuki groups, and that um 6 24/3 · 9 for other groups. Since m > 1, we have u = 3

and m = 2. This is impossible in view of the restrictions mentioned above and the fact that
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2G2(3) is not simple.

Let v = 2 and q = 3, 5, 7. If S ' 2F4(u), where u > 8, then it follows from (4.5) that

26 6 u2 6 2δ(6,2)/3(q2 − 1)2
2 6 24/328, whence u = 8 and S ' 2F4(8). For other groups, (4.6)

yields um 6 24/328. Since m > 3, we infer that either u = 2 and 4 6 m 6 9, or u = 4 and

m = 4. In the last case, in view of the restriction mentioned above, S is isomorphic to one

of the groups B4(4), 2D4(4) and F4(4).

Consider the primes non-adjacent to 2 in GK(L). If n = 6 then they are the divisors

of k12(q) and if n = 5 then they are the divisors of k5(q) for q = 3, 7 and divisors of k10(q)

for q = 5. Therefore by Lemma 2.2, at least one of the numbers k12(3) = 73, k5(3) = 121,

k12(5) = 521, k10(5) = 601, k12(7) = 13 · 181 and k5(7) = 2801 lies in ω(S); in particular,

S 6∈ {2F4(8), B4(4), 2D4(4), F4(4)}. Thus u = 2. Since e(73, 2) = 9, e(601, 2) = 25 and

e(r, 2) > 110 for r ∈ {121, 521, 13 · 181, 2801}, of all these numbers, ω(S) can contain

only 73, and so the order of S must be divisible by 29 − 1. Hence L ∈ {B6(3), C6(3)}
and S ∈ {A8(2), A9(2), B9(2), D9(2), E6(2), E7(2), E8(2)}. But then 17 ∈ ω(S) \ ω(L); a

contradiction.

It remains to handle the case L = B5(2). In this case π(L) = {2, 3, 5, 7, 11, 17, 31}, the
graph GK(L) is disconnected, and {2, 31, 11} and {7, 11, 17, 31} are cocliques in GK(L).

Thus 11, 31 ∈ π(S) ⊆ {2, 3, 5, 7, 11, 17, 31}, at least one of 7, 17 also lies in π(S), and GK(S)

is disconnected. Using [37, Table 1], it is not hard to check that among groups of Lie type

over a field of an odd characteristic, there is no group with such properties.

II. Let L = D6(q). Then t(L) = 4. So t(S) > 3, and S 6' B2(u). Suppose that S is distinct

from the groups 2B2(u) and Aε
m(u), where m 6 4. Then σ(m) > 3, and so n/σ(m) 6 2.

Similarly to the case I, it follows that q = 2, or v = 2 and q = 3, 5, 7.

Let q = 2. Then f(q) 6 3, and it follows from (4.5), (4.6) that um/2 6 24/3 · 9 for Ree

and Suzuki groups, and that um 6 24/3 ·9 for other groups. By assumption m > 1, therefore

u = 3 and m = 2. Thus S ' G2(3). Since 31 is not adjacent to 2 in GK(L), Lemma 2.2(3)

implies that 31 must divide the order of S, but this is false.

Let v = 2 and q = 3, 5, 7. If S ' 2F4(u), where u > 8, then (4.5) yields 26 6 u2 6
2δ(6,2)/3((q2 − 1)2)

2 6 24/3 · 28, whence u = 8 and S ' 2F4(8). For other groups, it follows
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from (4.6) that um 6 24/3 · 28. Therefore u 6 16 and 2 6 m 6 9. Depending on q, one of

the numbers k5(3) = 121, k10(5) = 521, k5(7) = 2801 must lie in ω(S), but this is false.

Suppose that S ' 2B2(u), where u = 22β+1 > 8. Then σ(m) = 2, n/σ(m) = 3, and the

inequality (4.7) turns into

h(q) 6 v

v − 1
vδ(6,v)/2f(q)3.

