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Abstract

A graph is split if there is a partition of its vertex set into a clique and an independent
set. The present paper is devoted to the splitness of some graphs related to finite simple
groups, namely, prime graphs and solvable graphs, and their compact forms. It is proved
that the compact form of the prime graph of any finite simple group is split.
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1 Introduction

In this paper we consider only simple finite graphs. A graph Γ is a split graph if and only if its
vertex set can be partitioned into a complete and an independent set (either set can be empty).
We refer to such a partition as a split partition. Split graphs were introduced independently
by Földes and Hammer [14], and by Tyshkevich and Chernyak [34]. Split graphs are a
popular subclass of perfect graphs, and they can be characterized by a combination of small
forbidden subgraphs (see Proposition 2.3). Hammer and Simeone [18] characterized split
graphs in terms of their degree sequences. In fact, split graphs are those graphs for which
equality holds in the m-th Erdös-Gallai inequality, where m = m(Γ) = max{i : di > i − 1}
for the degree sequence {di} of a graph Γ. It is also proved in [18] that, given a split graph Γ,
the number m(Γ) is equal to both chromatic number χ(Γ) and the number of vertices in the
maximal independent set of Γ. The degree sequence characterization implies a linear-time
recognition for split graphs (there is an algorithm for determining whether a graph on n
vertices is a split graph, which has time complexity O(n) if the degree sequence is given).

The present paper concerns with the graphs associated with finite groups. Let π(G)
denote the set of all prime divisors of the order of a finite group G. The prime graph (or the
Gruenberg-Kegel graph) GK(G) consists of the vertex set π(G) and the set of edges {r, s} such
that there is an element of order rs in G. It is clear that two primes r, s ∈ π(G) are adjacent
in GK(G) if and only if G has a cyclic subgroup of order divisible by rs. Substituting ‘cyclic’
by ‘solvable’ in this definition, we come to the notion of solvable graph. Thus, the solvable
graph S(G) of a finite group G has the vertex set π(G), and two primes r and s are adjacent
in S(G) if and only if G has a solvable subgroup of order divisible by rs. Note that GK(G)
is a subgraph of S(G).

The notion of a prime graph was introduced in 1970s by Gruenberg and Kegel. Later
on, Williams [40] and Kondrat’ev [23] obtained the classification of finite simple groups with
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disconnected prime graph. Abe and Iiyori introduced solvable graphs in [2] and showed that
the solvable graph of a finite group is always connected, and it is not complete when we
restrict the base group to a nonabelian finite simple group. Both types of graphs yield rich
information on the group structure (see, e.g., [25, 35, 40]). Moreover, sometimes finite simple
groups can be characterized by their prime graphs (see [17, 41, 43]). For these reasons, the
prime and solvable graphs of finite (simple) groups have been studied extensively for the
last 40 years. Gruber et al. [15] characterized prime graphs of solvable groups. Vasil’ev
and Vdovin established an arithmetic criterion of adjacency and described all cocliques of
maximal size in prime graph of every finite nonabelian simple group [37, 38]. Amberg and
Kazarin [3] used this approach for the solvable graphs of finite simple groups and described
the maximal cocliques in these graphs.

We investigate splitness of the prime graphs and solvable graphs of finite simple groups.

Theorem A. The prime graph GK(G) and the solvable graph S(G) of any alternating and
symmetric group G is split.

Theorem B. The prime graph GK(G) of any sporadic simple group G is split. The solvable
graph S(G) of a sporadic simple group G is split, except for the following simple groups: M22,
M23, M24, Co3, Co2, Fi23, Fi′24, B, M and J4.

Now let G be a finite simple group of Lie type over the field of order q, where q is a power
of a prime p. Then all numbers in π(G), except for p, are primitive prime divisors for the
numbers of the form qi−1 for some i (for definitions the reader is referred to Section 5). Due
to the properties of primitive prime divisors, it is easy to see that in most cases the prime
graph GK(G) is not split (see Proposition 7.1). However, the situation changes if we consider
the compact form GKc(G) of this graph. Here by the compact form Γc of a graph Γ we mean
the quotient graph Γc = Γ/≡ with respect to the following equivalence relation on the vertex
set VΓ of Γ: for every u, v ∈ VΓ we put u ≡ v if u⊥ = v⊥, where a⊥ is the ball of radius 1
with center a in Γ.

Theorem C. The graph GKc(G) of a finite simple group G of Lie type is split.

Note that if G is an abelian simple group, i.e. a group of prime order, then the graph
GK(G) = S(G) is a singleton, so it is split. It is also clear that a split graph has the split
compact form. Thus, Theorems A, B and C yield the following:

Theorem D. The graph GKc(G) of any finite simple group G is split.

Although the compact form Sc(G) of the solvable graph of a group G is “close” to GKc(G),
our study shows that there are examples of nonsplitness of Sc(G), where G is a sporadic group
(see Proposition 4.3) or a group of Lie type (see Section 7.2) Moreover, due to the positive
solution of the Artin conjecture on primitive roots for almost all primes [19], one can construct
infinitely many such examples (see Proposition 7.4).

2 Preliminaries

Only basic concepts about graphs and groups will be needed for this paper. They can be
found in any textbook about the Graph Theory or Group Theory, for instance see [21, 39].

Let Γ = (VΓ, EΓ) be a graph with vertex set VΓ and edge set EΓ. Given a set of vertices
X ⊆ VΓ, the subgraph induced by X is written Γ[X]. We often identify a subset of vertices
with the subgraph induced by that subset, and vice versa. A subset X of VΓ is called a clique
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if the induced subgraph Γ[X] is complete, and it is independent if Γ[X] is a null graph (i.e. a
graph without edges). As usual, we denote by Kn the complete graph on n vertices.

A graph Γ is a split graph if and only if there is a partition VΓ = C ⊎ I, where C is a
complete and I an independent set (either of which might be empty). Thus Γ can be ‘split’
into a complete and an independent set. Any partition of the vertex set of a split graph into
a complete and an independent set is called a split partition. In a particular case, a split
partition VΓ = C ⊎ I is special if every vertex in I is not adjacent to at least one vertex in
C. Note that, every split graph has a special split partition, because if there is a vertex in I
adjacent to any element in C, it can be moved to C. It should be pointed out that, a split
partition (or a special split partition) of a split graph is not unique, but it is always possible
to choose a partition such that C is a clique of maximum size.

The following result is an immediate consequence of the definition of compact form given
in Introduction.

Proposition 2.1. If a graph Γ is split, then its compact form Γc is also split. Conversely, if
the compact form Γc is split with split partition C ⊎ I, then Γ is split if every vertex in I is
a singleton.

