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Let G be a finite group, π(G) be the set of prime divisors of its order and
ω(G) be the spectrum of G, that is the set of element orders of G. The prime
graph GK(G) of a group G is defined as follows. The vertex set of GK(G)
is π(G) and two primes r, s ∈ π(G) considered as vertices of the graph are
adjacent by the edge if and only if rs ∈ ω(G). K. W.Gruenberg and O. Kegel
introduced this graph (it is also called the Gruenberg — Kegel graph) in
the middle of 1970th and gave a characterization of finite groups with a
disconnected prime graph (we denote the number of connected components
of GK(G) by s(G)). This deep result and a classification of finite simple
groups with s(G) > 1 obtained by J. S.Williams and A. S.Kondrat’ev (see
[1, 2]) implied a series of important corollaries.

The proof of the Gruenberg–Kegel Theorem relies substantially upon the
fact that π(G) contains an odd prime which is disconnected with 2 in GK(G).
It turned out that disconnectedness could be successfully replaced in most
cases by a weaker condition for the prime 2 to be nonadjacent to at least one
odd prime.

Denote by t(G) the maximal number of primes in π(G) pairwise non-
adjacent in GK(G). In other words, t(G) is a maximal number of vertices in
cocliques, i. e., independent sets, of GK(G). In graph theory this number is
usually called an independence number of the graph. By analogy we denote
by t(r,G) the maximal number of vertices in cocliques of GK(G) containing
the prime r. We call this number an r-independence number. Recently,
in [3] it was given a characterization of finite groups G with t(G) ≥ 3 and
t(2, G) ≥ 2, and in [4] it was proved that all finite nonabelian simple groups
except the alternating permutation groups satisfy the condition t(2, G) ≥ 2.
Here we give a refinement of the main theorem of [3].

Theorem 1. Let G be a finite group with t(G) ≥ 3 and t(2, G) ≥ 2.
Then

(1) There exists a finite simple nonabelian group S such that S ≤ G =
G/K ≤ Aut(S) for maximal soluble normal subgroup K of G.

(2) For every independent subset ρ of π(G) with |ρ| ≥ 3 at most one
prime in ρ divides the product |K| · |G/S|. In particular, t(S) ≥ t(G)− 1.

(3) One of the following holds:
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(a) every prime r ∈ π(G) non-adjacent in GK(G) to 2 does not divide
the product |K| · |G/S|; in particular, t(2, S) ≥ t(2, G);

(b) there exists a prime r ∈ π(K) non-adjacent in GK(G) to 2; in
which case t(G) = 3, t(2, G) = 2, and S ' Alt7 or A1(q) for some odd q.

The above characterization with the description of prime graph of every
finite nonabelian simple group (see [4]) can be applied to a so-called recog-
nition problem. For a given finite group G denote by h(G) the number of
pairwise non-isomorphic finite groups H with ω(H) = ω(G). The group
G is called recognizable (by spectrum) if h(G) = 1, almost recognizable if
1 < h(G) < ∞, and non-recognizable if h(G) = ∞. We say that for a given
group G the recognition problem is solved if the value of h(G) is known.
Since every finite group with a nontrivial normal soluble subgroup is non-
recognizable, each recognizable or almost recognizable group is an extension
of the direct product M of nonabelian simple groups by some subgroup of
Out(M). So, of prime interest is the recognition problem for simple and
almost simple groups. Let L be a finite nonabelian simple group and G be
a finite group with ω(G) = ω(L). Clearly, the equality ω(G) = ω(L) implies
the coincidence of the prime graphs of G and L. Thus, if L satisfies the con-
dition of Theorem 1, then so does G. The statement (1) of the conclusion of
the theorem implies that G has the unique nonabelian composition factor S.
On the other hand, the statements (2) and (3) help to prove that this factor
S is isomorphic to L. If this fact is established we say that L is quasirecogniz-
able. Obviously, the proof of quasirecognizability of L is a substantial step
on the way to prove that L is recognizable or almost recognizable.

The description of prime graph [4] shows that the condition t(2, L) ≥
2 holds true for all finite nonabelian simple groups except the alternating
groups Altn with n such that n, n − 1, n − 2, n − 3 are not primes. On the
other hand, for every finite simple group L with t(L) < 3 the recognition
problem has been solved.

The next result shows that we can omit the exceptional case (b) of the
statement (3) of Theorem 1 when we apply the theorem to the recognition
of finite nonabelian simple groups.

Theorem 2. Let L be a finite nonabelian simple group with t(L) ≥ 3 and
t(2, L) ≥ 2, and G is a finite group with ω(G) = ω(L). Then

(1) There exists a finite simple nonabelian group S such that S ≤ G =
G/K ≤ Aut(S) for maximal soluble normal subgroup K of G.