By Lemma 4.2(1), q = 3, 5, 7, 9, 11, 13, 17, 31, 127. Assume that q = 3, 5, 11, 13. Then f(q) =

8, and (4.5) yields u 6 4 ·83 = 211. On the other hand, by Lemma 2.2(3), one of the numbers

k5(3) = 121, k10(5) = 521, k5(11) = 3221, k10(13) = 11 · 2411 lies in ω(S). For the groups

S ' 2B2(u), where u 6 211, this is false. For q = 7, 9, 17, 31, 121 we derive a contradiction

in a similar way.

Suppose that S ' Aε
4(u). Then σ(m) = 5/2, n/σ(m) = 12/5, and the inequality (4.7)

turns into

h(q) 6 v

v − 1
v2δ(6,v)/5f(q)12/5.

By Lemma 4.2(2), we infer that either q = 2, 4, or v = 2 and q = 3, 5, 7, 9. Furthermore,

the inequality (4.6), which turns into u5 6 vδ(6,v)/2f(q)3, must be true. If q = 2 then u > 3,

f(q) 6 3, vδ(6,v)/2 6 3, so u5 6 34, which is impossible. If q = 4 then u > 3, f(q) 6 5,

vδ(6,v)/2 6 3, therefore u5 6 3 · 53, whence u = 3. If S ' A4(3) then 121 ∈ ω(S) \ ω(L) and

if S ' 2A4(3) then 61 ∈ ω(S) \ ω(L); a contradiction.

Thus v = 2 and q = 3, 5, 7, 9. Then vδ(6,v)/2 = 4, f(q) = (q2 − 1)2 6 16, therefore

u5 6 4 · 163 = 214, and so u = 2 or u = 4, i. e., S ' Aε
4(2) or S ' Aε

4(4). By Lemma 2.2(3),

one of the numbers k5(3) = 121, k10(5) = 521, k5(7) = 2801 and k10(9) = 1181 must be in

ω(S), but this is false.

Suppose that S is isomorphic to one of the groups Aε
3(u), Aε

2(u) and A1(u). Consider

a coclique ρ = {r10, r8, r5, r6} (or ρ = {r10, r8, r5, r3} for L = D6(2)) in GK(L). Observe

that this coclique does not contain 2 and 3. Since the size of every coclique of GK(S) not

containing 2 and 3 is at most three, some number from ρ, say ri, divides |K| · |G/S|, and the

other three do not divide |K|·|G/S| and compose a coclique in GK(S). Every coclique of size

three in GK(S) not containing 2 and 3 includes the characteristic v. Therefore v ∈ ρ \ {ri}
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and v does not divide |K| · |G/S|. Let v = rj. Since this equality is valid for all primitive

divisors of qj − 1, we conclude that kj(q) = va and kj(q) ∈ ω(S). Since v = rj > 3, S does

not contain an element of order v2. So kj(q) = v. On the other hand, kj(q)
3 does not divide

the order of L, and hence the order of a Sylow v-subgroup of S is at most v2. Therefore

S ' A1(u). Then every coclique of size three in GK(S) is of the form {v, w1, w2}, where
w1, w2 are divisors of (u − 1)/(2, u − 1) and (u + 1)/(2, u − 1) respectively. Therefore the

set ρ \ {ri, rj} contains a divisor of (u− 1)/(2, u− 1). Denote it by rk.

Assume that r = ri divides |G/S|. Since r > 3, G contains a field automorphism of S of

order r. The centralizer of such an automorphism in S always contains an element of order

v, so rv ∈ ω(G); a contradiction since rv = rirj 6∈ ω(L).

Suppose that r divides the order of K. Let R be a Sylow r-subgroup of K. By the

Frattini argument, NG(R)/(NG(R) ∩K) ' G/K ≥ S, so we can assume that R is normal

in G. Put G̃ = G/R and K̃ = K/R. Then G̃/K̃ ≥ S. In S and hence in G̃/K̃ as well, there

is a Frobenius subgroup F with kernel of order u and cyclic complement of order rk. Let F̃

denote the preimage of F in G̃. Since |F | = urk is coprime to |K̃|, it follows by the Shur —

Zassenhaus theorem that F̃ includes a Frobenius subgroup isomorphic to F . The kernel of

this group acts on R freely since rv 6∈ ω(G). Then it follows by Lemma 1.8 that rrk ∈ ω(G);

a contradiction.