The set of all element orders of a finite group G is called the spectrum of G and is denoted
by ω(G). It is clear that the set ω(G) is closed and partially ordered by divisibility relation,
hence, it is uniquely determined by µ(G), the subset of its maximal elements. For each
natural number n we denote by π(n) the set of all prime divisors of n, and put π(G) = π(|G|)
which is called the prime spectrum of G. The spectrum of G determines the prime graph
GK(G) of G, whose vertex set is the prime spectrum of G, and two distinct vertices p and
q are joined by an edge (briefly, adjacent) if and only if pq ∈ ω(G). For primes r, s ∈ π(G),
we will write r ∼ s if r and s are adjacent in GK(G). We denote by s(G) the number of
connected components of GK(G) and by πi = πi(G), i = 1, 2, . . . , s(G), the set of vertices of
ith connected component. We often identify a connected component of a prime graph with
its vertex set, and vice versa. If 2 ∈ π(G), then we assume that 2 ∈ π1(G). We denote
by µi = µi(G) the set of all n ∈ µ(G) such that π(n) ⊆ πi. The vertex set of connected
components of prime graphs associated with finite simple groups are listed in [23] and [40]
(see the improved list in [27]).

The solvable graph S(G) of a group G is a graph with vertex set π(G) in which two
distinct primes r and s are adjacent if and only if G has a solvable subgroup of order divisible
by pq. Adjacency of two vertices r and s in a solvable graph S(G) is written by r ≈ s.

Denote the ith connected components of GK(G) by

GKi(G) = (πi(G), Ei(G)), i = 1, 2, . . . , s(G).

In [33], Suzuki studied the structure of prime graph associated with a finite simple group,
and proved the following interesting result. It is worth stating that his proof of this result
does not use the classification of finite simple groups.

Proposition 2.2 (Suzuki). ([33, Theorem B]) Let L be a finite simple group whose prime
graph GK(L) is disconnected and let GKi(G) be a connected component of GK(G) with i > 2.
Then GKi(G) is a clique.

A similar result as Proposition 2.2 can be found in [24, Lemma 4]. Note that Proposition
2.2 is true for all finite groups not only for finite simple groups (see [40]). According to
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Proposition 2.2, the prime graph of an arbitrary finite simple group G has the following
form:

GK(G) =
s⊕

i=1

GKi(G) = GK1(G)⊕Kn2 ⊕ · · · ⊕Kns ,

where ni = |πi(G)| and s = s(G).
In general case, if GK(G) is a complete graph, then it may be viewed as a split graph.

For example, if G is a nilpotent group or G = P1 × P2 × · · · × Pr, where Pi’s are isomorphic
nonabelian simple groups and r > 2, then GK(G) is a complete graph, and so is split.

In [14], the authors provided the following finite forbidden subgraph characterization of
split graphs.

Proposition 2.3 (Forbidden Subgraph Characterization). (see [14]) A graph is a split graph
if and only if it contains no induced subgraph isomorphic to 2K2 (two parallel edges), C4 (a
square), or C5 (a pentagon).

It follows from the definition (or the forbidden subgraph characterization) that the com-
plement, and every induced subgraph of a split graph is split. Moreover, by Proposition 2.3,
we immediately have the following.

Corollary 2.4. Let Γ be a split graph with a split partition V = C⊎I. If Γ has more than one
connected component, then the connected components consist of the following possibilities: a
connected component containing C and {v, a single prime} ⊆ I.

Corollary 2.5. A graph with at most three vertices is always split. In particular, the prime
(resp. solvable) graph GK(G) (resp. S(G)) of a group G, with |π(G)| 6 3, is split.

It follows immediately from the definition that if G is a solvable group, then S(G) is a
complete graph, in particular, S(R(G)) is a complete graph, where R(G) denotes the solvable
radical of G. However, the converse is not necessarily true. For example, if G is a simple
group, then the solvable graph S(G × G) is complete, while G × G is not a solvable group.
Thus from now on, we shall restrict our attention to the solvable graphs associated with
nonsolvable groups. We continue with some elementary facts concerning the adjacency for
two prime divisors in solvable graph of subgroups and factor groups of G. The following
lemma is taken from [2].

Lemma 2.6. ([2, Lemma 2]) Let G be a finite group. Let H and N be two subgroups of G
with N EG. Then the following statements hold:

(1) If p and q are adjacent in S(H) for p, q ∈ π(H), then p and q are adjacent in S(G), in
other words, S(H) is a subgraph of S(G).

(2) If p and q are adjacent in S(G/N) for p, q ∈ π(G/N), then p and q are adjacent in
S(G), in other words, S(G/N) is a subgraph of S(G).

(3) For p ∈ π(N) and q ∈ π(G)\π(N), p and q are adjacent in S(G).

Corollary 2.7. Let G be a finite group and let ∆(G) be the set of vertices of the solvable
graph S(G) which are joined to all other vertices. Then, we have:

(1) π(R(G)) ⊆ ∆(G).
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(2) If S(G) has a special split partition π(G) = C ⊎ I, then ∆(G) ⊆ C, in particular
π(R(G)) ⊆ C.

Proof. (1) This is immediate by applying Lemma 2.6 (3) to R(G), and noting that S(R(G))
is complete.

(2) The result follows by the definition and part (1).

3 Alternating and Symmetric Groups

The adjacency criterion for two prime divisors in the prime graph of an alternating or sym-
metric group is obvious and can be stated as follows (see [37, Proposition 1.1]).

Proposition 3.1. Let n be a natural number and let p and q be two distinct odd primes in
π(G), where G is an alternating or symmetric group of degree n. Then, we have:

(1) p and q are adjacent in GK(G) if and only if p+ q 6 n;

(2) if G is symmetric, then 2 and p are adjacent in GK(G) if and only if 2 + p 6 n;

(3) if G is alternating, then 2 and p are adjacent in GK(G) if and only if 4 + p 6 n.

For a natural number n, we denote by ln the largest prime not exceeding n and by sn
denote the smallest prime greater than n. We also denote by ⌊x⌋ the integer part of x, i.e.,
the greatest integer less than or equal to x. Proposition 3.1 leads to the following result.

Proposition 3.2. Let G be a symmetric or alternating group of degree n > 2. Then the
prime graph and the solvable graph of G are split graphs with a split partition C ⊎ I, where

C = {2, 3, 5, . . . , l⌊n
2
⌋} and I = {s⌊n

2
⌋, . . . , ln}.

Proof. In view of Proposition 3.1, it is clear that C is a complete set and I an independent
set in GK(G). Also, from Proposition 3.1, it is easy to see that C ⊂ π(G) is a complete set
in S(G), because GK(G) is a subgraph of S(G). Hence it will be enough to prove that I
is an independent set in S(G). Let p, q ∈ I and p ≈ q in S(G). Then, from the definition,
there exists a solvable subgroup K of G whose order is divisible by pq. We now consider a
{p, q}-Hall subgroup K0 of K, which has order pq. Since p - q− 1 and q - p− 1, clearly K0 is
a cyclic group and so p ∼ q in GK(G). It now follows from Proposition 3.1 that p + q 6 n,
and this is a contradiction.

