On recognition of finite simple groups with connected prime graph

A. V. Vasilev, I. B. Gorshkov ${ }^{1}$

Let G be a finite group, $\pi(G)$ be the set of prime divisors of its order and $\omega(G)$ be the spectrum of G, that is the set of element orders of G. The prime graph $G K(G)$ of a group G is defined as follows. The vertex set of $G K(G)$ is $\pi(G)$ and two primes $r, s \in \pi(G)$ considered as vertices of the graph are adjacent by the edge if and only if $r s \in \omega(G)$. K. W. Gruenberg and O. Kegel introduced this graph (it is also called the Gruenberg - Kegel graph) in the middle of 1970th and gave a characterization of finite groups with a disconnected prime graph (we denote the number of connected components of $G K(G)$ by $s(G)$). This deep result and a classification of finite simple groups with $s(G)>1$ obtained by J.S. Williams and A.S. Kondrat'ev (see [1, 2]) implied a series of important corollaries.

The proof of the Gruenberg-Kegel Theorem relies substantially upon the fact that $\pi(G)$ contains an odd prime which is disconnected with 2 in $G K(G)$. It turned out that disconnectedness could be successfully replaced in most cases by a weaker condition for the prime 2 to be nonadjacent to at least one odd prime.

Denote by $t(G)$ the maximal number of primes in $\pi(G)$ pairwise nonadjacent in $G K(G)$. In other words, $t(G)$ is a maximal number of vertices in cocliques, i. e., independent sets, of $G K(G)$. In graph theory this number is usually called an independence number of the graph. By analogy we denote by $t(r, G)$ the maximal number of vertices in cocliques of $G K(G)$ containing the prime r. We call this number an r-independence number. Recently, in [3] it was given a characterization of finite groups G with $t(G) \geq 3$ and $t(2, G) \geq 2$, and in [4] it was proved that all finite nonabelian simple groups except the alternating permutation groups satisfy the condition $t(2, G) \geq 2$. Here we give a refinement of the main theorem of [3].

Theorem 1. Let G be a finite group with $t(G) \geq 3$ and $t(2, G) \geq 2$. Then
(1) There exists a finite simple nonabelian group S such that $S \leq \bar{G}=$ $G / K \leq \operatorname{Aut}(S)$ for maximal soluble normal subgroup K of G.
(2) For every independent subset ρ of $\pi(G)$ with $|\rho| \geq 3$ at most one prime in ρ divides the product $|K| \cdot|\bar{G} / S|$. In particular, $t(S) \geq t(G)-1$.
(3) One of the following holds:

[^0](a) every prime $r \in \pi(G)$ non-adjacent in $G K(G)$ to 2 does not divide the product $|K| \cdot|\bar{G} / S|$; in particular, $t(2, S) \geq t(2, G)$;
(b) there exists a prime $r \in \pi(K)$ non-adjacent in $G K(G)$ to 2 ; in which case $t(G)=3, t(2, G)=2$, and $S \simeq A l t_{7}$ or $A_{1}(q)$ for some odd q.

The above characterization with the description of prime graph of every finite nonabelian simple group (see [4]) can be applied to a so-called recognition problem. For a given finite group G denote by $h(G)$ the number of pairwise non-isomorphic finite groups H with $\omega(H)=\omega(G)$. The group G is called recognizable (by spectrum) if $h(G)=1$, almost recognizable if $1<h(G)<\infty$, and non-recognizable if $h(G)=\infty$. We say that for a given group G the recognition problem is solved if the value of $h(G)$ is known. Since every finite group with a nontrivial normal soluble subgroup is nonrecognizable, each recognizable or almost recognizable group is an extension of the direct product M of nonabelian simple groups by some subgroup of $\operatorname{Out}(M)$. So, of prime interest is the recognition problem for simple and almost simple groups. Let L be a finite nonabelian simple group and G be a finite group with $\omega(G)=\omega(L)$. Clearly, the equality $\omega(G)=\omega(L)$ implies the coincidence of the prime graphs of G and L. Thus, if L satisfies the condition of Theorem 1, then so does G. The statement (1) of the conclusion of the theorem implies that G has the unique nonabelian composition factor S. On the other hand, the statements (2) and (3) help to prove that this factor S is isomorphic to L. If this fact is established we say that L is quasirecognizable. Obviously, the proof of quasirecognizability of L is a substantial step on the way to prove that L is recognizable or almost recognizable.