III. Let L be one of the groups B4(q) and C4(q), q > 2. If q is odd, then it follows by

[20, Thm. 3] that the unique nonabelian composition factor of each finite group isospectral

to L is isomorphic to L or to 2D4(q), so we can assume that q > 4 is even. Since t(L) = 4,

we have that t(S) > 3, whence S 6' B2(u). Furthermore, GK(L) is disconnected. By the

Gruenberg — Kegel theorem, n2(L) = q4 + 1 ∈ ω(S) and K is nilpotent.

Suppose that S 6' A1(u), Aε
2(u). Then σ(m) > 2. Therefore n/σ(m) 6 2 and

vδ(n,v)/σ(m) 6 vδ(4,v)/2. Handling, as above, the cases S 6' E8(u) and S ' E8(u) individually,

we derive from (4.7) the inequality

h(q) 6 v

v − 1
vδ(4,v)/2f(q)2.

By Lemma 4.2(3), we conclude that q ∈ {2, 3, 5, 7} but q is even and greater than 3; a
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contradiction.

Suppose that S ' Aε
2(u) or S ' A1(u), where u is odd. Consider a coclique {r8, r6, r4, r3}

in GK(L). It obviously does not contain 2 and 3. Since every coclique of GK(S) not

containing 2 and 3 consists of at most three vertices, one of the numbers r6, r4, r3, say

ri, divides |K| · |G/S|, and the other two together with r8 compose a coclique in GK(S).

Every coclique of size three in GK(S) not containing 2 and 3 includes the characteristic v.

Therefore v ∈ {r8, r6, r4, r3} and v does not divide |K|·|G/S|. Let v = rj. Since this equality

is valid for all primitive divisors of qj − 1, we infer that kj(q) = va and kj(q) ∈ ω(S). Since

v = rj > 3, S does not contain an element of order v2. Thus kj(q) = v. On the other hand,

kj(q)
3 does not divide the order of L, and so the order of a Sylow v-subgroup of S is at

most v2. Furthermore, S ' A1(u). Then every coclique of size three in GK(S) is of the form

{v, w1, w2}, where w1, w2 are divisors of (u− 1)/2 and (u + 1)/2 respectively. Thus the set

{r8, r6, r4, r3} \ {ri, rj} contains a divisor of (u− 1)/2.

Assume that r = ri divides |G/S|. Since r > 3, it means that G contains a field

automorphism of S of order r. The centralizer of such an automorphism in S always contains

an element of order v, so rv ∈ ω(G); a contradiction since rv = rirj 6∈ ω(L). Thus r divides

the order of K. Since K is nilpotent and GK(G) is disconnected, we can assume that K is

an elementary abelian r-group, on which S acts such that CS(K) = 1. There is a Frobenius

subgroup with kernel of order u and cyclic complement of order (u − 1)/2 in S, hence

r(u− 1)/2 ∈ ω(G); a contradiction. The proposition is proved.

LEMMA 4.3. Let q > 3 be a prime power, v be a prime coprime to q, f(q) be defined

in Lemma 1.6, and h(q) = (q2 + 1)/2. If

h(q) 6 vδ(4,v)/3 · v/(v − 1) · f(q),

then either q = 4, or v = 2 and q = 5, 7, 9.

Proof. Since vδ(4,v)/3 6 2, v/(v − 1) 6 2 and f(q) 6 2(q + 1), the inequality in the

statement yields q2 + 1 6 16(q + 1), whence q 6 16.

Suppose that q 6 16 and v > 2. Then vδ(4,v)/3 6 31/3 < 3/2, v/(v − 1) 6 3/2 and

f(q) 6 q + 1. Therefore 2(q2 + 1) < 9(q + 1), and so q 6 5. If q = 5 then f(q) = q, and the
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inequality 50 = 2(q2 + 1) < 9q = 45 must be true; a contradiction. Thus q = 4.