Now Theorem A follows immediately from Proposition 3.2.

4 Sporadic Simple Groups

Information on the adjacency of vertices in the prime graph and solvable graph of a sporadic
simple group can be found in [12].

Proposition 4.1. The prime graph of any sporadic simple group is a split graph.

Proof. Using information from [12], we have determined a special split partition for the prime
graph of every sporadic simple groups as in Table 1.
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Table 1. A special split partition of prime graph of a sporadic simple group.

Name Symbol C I

Mathieu groups M11 {2} {3, 5, 11}
M12 {2} {3, 5, 11}
M22 {2} {3, 5, 7, 11}
M23 {2, 3} {5, 7, 11, 23}
M24 {2, 3} {5, 7, 11, 23}

Janko groups J1 {2, 3} {5, 7, 11, 19}
J2 {2, 3} {5, 7}
J3 {2, 3} {5, 7, 19}
J4 {2, 3, 5} {7, 11, 23, 29, 31, 37, 43}

Higman-Sims group HS {2, 3} {5, 7, 11}
McLaughlin group M cL {2, 3} {5, 7, 11}
Suzuki group Suz {2, 3} {5, 7, 11, 13}
Rudvalis group Ru {2, 3} {5, 7, 13, 29}
Held group He {2, 3} {5, 7, 17}
Lyons group Ly {2, 3} {5, 7, 11, 31, 37, 67}
O’Nan group O′N {2, 3} {5, 7, 11, 19, 31}
Conway groups Co1 {2, 3, 5} {7, 11, 13, 23}

Co2 {2, 3} {5, 7, 11, 23}
Co3 {2, 3} {5, 7, 11, 23}

Fischer groups Fi22 {2, 3} {5, 7, 11, 13}
Fi23 {2, 3, 5} {7, 11, 13, 17, 23}
Fi′24 {2, 3, 5} {7, 11, 13, 17, 23, 29}

Harada group F5 {2, 3, 5} {7, 11, 19}
Thompson group F3 {2, 3} {5, 7, 13, 19, 31}
Babymonster group F2 {2, 3, 5} {7, 11, 13, 17, 19, 23, 31, 47}
Monster group F1 {2, 3, 5, 7} {11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}

Proposition 4.2. The solvable graph of any sporadic simple group is a split graph, except
for the groups M22, M23, M24, Co3, Co2, Fi23, Fi′24 = F3+, B = F2+, M = F1 and J4.

Proof. Using information from [12], we have determined a special split partition for the
solvable graph of any sporadic simple group, except for the groups M22, M23, M24, Co3, Co2,
Fi23, Fi′24 = F3+, B = F2+, M = F1 and J4, as in Table 2. On the other hand, the solvable
graph S(M22) is depicted in Figure 1 (a). Recall that 7 : 3 6 L2(7) 6 A7 6 M22, 11 : 5 6
L2(11) 6 M22, S3 6 A5 6 A7 6 M22, D10 6 A5 6 A7 6 M22, and 23 : 7 6 23 : L3(2) 6 M22.
Then the subgraph induced by {3, 5, 7, 11} is 2K2, which is a forbidden subgraph for a split
graph.

t t
tt t11

3

7

5 2
�
�
�

Q
Q
Q

t tt t{11}
{3, 7}

{5} {2}

(b) Sc(M22)(a) S(M22)

Fig. 1 The solvable graph and its compact form of M22.
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Similarly, for the other sporadic groups, we have also determined a subset W of π(G)
below, so that the subgraph induced by W is 2K2:

Name Symbol(s) W

Mathieu M22 {3, 5, 7, 11}
Mathieu M23 {2, 7, 11, 23}
Mathieu M24 {3, 7, 11, 23}
Conway Co3 {3, 7, 11, 23}
Conway Co2 {3, 7, 11, 23}
Fischer Fi23 {3, 7, 11, 23}
Fischer Fi′24 = F3+ {7, 11, 23, 29}
Fischer/Sims, Leon B = F2+ {7, 11, 23, 29}
Fischer, Griess M = F1 {7, 29, 59, 71}
Janko/Norton, Parker, Benson, Conway, Thackray J4 {7, 11, 23, 43}

The proof is complete.

Table 2. A special split partition of solvable graph of a sporadic simple group.

Name Symbol(s) C I

Mathieu M11 {2, 5} {3, 11}
Mathieu M12 {2, 5} {3, 11}
Hall, Janko J2 = HJ = F5− {2, 3} {5, 7}
Suzuki Suz {2, 3, 5} {7, 11, 13}
Higman, Sims HS {2, 3, 5} {7, 11}
McLaughlin M cL {2, 3, 5} {7, 11}
Conway, Leech Co1 = F2− {2, 3, 5, 11} {7, 13, 23}
Held/Higmann, McKay He {2, 3} {5, 7, 17}
Fischer Fi22 {2, 3, 5} {7, 11, 13}
Harada, Norton/Smith HN = F5+ {2, 3, 5, 7} {11, 19}
Thompson/Smith Th = F3|3 {2, 3, 5} {7, 13, 19, 31}
Janko J1 {2, 3, 5} {7, 11, 19}
O’Nan/Sims O′N {2, 3, 5} {7, 11, 19, 31}
Janko/Higmann, McKay J3 {2, 3, 5} {7, 19}
Lyons/Sims Ly {2, 3, 11} {5, 7, 31, 37, 67}
Rudvalis/Conway, Wales Ru {2, 3, 7} {5, 13, 29}

Propositions 4.1 and 4.2 imply the statement of Theorem B. Proposition 4.1 also yields
that the compact form GKc(L) of the prime graph of any sporadic group is split. The
following proposition is concerned with the compact form Sc(G) of the solvable graph of a
sporadic group.

Proposition 4.3. The graph Sc(G) of any sporadic simple group, except M23, M24, Co3,
Co2, Fi23, Fi′24 = F3+, B = F2+, M = F1 and J4, is split.

Proof. By Proposition 2.1, the compact form of a split graph is split. Therefore, the graph
Sc(G) is split for the groups G listed in Table 2. The compact form Sc(M22) is a path of
length 3 which is split (Figure 1 (b)). On the other hand, if G is isomorphic to one of the
groups: M23, M24, Co3, Co2, Fi23, Fi′24 = F3+, B = F2+, M = F1 or J4, then Sc(G) = S(G),
which is not split.

7



In the sequel, we need only consider the simple groups of Lie type.