The description of prime graph [4] shows that the condition $t(2, L) \geq$ 2 holds true for all finite nonabelian simple groups except the alternating groups $A l t_{n}$ with n such that $n, n-1, n-2, n-3$ are not primes. On the other hand, for every finite simple group L with $t(L)<3$ the recognition problem has been solved.

The next result shows that we can omit the exceptional case (b) of the statement (3) of Theorem 1 when we apply the theorem to the recognition of finite nonabelian simple groups.

Theorem 2. Let L be a finite nonabelian simple group with $t(L) \geq 3$ and $t(2, L) \geq 2$, and G is a finite group with $\omega(G)=\omega(L)$. Then
(1) There exists a finite simple nonabelian group S such that $S \leq \bar{G}=$ $G / K \leq \operatorname{Aut}(S)$ for maximal soluble normal subgroup K of G.
(2) For every independent subset ρ of $\pi(G)$ with $|\rho| \geq 3$ at most one prime in ρ divides the product $|K| \cdot|\bar{G} / S|$. In particular, $t(S) \geq t(G)-1$.
(3) Every prime $r \in \pi(G)$ non-adjacent in $G K(G)$ to 2 does not divide the product $|K| \cdot|\bar{G} / S|$. In particular, $t(2, S) \geq t(2, G)$.

1 Preliminaries

We begin from the main result of [3]. Note that we denote a finite simple group of Lie type accordingly to the Lie notation even so it is a classical group.

Lemma 1 [3] Let G be a finite group with $t(G) \geq 3$ and $t(2, G) \geq 2$. Then there exists a finite nonabelian simple group S such that $S \leq \bar{G}=G / K \leq$ $\operatorname{Aut}(S)$ for the maximal normal soluble subgroup K of G. Furthermore, $t(S) \geq t(G)-1$, and of the following statements holds:
(1) $S \simeq A l t_{7}$ or $A_{1}(q)$ for some odd q, and $t(S)=t(2, S)=3$.
(2) For every prime $p \in \pi(G)$ non-adjacent to 2 in $G K(G)$ a Sylow p-subgroup of G is isomorphic to a Sylow p-subgroup of S. In particular, $t(2, S) \geq t(2, G)$.

Actually the inequality $t(S) \geq t(G)-1$ in the above theorem was obtained by using the following proposition.

Lemma 2 [3, Proposition 3] Let G be a group satisfying the conditions of Lemma 1, and the groups K, S, \bar{G} are as in the conclusion of Lemma 1. Then $t(S) \geq t(G)-1$. Moreover, for every independent subset ρ of $\pi(G)$ such that $|\rho| \geq 3$ at most one prime from ρ divides the product $|K| \cdot|\bar{G} / S|$.

Lemma 3 [5, Lemma 1] Let G be a finite group, K be its normal subgroup, and G / K be a Frobenius group with kernel F and cyclic complement C. If $(|F|,|K|)=1$ and F does not lie in $K C_{G}(K) / K$, then $r \cdot|C| \in \omega(G)$ for some prime divisor r of $|K|$.

Lemma 4 [6] Let r, s be distinct primes, $H\langle x\rangle$ be a semidirect product of normal $\{2, r, s\}^{\prime}$-subgroup H and group $\langle x\rangle$ of order s such that $[H, x] \neq 1$. If $H\langle x\rangle$ acts faithfully on a vector space V over the field of order r, then $C_{V}(x) \neq 0$.

Now following [4] we define a notion of the primitive prime divisor which origin from well-known Zsigmondy Theorem. If q is a natural number, r is an odd prime and $(r, q)=1$, then by $e(r, q)$ we denote the minimal natural number n with $q^{n} \equiv 1(\bmod r)$. If q is odd, let $e(2, q)=1$ if $q \equiv 1(\bmod 4)$, and $e(2, q)=2$ if $q \equiv-1(\bmod 4)$.

Lemma 5 (Zsigmondy Theorem [7]) Let q be a natural number greater than 1. Then for every $n \in \mathbb{N}$ there exists a prime r such that $e(r, q)=n$ but for the cases where $q=2$ and $n=1, q=3$ and $n=1, q=2$ and $n=6$.