Suppose that q 6 16 and v = 2. If q = 11, 13 then f(q) = 8 and so 122 6 q2 + 1 6
8f(q) = 64; a contradiction. Thus q = 5, 7, 9 and the lemma is proved.

Proposition 4.3. Let L be one of the simple groups B2(q), B3(q), C3(q), D4(q), where

q is a power of a prime p, L 6= B2(3), and G be a finite group with ω(G) = ω(L) and

|G| = |L|. Suppose that the unique nonabelian composition factor S of G is isomorphic to

a group of Lie type over a field of a characteristic other that p.

(1) If L = B2(q), where q > 3, then S is isomorphic to one of the groups A1(u), Aε
2(u).

(2) If L ∈ {B3(q), C3(q)} then S is isomorphic to one of the groups Aε
m(u), where m 6 4,

B2(u), and 2B2(u).

(3) If L = D4(q) then S is isomorphic to one of the groups Aε
m(u), where m 6 6, Bm(u)

and Cm(u), where m 6 3, Dε
4(u), G2(u), 2B2(u), 2G2(u), and 3D4(u).

Proof. In this case h(q) = (q2 + 1)/2. Furthermore, by Lemma 2.7 we can assume that

q > 3.

(1) Let L = B2(q), where q > 3. The graph GK(L) has two connected components and

n2(L) = (q2+1)/(2, q−1). Thus the graph of S is disconnected and (q2+1)/(2, q−1) ∈ ω(S).

Suppose that S 6' A1(u), Aε
2(u). Then σ(m) > 2 and (4.7) yields

h(q) 6 v

v − 1
vδ(2,v)/2f(q) 6 v

v − 1
vδ(4,v)/3f(q).

By Lemma 4.3, either q = 4, or v = 2 and q = 5, 7, 9. In fact, the first of the previous

inequalities holds neither for q = 4 nor for (v, q) = (2, 9).

Let v = 2 and q = 5. Then (q2 + 1)/2 = 13 and π(L) = {2, 3, 5, 13}, so S is a group

of Lie type over a field of characteristic 2 and 13 ∈ π(S) ⊆ {2, 3, 5, 13}. It follows from

[37, Table 1] that the only groups satisfying these conditions are 2F4(2)′ and 2A2(4). But

S 6' 2A2(u) by assumption and S is distinct from the Tits group by Lemma 2.5.

Let v = 2 and q = 7. Then (q2 +1)/2 = 25 and π(L) = {2, 3, 5, 7}, therefore S is a group

of Lie type over a field of characteristic 2, π(S) ⊆ {2, 3, 5, 7} and 25 ∈ ω(S). It follows from

[37, табл. 1] that the only groups satisfying the first two conditions are A2(4), A3(2), B3(2),

and D4(2). But none of these groups contains an element of order 25.
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(2) Let L = B3(q) or L = C3(q), where q > 3. Suppose that the claim is false. Then

σ(m) > 3 and (4.7) yields

h(q) 6 v

v − 1
vδ(3,v)/3f(q) 6 v

v − 1
vδ(4,v)/3f(q).

By Lemma 4.3, either q = 4, or v = 2 and q = 5, 7, 9.

Let q = 4. If S ' 2G2(u), where u > 27, then it follows from (4.5) that 27 6 u 6
3δ(3,3)/4(q + 1)3/4 = 31/4 · 53/4; a contradiction. For other groups, (4.6) yields 32 6 um 6
31/4 · 53/4; a contradiction.

Let v = 2 and q = 5, 7, 9. If S ' 2F4(u), where u > 8, then it follows from (4.5) that

64 6 u2 6 2δ(3,2)/4((q2 − 1)2)
3/4 6 21/2 · 8; a contradiction. For other groups, (4.6) yields

22 6 um 6 21/2 · 8, whence u = 2 and m = 2, 3. Therefore S ' B3(2). By Lemma 2.8, at

least one of the numbers k4(q) and k3(q) lies in ω(S). This is false since k4(5) = k3(9) = 13,

k3(5) = 31, k4(7) = 25, k3(7) = 19 and k4(9) = 41.