5 Preliminary Results on the Groups of Lie Type

The greatest common divisor of natural numbers m and n is denoted by (m,n). If n is a
nonzero integer and r is an odd prime with (r, n) = 1, then e(r, n) denotes the multiplicative
order of n modulo r, i.e., a minimal natural number k with nk ≡ 1 (mod r). Given an odd
integer n, we put e(2, n) = 1 if n ≡ 1 (mod 4) and put e(2, n) = 2 if n ≡ 3 (mod 4). Fix an
integer n with |n| > 1. A prime r with e(r, n) = i is called a primitive prime divisor of ni−1.
We write ri(n) to denote some primitive prime divisor of ni − 1, if such a prime exists, and
Ri(n) to denote the set of all such divisors. Instead of ri(n) and Ri(n) we simply write ri
and Ri if it does not lead to confusion. Bang [6] and Zsigmondy [42] proved that primitive
prime divisors exist except for a few cases1.

Theorem 5.1. (Bang –Zsigmondy). Let n and i be integers satisfying |n| > 1 and i > 1.
Then Ri(n) ̸= ∅, except when (n, i) ∈ {(2, 1), (2, 6), (−2, 2), (−2, 3), (3, 1), (−3, 2)}.

Theorem 5.1 has many applications; for instance, see [4] for applications of primitive
prime divisors in finite group theory. In what follows, we will concentrate on the case when
L = dLl(q) is a simple group of Lie type of rank l over the field with q elements. Our notation
for these groups is borrowed from [12]. In view of [10, Thms. 9.4.10, 14.3.1], the order of
any finite simple group of Lie type L of rank l over the field GF(q) of characteristic p is
equal to |L| = qN (qn1 ± 1)(qn2 ± 1) · · · (qnl ± 1)/d (see Table 3). Therefore any prime divisor
r of |L| distinct from the characteristic p is a primitive divisor for (q, i), for some natural
number i. Thus Lemma 5.1 allows us to find prime divisors of |L|. Moreover, if L is neither
a Suzuki group nor a Ree group, Lemmas 1.2 and 1.3 in [37] imply that for a fixed i, every
two primitive prime divisors for (q, i) are adjacent in GK(L).

Given a set of primes π and an integer a, denote by (a)π the π-part of a, i.e., the greatest
divisor m of a such that π(m) ⊆ π.

Lemma 5.2. Let q = pa, where p is a prime and a > 2. Let k > 1 be a natural number,
such that π(a) * π(k). Denote a′ = (a)π(k) and assume that the sets Rka(p) and Rka′(p) are
nonempty. Then |Rk(q)| > 1.

Proof. It is clear that Rka(p) ⊆ Rk(p
a). It suffices to show that Rka(p) ∩ Rka′(p) = ∅ and

Rka′(p) ⊆ Rk(p
a). Let π(a) ∩ π(k) = {r1, . . . , rs} (this set can be empty). Then

a = r ·
s∏

i=1

rmi
i and k = t ·

s∏
i=1

rni
i ,

where (r, t) = (r, ri) = (t, ri) = 1 for all i = 1, . . . , s. Since π(a) * π(k), we have that r > 1,
and so a ̸= a′. Now Rka(p)∩Rka′(p) = ∅ by definition. Let x be a primitive prime divisor of
pka

′ − 1, where

ka′ = t ·
s∏

i=1

rmi+ni
i .

1In fact, Bang [6] proved in 1886 that ni − 1 has a primitive prime divisor for all n > 2 and i > 2 except
for n = 2 and i = 6. Then, Zsigmondy [42] proved in 1892 that for coprime integers a > b > 1 and i > 2,
there exists a prime r dividing ai − bi but not ak − bk for 1 6 k < i, except when a = 2, b = 1, and i = 6.
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Then x is a primitive prime divisor of (pa)k−1 = (pa)t·r
n1
1 ···rns

s −1, since (t, a) = 1. Therefore,
Rka′(p) ⊆ Rk(p

a), and so |Rk(q)| > 1.

Table 3. The Orders of Finite Simple Groups of Lie Type

Group Conditions Other names Order

An(q) n > 1 PSLn+1(q) = Ln+1(q)
1

(n+1,q−1)q
(n+1

2 )
n+1∏
i=2

(
qi − 1

)
= L+

n+1(q) = A+
n (q)

Bn(q) n > 2 PΩ2n+1(q) = Ω2n+1(q)
1

(2,q−1)q
n2

n∏
i=1

(
q2i − 1

)
Cn(q) n > 2 PSp2n(q)

1
(2,q−1)q

n2
n∏

i=1

(
q2i − 1

)
Dn(q) n > 3 PΩ+

2n(q) = D+
n (q)

1
(4,qn−1)q

n(n−1)(qn − 1)
n−1∏
i=1

(
q2i − 1

)
G2(q) q6(q6 − 1)(q2 − 1)

F4(q) q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1)

E6(q) E+
6 (q)

1
(3,q−1)q

12(q9 − 1)(q5 − 1)× |F4(q)|

E7(q)
1

(2,q−1)q
39(q18 − 1)(q14 − 1)(q10 − 1)

×|F4(q)|

E8(q) q96(q30 − 1)(q12 + 1)(q20 − 1)(q18 − 1)

(q14 − 1)(q6 + 1)× |F4(q)|

2An(q) n > 2 PSUn+1(q) = Un+1(q)
1

(n+1,q+1)q
(n+1

2 )
n+1∏
i=2

(
qi − (−1)i

)
= L−

n+1(q) = A−
n (q)

2B2(q) q = 22m+1 Sz(q) = 2B2(
√
q) q2(q2 + 1)(q − 1)

2Dn(q) n > 2 PΩ−
2n(q) = D−

n (q)
1

(4,qn+1)q
n(n−1)(qn + 1)

n−1∏
i=1

(
q2i − 1

)
3D4(q) q12(q8 + q4 + 1)(q6 − 1)(q2 − 1)

2G2(q) q = 32m+1 R(q) = 2G2(
√
q) q3(q3 + 1)(q − 1)

2F4(q) q = 22m+1 2F4(
√
q) q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1)

2E6(q) E−
6 (q)

1
(3,q+1)q

12(q9 + 1)(q5 + 1)× |F4(q)|

We define two functions ν and η on N as follows:

ν(n) =


n if n ≡ 0 (mod 4),
n
2 if n ≡ 2 (mod 4),

2n if n ≡ 1 (mod 2),

and η(n) =

{
n if n is odd,
n
2 if n is even.

Now, we put

νϵ(n) =

{
n if ϵ = +,

ν(n) if ϵ = −.
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Given a simple classical group L over a field of order q and a prime r coprime to q, we put

φ(r, L) =

{
e(r, ϵq) if L = Lϵ

n(q),

η(e(r, q)) if L is symplectic or orthogonal,

and

δ(L) =

{
π(ϵq − 1) if L = Lϵ

n(q),

π((2, q − 1)) if L is symplectic or orthogonal.

For a classical group L, we put prk(L) to denote its dimension if L is a linear or unitary
group, and its Lie rank if L is a symplectic or orthogonal group.