(2) For every independent subset ρ of π(G) with |ρ| ≥ 3 at most one
prime in ρ divides the product |K| · |G/S|. In particular, t(S) ≥ t(G)− 1.

(3) Every prime r ∈ π(G) non-adjacent in GK(G) to 2 does not divide
the product |K| · |G/S|. In particular, t(2, S) ≥ t(2, G).
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1 Preliminaries

We begin from the main result of [3]. Note that we denote a finite simple
group of Lie type accordingly to the Lie notation even so it is a classical
group.

Lemma 1 [3] Let G be a finite group with t(G) ≥ 3 and t(2, G) ≥ 2. Then
there exists a finite nonabelian simple group S such that S ≤ G = G/K ≤
Aut(S) for the maximal normal soluble subgroup K of G. Furthermore,
t(S) ≥ t(G)− 1, and of the following statements holds:

(1) S ' Alt7 or A1(q) for some odd q, and t(S) = t(2, S) = 3.
(2) For every prime p ∈ π(G) non-adjacent to 2 in GK(G) a Sylow

p-subgroup of G is isomorphic to a Sylow p-subgroup of S. In particular,
t(2, S) ≥ t(2, G).

Actually the inequality t(S) ≥ t(G)−1 in the above theorem was obtained
by using the following proposition.

Lemma 2 [3, Proposition 3] Let G be a group satisfying the conditions of
Lemma 1, and the groups K, S, G are as in the conclusion of Lemma 1.
Then t(S) ≥ t(G) − 1. Moreover, for every independent subset ρ of π(G)
such that |ρ| ≥ 3 at most one prime from ρ divides the product |K| · |G/S|.

Lemma 3 [5, Lemma 1] Let G be a finite group, K be its normal subgroup,
and G/K be a Frobenius group with kernel F and cyclic complement C. If
(|F |, |K|) = 1 and F does not lie in KCG(K)/K, then r · |C| ∈ ω(G) for
some prime divisor r of |K|.

Lemma 4 [6] Let r, s be distinct primes, H〈x〉 be a semidirect product of
normal {2, r, s}′-subgroup H and group 〈x〉 of order s such that [H, x] 6= 1.
If H〈x〉 acts faithfully on a vector space V over the field of order r, then
CV (x) 6= 0.

Now following [4] we define a notion of the primitive prime divisor which
origin from well-known Zsigmondy Theorem. If q is a natural number, r is
an odd prime and (r, q) = 1, then by e(r, q) we denote the minimal natural
number n with qn ≡ 1( mod r). If q is odd, let e(2, q) = 1 if q ≡ 1( mod 4),
and e(2, q) = 2 if q ≡ −1( mod 4).

Lemma 5 (Zsigmondy Theorem [7]) Let q be a natural number greater than 1.
Then for every n ∈ N there exists a prime r such that e(r, q) = n but for the
cases where q = 2 and n = 1, q = 3 and n = 1, q = 2 and n = 6.
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The prime r with e(r, q) = i is said to be a primitive prime divisor of
qi − 1. By Zsigmondy theorem such a number exists except in the case
mentioned above. If q is fixed, we denote by ri any primitive prime divisor
of qi − 1 (obviously, qi − 1 can have more than one such divisor). Note that
according to our definition every prime divisor of q − 1 is a primitive prime
divisor of q−1 with sole exception: 2 is not a primitive prime divisor of q−1
if e(2, q) = 2. In the last case 2 is a primitive prime divisor of q2 − 1. If q
is fixed, we denote by ki the maximal divisor of qi − 1 such that the set of
prime divisors of ki is the set of all primitive prime divisors of qi − 1. The
number ki is called a maximal primitive divisor of qi − 1.

2 Proof of Theorem 1

Let G be a finite group satisfying the condition of Theorem 1. By Lemma 1
the statement (1) of the conclusion of the theorem holds, and by the Lemma 2
so does the statement (2). If the item (a) of the statement (3) is not true then
by Lemma 1 a nonabelian composition factor S of the group G is isomorphic
to Alt7 or A1(q) with q odd. Thus, further we assume that item (a) of the
statement (3) is not true for G and prove that t(G) = 3 and t(2, G) = 2 in
that case.

We start proving that t(2, G) = 2. In fact, we prove the following result.