The prime r with $e(r, q)=i$ is said to be a primitive prime divisor of $q^{i}-1$. By Zsigmondy theorem such a number exists except in the case mentioned above. If q is fixed, we denote by r_{i} any primitive prime divisor of $q^{i}-1$ (obviously, $q^{i}-1$ can have more than one such divisor). Note that according to our definition every prime divisor of $q-1$ is a primitive prime divisor of $q-1$ with sole exception: 2 is not a primitive prime divisor of $q-1$ if $e(2, q)=2$. In the last case 2 is a primitive prime divisor of $q^{2}-1$. If q is fixed, we denote by k_{i} the maximal divisor of $q^{i}-1$ such that the set of prime divisors of k_{i} is the set of all primitive prime divisors of $q^{i}-1$. The number k_{i} is called a maximal primitive divisor of $q^{i}-1$.

2 Proof of Theorem 1

Let G be a finite group satisfying the condition of Theorem 1. By Lemma 1 the statement (1) of the conclusion of the theorem holds, and by the Lemma 2 so does the statement (2). If the item (a) of the statement (3) is not true then by Lemma 1 a nonabelian composition factor S of the group G is isomorphic to $A l t_{7}$ or $A_{1}(q)$ with q odd. Thus, further we assume that item (a) of the statement (3) is not true for G and prove that $t(G)=3$ and $t(2, G)=2$ in that case.

We start proving that $t(2, G)=2$. In fact, we prove the following result.
Lemma 6 If item (a) of the statement (3) of Theorem 1 is not true, then the soluble radical K of G contains a non-trivial normal 2^{\prime}-subgroup N of index 2 such that a Sylow 2-subgroup of G / N is a generalized quaternion group, G / N has center of order 2 , all odd primes from $\pi(G)$, whose are nonadjacent to 2 in $G K(G)$, are pairwise adjacent, divide the order of K and do not divide the order of G / K; in particular, $t(2, G)=2$.

Proof. By our assumption there exists a prime $r \in \pi(G)$ such that r is non-adjacent to 2 in $G K(G)$ and r divides the product $|K| \cdot|\bar{G} / S|$. By [3, Lemma 1.2] the prime r cannot divide $|\bar{G} / S|$, so r belongs to $\pi(K)$. Let T be a Sylow 2-subgroup of G and H be a Hall $\{2, r\}$-subgroup of the group $K T$. Since a Sylow r-subgroup R of H is a Sylow r-subgroup of K, the factor-group of its normalizer $N=N_{G}(R)$ by $N \cap K$ is isomorphic to \bar{G} and contains a subgroup isomorphic to S. If R is cyclic, $C_{G}(R) K / K$ has to include S and so $2 r \in \omega(G)$; a contradiction. Thus, R is not cyclic, and so $O_{2}(H)=1$. Therefore, H is a Frobenius group with the kernel R and the complement T. Since a Sylow 2-subgroup of nonabelian simple group S cannot be cyclic, the group T as Sylow 2-subgroup of G is not cyclic too. Hence T is a generalized quaternion group. If $M=O_{2^{\prime}}(G)=O_{2^{\prime}}(K)$ then
by Brauer - Suzuki Theorem [8] the factor-group G / M has the center Z / M of order 2 . It is easy to see that $Z=K$ and that 2 is adjacent to every odd prime divisor of $|G / K|$. Suppose that there exists a prime $s \in \pi(K)$ such that $s \neq r$ and s is non-adjacent to 2 in $G K(G)$. A Hall $\{2, r, s\}$-subgroup of K is a Frobenius group with complement of order 2. Since a Hall $\{r, s\}$ subgroup of K is the kernel of this Frobenius group, it is abelian. Therefore, r adjacent to s, and $t(2, G)=2$. The lemma is proved.