The following two lemmas taken from [36, Lemmas 2.2 and 2.4], in fact, follow from the
results of [37, 38].

Lemma 5.3. Let L be a simple classical group over a field of order q and characteristic p.
Suppose that ri0 ∈ Ri(q) and rj0 ∈ Rj(q) are distinct primes such that ri0 , rj0 /∈ δ(L). Then,
we have:

(i) If ri0 ∼ rj0 in GK(L), then for all distinct odd primes ri ∈ Ri(q) and rj ∈ Rj(q),
ri ∼ rj in GK(L).

(ii) If ri0 ∼ p in GK(L), then for all odd primes ri ∈ Ri(q), ri ∼ p in GK(L).

Lemma 5.4. Let L be a simple classical group over a field of order q and characteristic p,
and let prk(L) = n > 4.

(i) If r ∈ π(L) \ {p}, then φ(r, L) 6 n.

(ii) If r and s are distinct primes in π(L) \ {p} with φ(r, L) 6 n/2 and φ(s, L) 6 n/2, then
r and s are adjacent in GK(L).

(iii) If r and s are distinct primes in π(L)\{p} with n/2 < φ(r, L) 6 n and n/2 < φ(s, L) 6
n, then r and s are adjacent in GK(L) if and only if e(r, q) = e(s, q).

(iv) If r and s are distinct primes in π(L) \ {p} and e(r, q) = e(s, q), then r and s are
adjacent in GK(L).

Another lemma gives necessary information on adjacency with characteristic in the prime
graph of a classical group of Lie type.

Lemma 5.5. Let L be a simple classical group over a field of characteristic p, and let
prk(L) = n > 4. Then φ(r, L) > n/2 for every prime r nonadjacent to p in GK(L).

Proof. It follows from [37, Proposition 6.3, Table 4] (see also [36, Lemma 2.6]).

The properties of the solvable graphs of finite simple groups are studied in [3]. We will
need the following assertions about finite simple linear groups, which are taken from [3,
Lemmas 2.6 and 3.1].

Lemma 5.6. Let L = An−1(q) = PSLn(q), and let r = rm(q) for (m, q) ̸= (6, 2), m > ⌊n2 ⌋.
Then the following hold:

(1) The Sylow r-subgroups of L are cyclic;
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(2) If A is a subgroup of order r in L, then the index |NL(A) : CL(A)| divides m.

Lemma 5.7. Let H be a solvable subgroup of the group L = An−1(q) = PSLn(q), whose
order is coprime to q. Let r = rm(q) and s = rl(q), where m > l > n

2 . If the order of H is
divisible by rs, then s divides m.

The next lemma follows from [31, Theorem 21.6].

Lemma 5.8. Let G = GLn(p), where p and n > 3 are primes. Let H be a solvable {r, n}-
subgroup of G, where n = rn−1(p) and r ̸= n does not divide n ± 1 and pn − 1. Then H is
reducible.

6 Proof of Theorem C

In this section we prove that the compact form GKc(L) of the prime graph of a simple group
of Lie type L is split. Technical tools for determining GKc(L) are Lemmas 5.3–5.5 in the
case when L is a classical group with prk(L) > 4, and [37, 38] otherwise.

Let L be a group of Lie type over a field of order q and characteristic p. Assume first that
L is a classical group with n = prk(L) > 4. Define

J(L) = {e(r, q) | n/2 < φ(L) ≤ n}.

Lemma 5.4 yields that the set I = {Rj(q) | j ∈ J(L)} is a coclique in GKc(L). On the other
hand, the set {p}∪{r | φ(r, L) ≤ n/2} is a clique in the prime graph GK(L) by Lemmas 5.3–
5.5. Thus, the graph GKc(L) is split for a classical group L with n = prk(L) > 4.

For all other groups of Lie type it can be deduced as follows.
Type Aϵ

l First, we assume that L = A1(q), q = pn. We already know that

µ(L) = {p, (q − 1)/(2, q − 1), (q + 1)/(2, q − 1)} .

The diagram of the compact form of GK(L) shown in Figure 2. Thus GKc(L) is always split,
with a special split partition C ⊎ I, where

C = {{p}} and I = {π((q − 1)/(2, q − 1)), π((q + 1)/(2, q − 1))} ,

C = {π((q − 1)/(2, q − 1))} and I = {{p}, π((q + 1)/(2, q − 1))} ,

C = {π((q + 1)/(2, q − 1))} and I = {{p}, π((q − 1)/(2, q − 1))} .

Next, we assume that L = Aϵ
2(q), q = pn, and put U1 = Rνϵ(1) \ {2, 3}, U2 = Rνϵ(2) \ {2, 3}.

The corresponding diagram of the compact form for GK(L) is shown in Figure 3 (see [38]).
Here and further, if an edge occurs under some condition, we draw such an edge as a dashed
line and write an occurrence condition.

(a) If (q − ϵ1)3 > 3, then {{2}, {3}, {p}, U1} is a clique in GKc(A
ϵ
2(q)). Clearly, GKc(L) is

a split graph, with a special split partition C ⊎ I, where C = {{2}, {3}, {p}, U1} and
I = {U2, Rνϵ(3)}.

(b) If (q − ϵ1)3 = 3, then the set {{2}, {p}, U1} is a clique in the compact form for GK(L),
while 3, U2, and Rνϵ(3) are pairwise nonadjacent. Hence, GKc(L) is a split graph, with
a special split partition C ⊎ I, where C = {{2}, {p}, U1} and I = {{3}, U2, Rνϵ(3)}.
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(c) If (q − ϵ1)3 = 1, i.e., either (q + ϵ1)3 > 1 and 3 ∈ Rνϵ(2) ̸= {2}, or p = 3. As before, we
see that the set {{2}, {p}, U1} is a clique in the compact form for GK(L), while U2 and
Rνϵ(3) are nonadjacent. Again, GKc(L) is a split graph, with a special split partition
C ⊎ I, where C = {{2}, {p}, U1} and I = {{3}, U2, Rνϵ(3)}.

t
t

t t
t t
t t

t
{p}

π
(

q−1
(2,q−1)

)
π
(

q+1
(2,q−1)

)
{2}

U1

U2
{3}

{p}

�
�
��

�
�
�
�
��

Q
Q
QQ

S
S
S
S
SS

��
��
��

��
(q − ϵ1)3 ̸= 3 ̸= p

(q − ϵ1)3 > 3

Rνϵ(3)

Fig. 2 GKc(L2(q)) Fig. 3 GKc(L
ϵ
3(q)).

Type Bl Assume first that L = B2(q) ∼= C2(q), with the base field of characteristic p and
order q. Here, |L| = 1

(2,q−1)q
4(q2 − 1)(q4 − 1) and we have (see [27, Lemmas 11 and 12] and

[28, Lemma 7]):

µ(L) =


{(q2 + 1)/(2, p− 1), (q2 − 1)/(2, p− 1), p(q + 1), p(q − 1), p2} if p = 2, 3.