Lemma 6 If item (a) of the statement (3) of Theorem 1 is not true, then
the soluble radical K of G contains a non-trivial normal 2′-subgroup N of
index 2 such that a Sylow 2-subgroup of G/N is a generalized quaternion
group, G/N has center of order 2, all odd primes from π(G), whose are non-
adjacent to 2 in GK(G), are pairwise adjacent, divide the order of K and do
not divide the order of G/K; in particular, t(2, G) = 2.

Proof. By our assumption there exists a prime r ∈ π(G) such that r is
non-adjacent to 2 in GK(G) and r divides the product |K| · |G/S|. By [3,
Lemma 1.2] the prime r cannot divide |G/S|, so r belongs to π(K). Let T
be a Sylow 2-subgroup of G and H be a Hall {2, r}-subgroup of the group
KT . Since a Sylow r-subgroup R of H is a Sylow r-subgroup of K, the
factor-group of its normalizer N = NG(R) by N ∩ K is isomorphic to G
and contains a subgroup isomorphic to S. If R is cyclic, CG(R)K/K has
to include S and so 2r ∈ ω(G); a contradiction. Thus, R is not cyclic, and
so O2(H) = 1. Therefore, H is a Frobenius group with the kernel R and
the complement T . Since a Sylow 2-subgroup of nonabelian simple group S
cannot be cyclic, the group T as Sylow 2-subgroup of G is not cyclic too.
Hence T is a generalized quaternion group. If M = O2′(G) = O2′(K) then
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by Brauer — Suzuki Theorem [8] the factor-group G/M has the center Z/M
of order 2. It is easy to see that Z = K and that 2 is adjacent to every odd
prime divisor of |G/K|. Suppose that there exists a prime s ∈ π(K) such
that s 6= r and s is non-adjacent to 2 in GK(G). A Hall {2, r, s}-subgroup
of K is a Frobenius group with complement of order 2. Since a Hall {r, s}-
subgroup of K is the kernel of this Frobenius group, it is abelian. Therefore,
r adjacent to s, and t(2, G) = 2. The lemma is proved.

Now we consider the value of t(G). Since t(S) = 3, the inequality t(S) ≥
t(G) − 1 from Lemma 1 implies that t(G) ≤ 4. Suppose t(G) = 4, i. e.,
the maximal independent set ρ of the graph GK(G) contains four primes.
By Lemma 2 and equality t(S) = 3 exactly one of these primes divides the
product |K| · |G/S|. Denote this prime by r. Note that r is odd, since
t(2, G) = 2. Assume that r divides |G/S|. If S ' Alt7 then r cannot divide
|G/S| ≤ 2. Let S ' A1(q) and q = pm, where p is the characteristic of the
base field. Since every maximal coclique in GK(S) has the form {p, r1, r2},
where ri is a primitive prime divisor of qi − 1 for i = 1, 2, the prime p must
be one of three primes from ρ ∩ π(S). On the other hand, since G/S is
isomorphic to a subgroup of Out S, there exists an element x of odd order r
from G\S which is conjugate to a field automorphism of S. Then pr ∈ ω(G);
a contradiction. Thus, we can assume that r divides order of K.

If S ' Alt7 then ρ = {3, 5, 7, r}. Let T be a Sylow 3-subgroup of G
and H be a Hall {3, r}-subgroup of KT . Since a Sylow r-subgroup of H
is a Sylow r-subgroup of K, it is not cyclic. Thus, O3(H) = 1 and H is a
Frobenius group with the complement T . Therefore, T must be cyclic, which
is impossible, since a Sylow 3-subgroup of S is not cyclic.

Suppose that S ' A1(q), where q = pm and p is odd prime. Then
ρ = {r, p, s, t}, where all primes are odd, s divides q − 1 and t divides q + 1.
Note that by Lemma 2 (or by statement (2) of the theorem) the order of
K is coprime to the product pst. Let R be a Sylow r-subgroup of K, and
N = NG(R) be its normalizer in G. By Frattini argument G/K ' N/N ∩K,
so we can assume without loss of generality that R is a normal subgroup
of G. The group S includes a subgroup F which is a Frobenius group with
a kernel of order q and a complement of order s. Since (|K|, |F |) = 1, by
Shur — Zassenhaus Theorem the factor group G/R contains a subgroup
isomorphic to F . Lemma 3 implies that G contains an element of order rs;
a contradiction. Theorem 1 is proved.
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3 Proof of Theorem 2