(3) Let L = D4(q) and q > 3. Suppose that the claim is false. Then m > 4 and σ(m) > 4.

It follows from (4.7) that

h(q) 6 v

v − 1
vδ(4,v)/4f(q) 6 v

v − 1
vδ(4,v)/3f(q).

By Lemma 4.3, either q = 4, or v = 2 and q = 5, 7, 9.

Let q = 4. Then (4.6) yields 34 6 um 6 3δ(4,3)/4(q + 1) = 31/4 · 5; a contradiction.

Let v = 2 and q = 5, 7, 9. If S ' 2F4(u), where u > 8, then it follows from (4.5)

that 64 6 u2 6 2δ(4,2)/4(q2 − 1)2 6 23/4 · 16; a contradiction. For other groups (4.6) yields

um 6 23/4 · 16, whence u = 2 and m = 4. Therefore S ' B4(2) and 17 ∈ ω(S), contrary to

the fact that 17 6∈ ω(D4(q)) for q = 5, 7, 9. The proposition is proved.

§ 5. Proof of the theorem: Completion

As in the previous section, S is a finite group over a field of order u = vβ, where v is

a prime other than p. Propositions 4.1–4.3 implies that it remains to handle the following

possibilities:

(1) If L = B2(q), where q > 3, then S is isomorphic to one of the groups A1(u), Aε
2(u).
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(2) If L ∈ {B3(q), C3(q)} then S is isomorphic to one of the groups Aε
m(u), where m 6 4,

B2(u), and 2B2(u).

(3) If L = D4(q) then S is isomorphic to one of the groups Aε
m(u), where m 6 6, Bm(u)

and Cm(u), where m 6 3, Dε
4(u), G2(u), 2B2(u), 2G2(u), and 3D4(u).

If L = B2(4) then π(S) ⊆ π(L) = {2, 3, 5, 17}. Furthermore, 17 is not adjacent to 2

in GK(L), whence 17 ∈ π(S). It follows from [37, Table 1] that S must be isomorphic to

A1(16) or A1(17). The first variant is impossible by Proposition 3.2. If S ' A1(17) then

9 ∈ ω(S) \ ω(L); a contradiction. Thus if L = B2(q) then we can assume that q > 4.

Suppose that p does not divide the order of the soluble radical K of G. We show that

|P |3 > |S| for a Sylow p-subgroup P of S.

If L = B2(q) then |L| = q4(q2 − 1)(q4 − 1)/(2, q − 1) and the p-period of L is equal to p

for p > 3 and to p2 for p ∈ {2, 3}. Since q > 4, by Lemma 3.1 we have |G/S|p 6 q. Therefore

|P |2 > (q3)2 > (q2 − 1)(q4 − 1) > |S|/|P |. Thus |P |3 > |S| as claimed.

If L = B3(q) or L = C3(q) then |L| = q9(q2−1)(q4−1)(q6−1)/(2, q−1) and the p-period

of L is at most q2 (recall that q > 3). Therefore |P |2 > (q7)2 > (q2 − 1)(q4 − 1)(q6 − 1) >
|S|/|P |, and we again derive the claimed inequality.

If L = D4(q) then |L| = q12(q2 − 1)(q4 − 1)2(q6 − 1)/(4, q4 − 1) and the p-period is at

most q2 again. The chain of inequalities |P |2 > (q10)2 > (q2 − 1)(q4 − 1)2(q6 − 1) > |S|/|P |
yields |P |3 > |S|.

Thus if p does not divide the order of K then by Lemma 1.7, S is isomorphic to either

A1(u) or 2A2(3) for p = 2 or 2A4(2) for p = 3.

If S ' 2A2(3) then p = 2, and so q > 4. If L = B2(q) then an element of order

n2(L) = q2 + 1 > 17 must lie in S, while the largest element of ω(S) is equal to 12.