{(q2 + 1)/2, (q2 − 1)/2, p(q + 1), p(q − 1)} if p ̸= 2, 3.

Thus GKc(L) is split, with split partition C ⊎ I, where C = {{p}, R1, R2} and I = {R4}.
Assume next that L ∈ {B3(q), C3(q)}. In this case, |L| = 1

(2,q−1)q
9(q2−1)(q4−1)(q6−1).

If q = 2, then the group L is not simple, and so we may assume that q > 3. If q = 3, then
µ(L) = {8, 12, 13, 14, 18, 20} (see [30, Lemma 2.1]). This shows that GKc(L) is split, with
split partition C ⊎ I, where C = {{2}} and I = {{3}, {5}, {7}, {13}}. Suppose now that
q > 3. In this case, the corresponding diagram of the compact form GKc(L) is shown in
Figure 4 (see [30, Lemmas 2.1 and 2.3 ]).

t t
t
t

t t
R1

{p}

R4

R6

R2

R3

#
#
##












c
c
cc

J
J
J
J
J

#
#
##

c
c
cc

Fig. 4 GKc(B3(q)) = GKc(C3(q)).

Therefore, the compact form GKc(L) is split, with special split partition C ⊎ I, where
C = {{p}, R1, R2, R4} and I = {R3, R6}.
Type G2 Let L = G2(q), q = pm > 2. The compact form GKc(L) is shown in Figures 5-7
(see [38]). If q ≡ 0 (mod 3), then GKc(L) is split, with special split partition C ⊎ I, where

C = {R}, I = {R3, R6}; C = {R3}, I = {R,R6}; or C = {R6}, I = {R,R3};

while if q ≡ 1 (mod 3) (resp. q ≡ −1 (mod 3)), then GKc(L) is split, with special split
partition C ⊎ I, where

C = {R1, {3}}, I = {R2 ∪ {p}, R3, R6} if q ≡ 1 (mod 3)

C = {R2, {3}}, I = {R1 ∪ {p}, R3, R6} if q ≡ −1 (mod 3).
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t
t

t
t

t
t t

t
tt

t
t

tR1 ∪R2 ∪ {3}

R3

R6

R2 ∪ {p}

R1

R3

{3}

R6 R3R1 ∪ {p}

R2

R6

{3}

�
�� S

S
S S

SS

�
�
�

Fig. 5 GKc(G2(q)), 3|q Fig. 6 GKc(G2(q)), 3|(q − 1) Fig. 7 GKc(G2(q)), 3|(q + 1)

Type F4 Let L = F4(q), q = pm. The graph GKc(L) is depicted in Figures 8 and
9 according to q is even or odd, respectively (see [38]). Here, R = R1 ∪ R2 ∪ {2} and
R′ = R1 ∪ R2 ∪ {p} (p ̸= 2). The compact form GKc(L) indicates that {R,R3} is a clique
if q = 2m > 2, while {{2}, R,R3} is a clique if q = pm, p ̸= 2, and the remaining vertices
are pairwise nonadjacent. Thus, GKc(L) is a split graph with a special split partition C ⊎ I,
where C = {R,R3} and I = {R4, R6, R8, R12}, if q = 2m > 2, and C = {{2}, R,R3} and
I = {R4, R6, R8, R12}, if q = pm, p ̸= 2.

t
tt tt t

R

R6

R3

R12

R8R4

�
�

@
@

Fig. 8 GKc(F4(q)), q = 2m > 2,

t
t
t

t t
tt R4

R12

R′

R6

R8

{2}

R3

S
S
S
S�

�
�
�

�
�
�

Q
Q
Q

Fig. 9 GKc(F4(q)), q = pm, p ̸= 2,

Type Eϵ
6 Suppose L = Eϵ

6(q). The compact form GKc(L) is depicted in Figure 10. Here, the
set {{3}, {p}, R1, R2, Rνϵ(3), Rνϵ(6)} forms a clique, and the remaining vertices are pairwise
nonadjacent. Thus GKc(L) is a split graph with a special split partition C ⊎ I, where
C = {{3}, {p}, R1, R2, Rνϵ(3), Rνϵ(6)} and I = {R4, R8, R12, Rνϵ(5), Rνϵ(9)}.
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PP
PP

""
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Fig. 10 GKc(E
ϵ
6(q)).

(q − ϵ1)3 ̸= 3 and p ̸= 3.

Type E7 Suppose L = E7(q). The compact form GKc(L) is depicted in Figure 11. Here, the
set {{p}, R1, R2, R3, R4, R6} forms a clique, and the remaining vertices are pairwise nonad-
jacent. Thus, the compact form GKc(L) is a split graph with a special split partition C ⊎ I,
where C = {{p}, R1, R2, R3, R4, R6} and I = {R5, R7, R8, R9, R10, R12, R14, R18}.
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Fig. 11 GKc(E7(q)).

Type E8 Suppose L = E8(q). The compact form GKc(L) is depicted in Figure 12. Here, the
vector from 5 to R4 and the dotted edge {5, R20} indicate that R4 and R20 are not connected,
but if 5 ∈ R4 (i.e., q2 ≡ −1 (mod 5)), then there exists an edge joining 5 and R20. Now
{R,R3, R4, R6} forms a clique, and the remaining vertices are pairwise nonadjacent. Thus
GKc(L) is a split graph with a special split partition C ⊎ I, where C = {R,R3, R4, R6} and
I = {R5, R8, R9, R10, R12, R15, R18, R20, R24, R30}.
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...

R

R4

{5}

R20

R10R5

R6R3

R18R9

R8R12

R24R15 R30

Fig. 12 GKc(E8(q)), R = R1 ∪R2 ∪ {p}.

Type 2B2 Let L = 2B2(q), q = 22n+1 (n > 1). By [29], we know that

µ(L) =
{
4, q − 1, q −

√
2q + 1, q +

√
2q + 1

}
.

The compact form GKc(L) is depicted in Figure 13.

ttt t
{2} π(q − 1) π(q −

√
2q + 1) π(q +

√
2q + 1)

Fig. 13 GKc(
2B2(q)), q = 22m+1 > 2.
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Thus GKc(L) is a split graph with a special split partition C ⊎ I, where

C = {{2}} and I = {π(q − 1), π(q −
√
2q + 1), π(q +

√
2q + 1)},

C = {π(q − 1)} and I = {{2}, π(q −
√
2q + 1), π(q +

√
2q + 1)},

C = {π(q −
√
2q + 1)} and I = {{2}, π(q − 1), π(q +

√
2q + 1)}, or

C = {π(q +
√
2q + 1)} and I = {{2}, π(q − 1), π(q −

√
2q + 1)}.