Now we consider the value of $t(G)$. Since $t(S)=3$, the inequality $t(S) \geq$ $t(G)-1$ from Lemma 1 implies that $t(G) \leq 4$. Suppose $t(G)=4$, i.e., the maximal independent set ρ of the graph $G K(G)$ contains four primes. By Lemma 2 and equality $t(S)=3$ exactly one of these primes divides the product $|K| \cdot|\bar{G} / S|$. Denote this prime by r. Note that r is odd, since $t(2, G)=2$. Assume that r divides $|\bar{G} / S|$. If $S \simeq A l t_{7}$ then r cannot divide $|\bar{G} / S| \leq 2$. Let $S \simeq A_{1}(q)$ and $q=p^{m}$, where p is the characteristic of the base field. Since every maximal coclique in $G K(S)$ has the form $\left\{p, r_{1}, r_{2}\right\}$, where r_{i} is a primitive prime divisor of $q^{i}-1$ for $i=1,2$, the prime p must be one of three primes from $\rho \cap \pi(S)$. On the other hand, since \bar{G} / S is isomorphic to a subgroup of Out S, there exists an element x of odd order r from $\bar{G} \backslash S$ which is conjugate to a field automorphism of S. Then $p r \in \omega(G)$; a contradiction. Thus, we can assume that r divides order of K.

If $S \simeq A l t_{7}$ then $\rho=\{3,5,7, r\}$. Let T be a Sylow 3-subgroup of G and H be a Hall $\{3, r\}$-subgroup of $K T$. Since a Sylow r-subgroup of H is a Sylow r-subgroup of K, it is not cyclic. Thus, $O_{3}(H)=1$ and H is a Frobenius group with the complement T. Therefore, T must be cyclic, which is impossible, since a Sylow 3 -subgroup of S is not cyclic.

Suppose that $S \simeq A_{1}(q)$, where $q=p^{m}$ and p is odd prime. Then $\rho=\{r, p, s, t\}$, where all primes are odd, s divides $q-1$ and t divides $q+1$. Note that by Lemma 2 (or by statement (2) of the theorem) the order of K is coprime to the product pst. Let R be a Sylow r-subgroup of K, and $N=N_{G}(R)$ be its normalizer in G. By Frattini argument $G / K \simeq N / N \cap K$, so we can assume without loss of generality that R is a normal subgroup of G. The group S includes a subgroup F which is a Frobenius group with a kernel of order q and a complement of order s. Since $(|K|,|F|)=1$, by Shur - Zassenhaus Theorem the factor group G / R contains a subgroup isomorphic to F. Lemma 3 implies that G contains an element of order $r s$; a contradiction. Theorem 1 is proved.

3 Proof of Theorem 2

Let L be a finite nonabelian simple group, G be a finite group with $\omega(G)=$ $\omega(L)$. Theorem 1 implies that $S \leq \bar{G}=G / K \leq \operatorname{Aut}(S)$, where K is the soluble radical of G, and S is a finite nonabelian simple group. Moreover, if we assume that for G the statement (a) of item (3) of Theorem 1 does not hold, then S is isomorphic to $A l t_{7}$ or $A_{1}(q)$ for odd $q ; t(L)=t(G)=3$, $t(2, L)=t(2, G)=2$. By [9] group S can not be isomorphic to $A l t_{7}$ (in such case $L \simeq A l t_{7}$ and $K=1$), so we can assume that $S \simeq A_{1}(q)$. Lemma 6 implies that every prime r non-adjacent to 2 in $G K(G)$ divides only the order of K. Since in [4] the values of independent and 2-independent numbers were determined for all finite nonabelian simple groups, we can list all such groups L with $t(L)=3$ and $t(2, L)=2$. Using [4] one can verify that the every maximal coclique $\rho(L)$ of $G K(L)$ contains the prime r non-adjacent to 2 in $G K(L)$. Since r divides the order of K, any other prime from $\rho(L)$ divides only the order of S.

Let $S \simeq A_{1}(q)$ with $q=p^{m}$ for an odd prime p. As it was mentioned above, every maximal coclique in $G K(S)$ has the form $\left\{p, r_{1}, r_{2}\right\}$, where r_{i} is a primitive prime divisor of $q^{i}-1$ for $i=1,2$. Let $\rho(G)=\rho(L)=\{r, s, t\}$ be a maximal coclique and $\rho(2, G)=\rho(2, L)=\{2, r\}$ be a maximal coclique, containing 2 , of $G K(L)$ and so of $G K(G)$. Then $s, t \in\left\{p, r_{1}, r_{2}\right\}$.