Similarly, if L is one of the groups B3(q), C3(q), D4(q) then elements of orders k3(q) =

(q2 +q+1)/(3, q−1) and k6(q) = (q2−q+1)/(3, q+1) lie in S. This is again a contradiction

since max{k3(q), k6(q)} > q2 − q + 1 > 13.

If S ' 2A4(2) then p = 3, and so q > 9. Observe that the largest element order of S

is equal to 18. Reasoning similarly to the previous paragraph, we derive a contradiction

proving that S contains an element of order at least (q2 + 1)/2 > 41 when L = B2(q) and
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an element of order at least q2 − q + 1 > 73 otherwise.

Suppose that S is isomorphic to A1(u). Since p 6= v, a Sylow p-subgroup P of S is cyclic.

On the other hand, estimating the p-part of the order of G/S according to Lemma 3.1, we

have |P | > q3 > p3 for L = B2(q) and |P | > q7 > p7 otherwise. This is a contradiction since

p3 6∈ ω(L) for L = B2(q) and p7 6∈ ω(L) otherwise.

Thus p does not divide the order of K.

I. Suppose that L = B2(q). Lemma 3.1 implies that the order of a Sylow p-subgroup

of K is equal to q4γ, so it follows from |L|p = q4 that p does not divide the order of G.

Furthermore, |K|p = q4 and hence a Sylow p-subgroup P of K is elementary abelian. In

particular, it follows that p cannot be equal to 2 and 3, for otherwise the p-period of L is

larger than that of G.

Consider the remaining possibilities for S according to (1). Suppose that S ' Aε
2(u).

Exploiting [26, Tables 1a-1c], we conclude that either S ' A2(2) and n2(L) = (q2 + 1)/2 ∈
{3, 7}, or S ' A2(4) and n2(L) = (q2 + 1)/2 ∈ {3, 5, 7}, or n2(L) = (q2 + 1)/2 = n2(S) =

(u2 + εu + 1)/(3, u− ε1). Since q > 5, the first two possibilities can be obviously dismissed.

For brevity, set a = n2(L) = n2(S). Clearly, the order of S divides the order of the factor

group G = G/K, and so |S| divides |L|p′ = (q2 − 1)2 · (q2 + 1)/2 = (q2 − 1)2 · a. Therefore
|S|/a 6 (q2 − 1)2 < (2a)2. On the other hand, |S| = u3(u2 − 1)(u3 − ε1)/(3, u − ε1), and

so |S|/a = u3(u2 − 1)(u − ε1). If u > 3 then we derive an immediate contradiction since

|S|/a > 4(u2 + u + 1)2 > (2a)2. The group 2A2(2) is not simple. The case when S ' A2(2)

has been already eliminated. If S ' 2A2(3) then n2(S) = 7 is not equal to (q2 + 1)/2 for

any q. Finally, if S ' A2(3) then n2(S) = 13 = (q2 + 1)/2 = n2(L) and hence L = B2(5),

which is impossible, since 33 = |S|3 > 32 = |L|3.
Let S ' A1(u). Then a = n2(L) = (q2 + 1)/2 is equal to one of the numbers v,

(u−1)/(2, u−1), (u+1)/(2, u−1). Since S includes a Frobenius group with kernel of order

u and complement of order (u − 1)/(2, u − 1), each prime divisor of (u − 1)/(2, u − 1) is

adjacent in GK(G) to every prime divisor of the order of K other than v. By assumption,

p is not equal to v and divides the order of K. Therefore a 6= (u − 1)/(2, u − 1). Suppose

that a = v. Since (a, |L|/a) = 1, we have u = v = a and, in particular, v 6= 2. It is
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shown in the previous paragraph that |S|/a must divide (q2 − 1)2. On the other hand,

(u + 1)/2 = (q2 + 3)/4 is coprime to q2 − 1 since (q2 − 1, q2 + 3) = 4; a contradiction. If

(q2 + 1)/2 = (u + 1)/2 then v = p, a contradiction. If (q2 + 1)/2 = u + 1 then u = 2β

and q2 = 2β+1 + 1, which is impossible since q > 3. Thus the case L = B2(q) is examined

completely.