Type 3D4 Suppose L = 3D4(q), q = pm. The compact form GKc(L) is shown in Figure 14.
Therefore, if R6 ̸= ∅, then GKc(L) is split, with special split partition C ⊎ I, where

C = {R,R3}, I = {R6, R12} or C = {R,R6}, I = {R3, R12}.

When R6 = ∅, we have the special split partition C ⊎ I, where C = {R,R3} and I = {R12}.

ttt tR3 R6R R12

Fig. 14 GKc(
3D4(q)), R = R1 ∪R2 ∪ {p}.

Type 2G2 Let L be the simple group 2G2(q), q = 32m+1, m > 1. Then by Lemma 4 in [7]
(see also [20, Sec. XI.13]), we have

µ(L) = {6, 9, q − 1, (q + 1)/2, q −
√

3q + 1, q +
√

3q + 1}.

In particular,
µ2(L) = {q −

√
3q + 1} and µ3(L) = {q +

√
3q + 1}.

The compact form GKc(L) is depicted in Figure 15. Thus GKc(L) is a split graph with a
special split partition C ⊎ I, where

C = {{2}, {3}, π((q − 1)/2)} and I = {π((q + 1)/4), π(q −
√

3q + 1), π(q +
√
3q + 1)}, or

C = {{2}, {3}, π((q + 1)/4)} and I = {π((q − 1)/2), π(q −
√
3q + 1), π(q +

√
3q + 1)}.

t
t

t
tt t π((q − 1)/2)

π((q + 1)/4)

{3} {2}

π(q −
√
3q + 1)

π(q +
√
3q + 1)�

�
�

Q
Q
Q

Fig. 15 GKc(
2G2(q)), q = 32m+1 > 3.

Type 2F 4 Let L = 2F 4(q), where q = 22m+1. Note that, this group is nonabelian simple
unless m = 0. In this case, the group 2F 4(2)

′ is simple and is called the Tits group. The set
ω(L) is exactly the set of all divisors of the following numbers (see [13]):

(1) 12, 16, 2(q + 1), 4(q − 1), 4(q ±
√
2q + 1), q2 ± 1, q2 − q + 1, (q + 1)(q ±

√
2q + 1);

(2) q2 −
√
2q3 + q −

√
2q + 1;
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(3) q2 +
√
2q3 + q +

√
2q + 1.

Note that µ2(L) = {q2 +
√

2q3 + q +
√
2q + 1} and µ3(L) = {q2 +

√
2q3 + q +

√
2q + 1}.

The compact form GKc(L) is depicted in Figure 16, where U = π(q2 − q + 1) \ {3}, V =
π(q −

√
2q + 1). Now {{2}, {3}, V, π(q +

√
2q + 1), π(q + 1) \ {3}} forms a clique, and the

remaining vertices are pairwise nonadjacent. Thus GKc(L) is a split graph with a special
split partition C ⊎ I, where

C = {{2}, {3}, V, π(q +
√

2q + 1), π(q + 1) \ {3}},

and

I = {U, π(q − 1), π(q2 −
√

2q3 + q −
√

2q + 1), π(q2 +
√

2q3 + q +
√

2q + 1)}.

If L = 2F 4(2)
′, then we have µ(L) = {12, 13, 16, 20}. Therefore, GKc(L) = GK(L) is a split

graph with a special split partition C ⊎ I where C = {2, 3} and I = {5, 13}, or C = {2, 5}
and I = {3, 13}.

t t tt
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t

t

t

t
U

{3}

{2}

V

π(q +
√
2q + 1)

π(q + 1) \ {3}

π(q − 1)

π(q2 −
√

2q3 + q −
√
2q + 1)

π(q2 +
√

2q3 + q +
√
2q + 1)
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Fig. 16 GKc(
2F 4(q)), q = 22m+1.

We have thus examined all simple groups of Lie type, and Theorem C is proved.

7 Examples of Nonsplitness

7.1 Nonsplitness of GK(L) and S(L)

As pointed out in the introduction, the prime graph of a finite simple group of Lie type is
generally nonsplit. For brevity, we will illustrate this only in the case of linear groups. But
the same reasoning works for other classical families as well.

Proposition 7.1. Let L = An−1(q) = PSLn(q) be a finite simple linear group, where q is
a power of a prime p. Assume that q > p and n > 11. Then the prime graph GK(L) is
nonsplit.

Proof. Let q = pa, where a > 2. Let k > 1 be an integer and denote a′ = (a)π(k). By
Theorem 5.1, if at least one of the sets Rka(p) and Rka′(p) is empty, then p = 2, and either
k = 2 and a = 3, or k = 3 and a = 2, or k = 6 and a′ = 1. Since n > 11, we have that
Rk(p) is nonempty for any integer k ∈ (n2 , n). Moreover, the interval (n2 , n) contains at least
two numbers k1 and k2, such that π(a) * π(ki). It follows from Lemma 5.2 that |Rk1(q)| > 1
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and |Rk2(q)| > 1. The sets Rk1(q) and Rk2(q) are cliques in GK(L). On the other hand, any
two numbers r ∈ Rk1(q) and s ∈ Rk2(q) are non-adjacent in GK(L) by Lemma 5.4(iii), since
k1 + k2 > n and k1, k2 do not divide each other. Let r1, r2 ∈ Rk1(q) and s1, s2 ∈ Rk2(q).
Then the vertices r1, r2, s1, s2 induce the subgraph isomorphic to 2K2, and hence GK(L) is
not a split graph by Proposition 2.3.

The idea of the foregoing proof was to find two sets Ri(q) and Rj(q) such that any
two vertices r ∈ Ri(q) and s ∈ Rj(q) lie in a maximal coclique of GK(L). This logic is
also applicable for a solvable graph. Recall, however, that the prime graph of a group is a
subgraph of the solvable graph of this group, so the situation here is more sophisticated. Our
next example requires more strict conditions on a group (but one can construct other infinite
series of examples in the same way).

Proposition 7.2. Let L = An−1(q) = PSLn(q) be a finite simple linear group, where q = p3.
Assume that n = uw, where u and w are distinct odd primes such that n ≡ −1 (mod 3).
Then the solvable graph S(L) is nonsplit.

Proof. We have that n and n − 1 are not divisible by 3. So, |Rn(q)| > 1 and |Rn−1(q)| > 1
by Lemma 5.2, and each of these two sets is a clique in GK(L), and hence in S(L). We claim
that any two pairs r1, r2 ∈ Rn(q) and s1, s2 ∈ Rn−1(q) induce the subgraph isomorphic to
2K2. Assume the contrary. Then L contains a solvable subgroup H, whose order is divisible
by rs, where r ∈ Rn(q) and s ∈ Rn−1(q). It follows from Lemma 5.7 that s divides n, and
hence either s = u or s = w. But s is a primitive prime divisor of qn−1 − 1, and s divides
qs−1 − 1 by Fermat’s little theorem, so n − 1 divides s − 1. In particular, n 6 s, which is a
contradiction.