Suppose that $s=r_{1}$ is a primitive prime divisor of $q-1$. Taken a factor group of G by $O_{r^{\prime}}(K)$ and then a factor group of $G / O_{r^{\prime}}(K)$ by Frattini subgroup of its maximal normal r-subgroup, we may assume that $O_{r^{\prime}}(K)=1$, $V=O_{r}(K)$ is nontrivial normal elementary abelian r-subgroup of G and $C_{G}(V)=V$. Denote by \widetilde{G} and \widetilde{K} factor groups of G and K by V. Let \widetilde{S} be the preimage of S in \widetilde{G}, P be a Sylow p-subgroup of \widetilde{S}. Put $\widetilde{P}=P \cap \widetilde{K}$ and $N=N_{\widetilde{S}}(\widetilde{P})$. Since by Frattini argument $N / N \cap \widetilde{K} \simeq \widetilde{S} / \widetilde{K}$, we can assume that \widetilde{P} is normal in \widetilde{S} and so $N_{\widetilde{S}}(P) / \widetilde{K}=N_{S}(U)$, where $U=P / \widetilde{P}$ is a Sylow p-subgroup of S. The normalizer $N_{S}(U)$ contains an element y of order s, and $U\langle y\rangle$ is a Frobenius group with kernel U and complement $\langle y\rangle$; in particular $[U, y] \neq 1$. Therefore, $N_{\widetilde{S}}(P)$ contains an element x of order s and $[P, x] \neq 1$. Since $C_{G}(V)=V$, the group $P\langle x\rangle$ acts faithfully on the group V, which can be considered as a vector space over the field of order r. Lemma 4 implies $C_{V}(x) \neq 1$. Hence, $s r \in \omega(G)$; a contradiction.

Thus, $s, t \in\left\{p, r_{2}\right\}$. Let $s=p$, and $t=r_{2}$ be an odd divisor of $q+1$. If $q>p$ then abelian Sylow p-subgroup U of S is not cyclic. Considering the action of U on normal r-subgroup of K, we obtain that G contains an element of order $p r$, which is impossible, since $p r \notin \omega(L)$. Therefore, $q=p$ and $S \simeq A_{1}(p)$ for some odd prime p.

If the prime graph of L is disconnected then so is a prime graph of G and its soluble radical K is nilpotent (by Thompson Theorem on the nilpotency of a group admitting the fixed-point-free automorphism of prime order). On the other hand, by Lemma 6 the element of order 2 lies in K. Therefore, in that case a prime r non-adjacent to 2 in $G K(G)$ can not divide the order of K; contrary to our assumption. Thus, the prime graph of L must be connected.

Since all sporadic simple groups have the disconnected prime graphs no one of them can be a counterexample. Among the alternating groups with $t(L)=3$ and $t(2, L)=2$ only the group $A l t_{16}$ has a connected prime graph. However, this group is recognizable by its spectrum [10]. All exceptional groups of Lie type except the groups of type E_{7} also have a disconnected prime graph. Since for $L \simeq E_{7}(q)$ the equality $t(L)=8$ holds, we can assume that L is a classical group of Lie type. Using a condition of connectedness of the prime graph together with equalities $t(L)=3$ and $t(2, L)=2$ we obtain that the groups that we have to consider are contained among the following groups: $A_{3}(u), A_{5}(u),{ }^{2} A_{3}(u),{ }^{2} A_{5}(u), B_{3}(u), C_{3}(u), D_{4}(u)$; and $B_{4}(2), C_{4}(2)$.

Let L be isomorphic to $B_{4}(2)$ or $C_{4}(2)$. The prime graph $G K(L)=$ $G K(G)$ has the maximal coclique $\rho(L)=\{5,7,17\}$ and the maximal coclique $\rho(2, L)=\{2,17\}$ containing 2 . Since 17 divides only the order of soluble radical K, primes 5,7 divides only the order of $S \simeq A_{1}(p)$ and so $5,7 \in$ $\left\{p, r_{2}\right\}$. If $p=5$ then 7 must divide $p+1=6$. If $p=7$ then 5 must divide $p+1=8$. Both cases are impossible.

Let L be isomorphic to one of the group $A_{3}(u), A_{5}(u),{ }^{2} A_{3}(u),{ }^{2} A_{5}(u)$, $B_{3}(u), C_{3}(u), D_{4}(u)$, where $u=v^{m}$ and v is a prime. We may suppose that v is odd, since otherwise $t(2, L)=3$. Let w_{i} be a primitive prime divisor of $u^{i}-1$ and k_{i} be the maximal primitive divisor of $u^{i}-1$.