II. Let L be one of the groups B3(q), C3(q), D4(q). It follows by Lemma 3.2 that

(k4(q)k3(q)k6(q), |K| · |G/S|) = 1.

Let S ' A1(u). Since a cyclic group of order (u− 1)/(2, u− 1) arises as the complement

of a Frobenius subgroup of S and p ∈ π(K), each prime divisor of (u − 1)/(2, u − 1) is

adjacent to p in GK(G). Therefore k3(q) and k6(q) are coprime to u − 1, and so one of

them divides u. Thus a Sylow v-subgroup of S must be cyclic. Hence u = v. In particular,

v > 3. Since r4(q) is not adjacent to r3(q) and r6(q), the number k4(q) divides (v− 1)/2. In

particular, this implies that a Hall π(k4(q))-subgroup of S and so a Hall π(k4(q))-subgroup

of L as well are cyclic. Therefore L cannot be D4(q). Hence L = B3(q) or L = C3(q). The

fact that p divides K and Lemma 3.1 yield |K|p = q6, and thus |S|p > q. Since p is not

adjacent to r3(q) and r6(q), the number q divides (v − 1)/2. Therefore q(q2 + 1)/(2, q − 1)

divides (v − 1)/2. Hence q(q2 + 1) 6 v − 1 < v 6 max{k3(q), k6(q)} 6 q2 + q + 1, which is

impossible. Thus S 6' A1(u).

Since S 6' A1(u), a Sylow v-subgroup of S cannot be cyclic, and so a Sylow v-subgroup of

G cannot be cyclic either. Therefore v does not divide k3(q), k6(q). Suppose that v divides

k4(q). Then L must be equal to D4(q). Furthermore, (6, k4(q)) = 1, and so v > 5. Put

vγ = (k4(q))v. Since (k4(q), |K| · |G/S|) = 1, we have |S|v = |L|v = (k4(q)
2)v = v2γ, i. e., the

order of a Sylow v-subgroup is equal to the squared v-period of S. Examining all variants

accordingly (3), it easy to check that this is impossible. Thus v does not divide k4(q) in the

case L = D4(q) either. Therefore v divides q2 − 1.

Denote a Sylow v-subgroup of S by V . Since S 6' A1(u), Lemma 1.5 yields |V |8/3 > |S|.
It follows that |V |2 > |S|/|V |.

Let L = B3(q) or L = C3(q). It follows by Lemma 3.1 that |K|p = q6. Therefore

|G|p = q3. Applying Lemma 3.1 one more time, we infer that |G/S|p 6 q if p is odd or q > 4
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and that |G/S|p 6 8 if q = 4. Let L 6= B3(4). The order of S is divisible by the number

t = q2k4(q)k3(q)k6(q) = q2(q2 +1)(q4 +q2 +1)/(2, q−1)(3, q2−1), which is coprime to v and

divides |L| = q9(q2 − 1)3(3, q2 − 1) · t. So |V | 6 ((q2 − 1)v)
3 if v 6= 3 and |V | 6 3((q2 − 1)3)

3

if v = 3.

If v and q are odd, then (q2− 1)v 6 (q +1)/2. Hence |V |2 6 9((q +1)/2)6 < t 6 |S|/|V |;
a contradiction.

If q is even then v is odd, so (q2−1)v 6 q+1. If v 6= 3 then |V |2 6 (q+1)6 < t 6 |S|/|V |;
a contradiction. If v = 3 then |V |2 6 9(q + 1)6 < t 6 |S|/|V | for q > 4.

If v = 2 then q is odd. Suppose first that q 6= 2δ ± 1. Then (q2 − 1)2 6 2(q + 1)/3

and |V |2 6 (2(q + 1)/3)6 < t 6 |S|/|V |, which is impossible. Let q = 2δ + 1. Then q is a

Fermat prime or 9 and (q2 − 1)2 = 2(q − 1). We have |V |2 6 (2(q − 1))6 < t 6 |S|/|V |
for q > 5. Let q = 2δ − 1. Then q is a Mersenne prime and (q2 − 1)2 = 2(q + 1). We have

|V |2 6 (2(q + 1))6 < t 6 |S|/|V | for q > 7.