7.2 Nonsplitness of Sc(L)

We proved that the graph GKc(L) is split for any finite simple group L of Lie type. It turns
out that the same assertion is not true for the graph Sc(L), as the following example shows.

Example. Let L = A10(2) = PSL11(2), and let r = r11(2). Then L has a solvable
subgroup of order divisible by 11·r, which can be obtained as the normalizer of an r-subgroup
of L. Since 2 is a primitive root modulo 11, we have that 11 = r10(2). Thus, the vertices
r10(2) and r11(2) are adjacent in the solvable graph S(L). Note that the pair {rn(q), rn−1(q)}
cannot be an edge in the prime graph of PSLn(q) for any n, q (moreover, generally these two
vertices are nonadjacent in the solvable graph too). The graph Sc(L) is depicted in Figure
17 (a vertex labelled Ri denotes the set Ri(2)). The vertices r3(2), r7(2), r10(2) and r11(2)
induce the forbidden subgraph in S(L), and R3, R7, R10 and R11 — in Sc(L) (for details, see
the proof of Proposition 7.4).
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Fig. 17 Sc(PSL11(2)).
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The key point here is the adjacency of rn and rn−1 (as well as corresponding vertices of
Sc(L)), which is possible if and only if n ∈ Rn−1(2). If we could assume that 2 is a primitive
root for infinitely many prime numbers n, we would obtain infinitely many examples of
nonsplit graphs for groups PSLn(2) arguing as above. In fact, this assumption is the essence
of the well-known number-theoretic conjecture of E. Artin (see [5]):

Conjecture (E. Artin, 1927). Any integer k, other than −1 or a perfect square, is a primitive
root for infinitely many primes.

This conjecture is still unresolved, but partial results on it are numerous. In 1984, Gupta
and RamMurty [16] showed unconditionally that there are infinitely many k satisfying Artin’s
conjecture. Heath-Brown [19] improved the method used by Gupta and Ram Murty and
obtained the following:

Lemma 7.3 ([19, Corollary 2]). There are at most two positive primes for which Artin’s
conjecture fails.

The result of Heath-Brown yields that there are infinitely many pairs of primes (p, n),
such that p is a primitive root modulo n. It allows us to construct infinitely many examples
of nonsplit graphs Sc(L) for linear groups L.

Proposition 7.4. Let L = An−1(p) = PSLn(p), where p and n are primes, n > 13 and p is
a primitive root modulo n. Then the graph Sc(L) is nonsplit.

Proof. We will show that Sc(L) contains a subgraph isomorphic to 2K2. Recall that Sc(L) is
defined as a quotient graph S(L)/≡ w.r.t. the equivalence relation “≡”, where two vertices r
and s in S(L) are equivalent if the corresponding balls r⊥ and s⊥ of radius 1 coincide. For a
vertex r of the graph S(L), denote by r̃ the corresponding equivalence class, i.e., r̃ is a vertex
in Sc(L). For brevity, set ri = ri(p). Recall that we write r ∼ s if r and s are adjacent in
GK(L), and r ≈ s if r and s are adjacent in S(L).

The group L contains a solvable subgroup whose order is divisible by n · rn. We have
that p is a primitive root modulo n, and hence n = rn−1, so rn ≈ rn−1. On the other hand,
p ≈ rn−1 and p ̸≈ rn, so rn−1 ̸≡ rn.

Now put k = n−5
2 and m = n+3

2 . Note that n > 13 is a prime, and ri > i for every integer
i > 2. The prime n is not divisible by k, m, rk or rm, since k < n− 1 and m < n− 1, and n
is a primitive prime divisor of pn−1 − 1. Since n > 13, we have that

n− 1

3
< k <

n− 1

2
< m < n− 1,

and so n − 1 is not a multiple of k or m. Moreover, n − 1 is not divisible by rk and rm.
Indeed, assume that rm divides n − 1. Since rm > m = n+3

2 , the only possibility for rm is
n − 1. However, n is a prime, so n − 1 is not. Assume that rk divides n − 1. We have that

rk ≥ n−3
2 . If rk = n−3

2 , then n−1
3 < rk < n−1

2 . If rk = n−1
2 , then rk divides p

n−3
2 − 1 by

Fermat’s little theorem. On the other hand, rk is a primitive prime divisor of p
n−5
2 − 1, but

n−5
2 does not divide n−3

2 . Finally, n− 1 is not a prime, so rk ̸= n− 1. Therefore, each of the
numbers k, m, rk, rm does not divide n and n− 1.

Since k +m < n, Lemma 5.4(iii) implies that rk ∼ rm, and so rk ≈ rm. We claim that
rk ̸≡ rm. Indeed, consider rl, where l = n−1

2 . Then rl ∼ rk and rl ̸∼ rm. Assume that
rl ≈ rm. Then L has a solvable subgroup H, whose order is divisible by rlrm. Now Lemma
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5.7 implies that rl divides m. But m = n+3
2 , and rl > l = n−1

2 , so the only possibility is that

rl =
n+3
2 . Then n+3

2 is a prime and divides p
n+1
2 − 1 by Fermat’s little theorem, while n+3

2 is

a primitive prime divisor of p
n−1
2 − 1, which is impossible because n−1

2 does not divide n+3
2 .

Thus rl ≈ rk and rl ̸≈ rm, and hence rk ̸≡ rm.
It follows from Lemma 5.7 that L does not contain solvable subgroups, whose orders are

divisible by rmrn or rmrn−1. Indeed, if such a subgroup exists, then rm divides either n or
n− 1, which is impossible. Therefore, rm ̸≈ rn and rm ̸≈ rn−1.

It remains to show that rk ̸≈ rn and rk ̸≈ rn−1. If H is a solvable subgroup of L
whose order is divisible by rn, then H normalizes its Sylow rn-subgroup by [3, Lemma 2.5].
Therefore, H is contained in the normalizer of a maximal torus of order pn−1

(p−1)(n,p−1) in L,

and so the order of H divides n(pn − 1). Since rk divides neither pn − 1, nor n, it cannot
divide the order of H. Thus rk ̸≈ rn. Now assume that H is a solvable subgroup of L whose
order is divisible by rkrn−1. Lemma 5.8 implies that H is reducible. Replacing n by n − 1,
we again conclude that rk must divide pn−1− 1 or n− 1, which is a contradiction. Therefore,
rk ̸≈ rn−1.

Thus, we have proved that the graph Sc(L) contains the edges (r̃k, r̃m) and (r̃n−1, r̃n),
and the vertices r̃k, r̃m, r̃n−1 and r̃n induce the subgraph isomorphic to 2K2 in Sc(L).
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