Lemma 7 Let v be an odd prime and $u=v^{m}$. Then the following statements holds.
(1) If $L \simeq A_{3}(u)$, then for arbitrary w_{3} and w_{4} the set $\left\{v, w_{3}, w_{4}\right\}$ is the maximal coclique of $G K(L)$.
(2) If $L \simeq{ }^{2} A_{3}(u)$, then for arbitrary w_{4} and w_{6} the set $\left\{v, w_{4}, w_{6}\right\}$ is the maximal coclique of $G K(L)$.
(3) If $L \simeq A_{5}(u)$, then for arbitrary w_{4}, w_{5} and w_{6} the sets $\left\{v, w_{5}, w_{6}\right\}$ and $\left\{w_{4}, w_{5}, w_{6}\right\}$ are the maximal cocliques of $G K(L)$.
(4) If $L \simeq{ }^{2} A_{5}(u)$, then for arbitrary w_{3}, w_{4} and w_{10} the sets $\left\{v, w_{3}, w_{10}\right\}$ and $\left\{w_{4}, w_{3}, w_{10}\right\}$ are the maximal cocliques of $G K(L)$.
(5) If $L \simeq B_{3}(u), C_{3}(u)$ or $D_{4}(u)$, then for arbitrary w_{3} and w_{6} the set $\left\{v, w_{3}, w_{6}\right\}$ is the maximal coclique of $G K(L)$.
(6) $k_{3}=\left(u^{2}+u+1\right) /(3, u-1), k_{4}=\left(u^{2}+1\right) / 2, k_{5}=\left(u^{4}+u^{3}+u^{2}+u+\right.$ 1) $/(5, u-1), k_{6}=\left(u^{2}-u+1\right) /(3, u+1), k_{10}=\left(u^{4}-u^{3}+u^{2}-u+1\right) /(5, u+1)$.

Proof. The values of k_{i} can be calculated directly. The rest holds by [4]. The lemma is proved.

The prime graph of every our group L has the maximal coclique ρ of the form $\left\{v, w_{i}, w_{j}\right\}$ from Lemma 7. As it was mentioned, the coclique ρ contains exactly one prime r which is non-adjacent to 2 and this prime is not the characteristic v, which is obviously adjacent to 2 . For the definiteness let w_{j} is adjacent and w_{i} is non-adjacent to 2 . By our assumption w_{j} divides the order of K and $\left(w_{j},|G / K|\right)=1$. On the other hand, w_{i} and v divide the order of S and $\left(w_{i} v,|K| \cdot|G / S|\right)=1$. As it was proved $S \simeq A_{1}(p)$ for some odd prime p, and the primes $w_{i}, v \in\left\{p, r_{2}\right\}$, where r_{2} is an odd prime divisor of $p+1$.

Suppose that $v=p$. Then w_{i} must divide $p+1$. On the other hand w_{i} is a primitive prime divisor of $u^{i}-1=p^{m i}-1$, which is impossible, since $i>2$ by Lemma 7 . Thus, v divides $p+1$ and $w_{i}=p$. Consider the maximal primitive prime divisor k_{i} of $u^{i}-1$. Since L contains an element of order k_{i}, so does G. On the other hand, $\left(k_{i},|K| \cdot|G / S|\right)=1$. Hence S contains an element of order k_{i}. Since by Lemma 7 the equality $w_{i}=p$ holds for arbitrary primitive prime divisor w_{i} of $u^{i}-1$, the maximal primitive prime divisor k_{i} is equal to p.

Let $L \simeq B_{3}(u), C_{3}(u)$ or $D_{4}(u)$. Then $p=k_{3}$ or k_{6} by Lemma 7 .
Suppose that $p=k_{3}=\left(u^{2}+u+1\right) /(3, u-1)$. Since v divides $p+1$, prime v divides $u^{2}+u+2$ if $(3, u-1)=1$, and v divides $u^{2}+u+4$ if $(3, u-1)=3$. In both cases $v=2$; a contradiction.

Suppose that $p=k_{6}=\left(u^{2}-u+1\right) /(3, u+1)$. Then v divides $u^{2}-u+2$ if $(3, u+1)=1$, and v divides $u^{2}-u+4$ otherwise. Again $v=2$; a contradiction.