Thus it remains to consider the situation when L is one of the five groups B3(4) = C3(4),

B3(5), C3(5), B3(7), C3(7). Moreover, in all the cases except the first one we can assume

that v = 2.

If L = B3(4) then k3(4) = 7, k6(4) = 13, k4(4) = 17 lie in ω(S). By [37, Table 1],

if S satisfies the conditions π(S) ⊆ π(L) = {2, 3, 5, 7, 13, 17} and |S|r = |L|r = r for

r ∈ {7, 13, 17} but is not isomorphic to L then S ' A2(16), which is impossible since v 6= p

by assumption.

If L ∈ {B3(5), C3(5)} then k3(5) = 31, k6(5) = 7, k4(5) = 13 lie in ω(S). It follows from

[37, Table 1] that a group S satisfying {7, 13, 31} ⊆ π(S) ⊆ π(L) = {2, 3, 5, 7, 13, 31} must

be a group over a field of characteristic 5; a contradiction.

If L ∈ {B3(7), C3(7)} then k3(7) = 19, k6(7) = 43, k4(7) = 25 lie in ω(S). It follows

from [37, Table 1] that a group S satisfying {5, 19, 43} ⊆ π(S) ⊆ π(L) = {2, 3, 5, 7, 19, 43}
and |S|5 = |L|5 = 52 must itself lie in {B3(7), C3(7)}; a contradiction.

Let L = D4(q). Lemma 3.1 implies that |K|p = q6γ, where γ ∈ {1, 2}. It follows that

|V | 6 ((q2 − 1)v)
4, if v 6= 3 and |V | 6 3((q2 − 1)3)

4 if v = 3.

If |K|p = q6 then |S|/|V | is divisible by t = q4(q2 +1)2(q4 + q2 +1)/(2, q− 1)2(3, q2− 1),
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which is greater than |V |2 in all cases except when q = 7 and v = 2.

If |K|p = q12 then |S|/|V | is divisible by t = (q2 + 1)2(q4 + q2 + 1)/(2, q − 1)2(3, q2 − 1).

Observe that in this case |G| is not divisible by p since |L|p = q12. In particular, p cannot

be equal to 2.

If v is odd then |V |2 6 9((q + 1)/2)8 < t 6 |S|/|V | for q > 7.

Let v = 2. In this case we need a more accurate estimate on the order of a Sylow

v-subgroup of S. By Lemma 1.5, |V |5/3 > |S|/|V |. Since v = 2, it follows that |V | 6
((q2 − 1)2)

4/4. Suppose first that q 6= 2δ − 1. Then (q2 − 1)2 6 2(q − 1) and |V |5/3 6
(2(q−1))20/3/45/3 < t 6 |S|/|V |, but this is false. If q = 2δ−1 then q is a Mersenne prime and

(q2− 1)2 = 2(q + 1). The chain of the inequalities |V |5/3 6 (2(q + 1))20/3/45/3 < t 6 |S|/|V |
holds for q > 7.

Thus it remains to handle the cases when L ∈ {D4(5), D4(7)}.
If L = D4(5) then k3(5) = 31, k6(5) = 7, k4(5) = 13 lie in ω(S). It follows from [37,

Table 1] that a group S satisfying {7, 13, 31} ⊆ π(S) ⊆ π(L) = {2, 3, 5, 7, 13, 31} must be a

group over a field of characteristic 5; a contradiction.

If L = D4(7) then [37, Table 1] yields that a group S satisfying {5, 19, 43} ⊆ π(S) ⊆
π(L) = {2, 3, 5, 7, 19, 43} and |S|5 = |L|5 = 54 must itself be isomorphic to D4(7); a

contradiction. The theorem is proved.
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Abstract

In the article we give an affirmative answer to Question 12.39 from the Kourovka

Notebook. Namely we prove that a finite simple group and a finite group having the same

orders and the same sets of element orders are isomorphic.
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