Let $L \simeq A_{3}(u)$ or ${ }^{2} A_{3}(u)$. Since the equalities $p=k_{3}$ and $p=k_{6}$ lead to contradiction, we may assume that $p=k_{4}=\left(u^{2}+1\right) / 2$. Therefore, v divides $p+1=\left(u^{2}+3\right) / 2$, and so $v=3$. The group L contains the element of order 9. On the other hand, $v=3$ divides only the order of S. It follows that 9 divides $p+1=\left(u^{2}+3\right) / 2=\left(3^{2 m}+3\right) / 2$; a contradiction.

Let $L \simeq A_{5}(u)$. If $p=k_{5}=u^{4}+u^{3}+u^{2}+u+1$, then $v=2$, which is impossible. If $p=k_{5}=\left(u^{4}+u^{3}+u^{2}+u+1\right) / 5$, then v divides $u^{4}+$ $u^{3}+u^{2}+u+6$, and so $v=3$. By Lemma 7 the graph $G K(L)$ contains the coclique $\left\{w_{4}, w_{5}, w_{6}\right\}$ which is also maximal. Since $w_{5}=p$ and $w_{6} \in \pi(K)$, all the primitive prime divisors w_{4} of $u^{4}-1$ must divide $p+1$. The group L contains an element of order k_{4} and so does S, hence, $k_{4}=\left(u^{2}+1\right) / 2$ divides $p+1=u^{4}+u^{3}+u^{2}+u+6$. Therefore, $u^{2}+1$ divides $2\left(u^{4}+u^{3}+u^{2}+u+6\right)$ and so $u^{2}+1$ divides 12 ; a contradiction.

Let $L \simeq{ }^{2} A_{5}(u)$. If $p=k_{10}=u^{4}-u^{3}+u^{2}-u+1$, then $v=2$, which is impossible. If $p=k_{5}=\left(u^{4}-u^{3}+u^{2}-u+1\right) / 5$, then v divides $u^{4}-u^{3}+u^{2}-u+6$, and so $v=3$. By Lemma 7 the graph $G K(L)$ contains the coclique $\left\{w_{4}, w_{10}, w_{3}\right\}$ which is also maximal. Since $w_{10}=p$ and $w_{3} \in \pi(K)$, all the primitive prime divisors w_{4} of $u^{4}-1$ must divide $p+1$, and so, as in the previous case, $k_{4}=\left(u^{2}+1\right) / 2$ divides $p+1=u^{4}-u^{3}+u^{2}-u+6$. Therefore, $u^{2}+1$ divides $2\left(u^{4}-u^{3}+u^{2}-u+6\right)$ and so $u^{2}+1$ divides 12 ; a contradiction.

Theorem 2 is proved.

References

[1] Williams J. S., "Prime graph components of finite groups", J. Algebra, 69, No. 2, 487-513 (1981).
[2] Kondrat'ev A. S., "On prime graph components for finite simple groups", Mat. Sb., 180, No. 6, 787-797 (1989).
[3] Vasil'ev A. V., "On connection between the structure of finite group and properties of its prime graph", Sib. Math. J., 46, No. 3 (2005), 396-404.
[4] Vasiliev A. V., Vdovin E. P., "An adjacency criterion for the prime graph of a finite simple group", Algebra and Logic., 44, No. 6 (2005), 381-406.
[5] Mazurov V. D. Characterization of finite groups by sets of element orders, Algebra and Logic, V. 36, N 1 (1997), 23-32.
[6] Khukhro E.I., Mazurov V.D. Finite groups with an automorphism of prime order whose centralizer has small rank // J. Algebra. 2006. T. 301, N 2, 474-492.
[7] K. Zsigmondy, "Zur Theorie der Potenzreste", Monatsh. für Math. und Phys., 3, (1892), 265-284.
[8] Brauer R., Suzuki M., On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 1757-1759.
[9] I.B.Gorshkov, On groups with a composition factor isomorphic to the alternating group of degree 7, Algebra and Model Theory. Collection of papers. NSTU, 2007, 21-37.
[10] A.V.Zavarnitsin, Recognition of alternating groups of degrees $r+1$ and $r+2$ for prime r and the group of degree 16 by their element order sets, Algebra and Logic, 39, N 6 (2000), 370-377.

[^0]: ${ }^{1}$ Supported by the Russian Foundation for Basic Research (Grant 08-01-00322 and 06-01-39001), SB RAS Integration Project No. 2006.1.2, and President grants (NSh344.2008.1, MD-2848.2007.1).