Let L be a finite nonabelian simple group, G be a finite group with ω(G) =
ω(L). Theorem 1 implies that S ≤ G = G/K ≤ Aut(S), where K is the
soluble radical of G, and S is a finite nonabelian simple group. Moreover,
if we assume that for G the statement (a) of item (3) of Theorem 1 does
not hold, then S is isomorphic to Alt7 or A1(q) for odd q; t(L) = t(G) = 3,
t(2, L) = t(2, G) = 2. By [9] group S can not be isomorphic to Alt7 (in such
case L ' Alt7 and K = 1), so we can assume that S ' A1(q). Lemma 6
implies that every prime r non-adjacent to 2 in GK(G) divides only the order
of K. Since in [4] the values of independent and 2-independent numbers were
determined for all finite nonabelian simple groups, we can list all such groups
L with t(L) = 3 and t(2, L) = 2. Using [4] one can verify that the every
maximal coclique ρ(L) of GK(L) contains the prime r non-adjacent to 2 in
GK(L). Since r divides the order of K, any other prime from ρ(L) divides
only the order of S.

Let S ' A1(q) with q = pm for an odd prime p. As it was mentioned
above, every maximal coclique in GK(S) has the form {p, r1, r2}, where ri

is a primitive prime divisor of qi − 1 for i = 1, 2. Let ρ(G) = ρ(L) = {r, s, t}
be a maximal coclique and ρ(2, G) = ρ(2, L) = {2, r} be a maximal coclique,
containing 2, of GK(L) and so of GK(G). Then s, t ∈ {p, r1, r2}.

Suppose that s = r1 is a primitive prime divisor of q − 1. Taken a factor
group of G by Or′(K) and then a factor group of G/Or′(K) by Frattini
subgroup of its maximal normal r-subgroup, we may assume that Or′(K) = 1,
V = Or(K) is nontrivial normal elementary abelian r-subgroup of G and

CG(V ) = V . Denote by G̃ and K̃ factor groups of G and K by V . Let S̃

be the preimage of S in G̃, P be a Sylow p-subgroup of S̃. Put P̃ = P ∩ K̃
and N = NeS(P̃ ). Since by Frattini argument N/N ∩ K̃ ' S̃/K̃, we can

assume that P̃ is normal in S̃ and so NeS(P )/K̃ = NS(U), where U = P/P̃
is a Sylow p-subgroup of S. The normalizer NS(U) contains an element y of
order s, and U〈y〉 is a Frobenius group with kernel U and complement 〈y〉;
in particular [U, y] 6= 1. Therefore, NeS(P ) contains an element x of order
s and [P, x] 6= 1. Since CG(V ) = V , the group P 〈x〉 acts faithfully on the
group V , which can be considered as a vector space over the field of order r.
Lemma 4 implies CV (x) 6= 1. Hence, sr ∈ ω(G); a contradiction.

Thus, s, t ∈ {p, r2}. Let s = p, and t = r2 be an odd divisor of q + 1.
If q > p then abelian Sylow p-subgroup U of S is not cyclic. Considering
the action of U on normal r-subgroup of K, we obtain that G contains an
element of order pr, which is impossible, since pr 6∈ ω(L). Therefore, q = p
and S ' A1(p) for some odd prime p.
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If the prime graph of L is disconnected then so is a prime graph of G and
its soluble radical K is nilpotent (by Thompson Theorem on the nilpotency
of a group admitting the fixed-point-free automorphism of prime order). On
the other hand, by Lemma 6 the element of order 2 lies in K. Therefore, in
that case a prime r non-adjacent to 2 in GK(G) can not divide the order
of K; contrary to our assumption. Thus, the prime graph of L must be
connected.

Since all sporadic simple groups have the disconnected prime graphs no
one of them can be a counterexample. Among the alternating groups with
t(L) = 3 and t(2, L) = 2 only the group Alt16 has a connected prime graph.
However, this group is recognizable by its spectrum [10]. All exceptional
groups of Lie type except the groups of type E7 also have a disconnected
prime graph. Since for L ' E7(q) the equality t(L) = 8 holds, we can assume
that L is a classical group of Lie type. Using a condition of connectedness
of the prime graph together with equalities t(L) = 3 and t(2, L) = 2 we
obtain that the groups that we have to consider are contained among the
following groups: A3(u), A5(u), 2A3(u), 2A5(u), B3(u), C3(u), D4(u); and
B4(2), C4(2).

Let L be isomorphic to B4(2) or C4(2). The prime graph GK(L) =
GK(G) has the maximal coclique ρ(L) = {5, 7, 17} and the maximal coclique
ρ(2, L) = {2, 17} containing 2. Since 17 divides only the order of soluble
radical K, primes 5, 7 divides only the order of S ' A1(p) and so 5, 7 ∈
{p, r2}. If p = 5 then 7 must divide p + 1 = 6. If p = 7 then 5 must divide
p + 1 = 8. Both cases are impossible.

Let L be isomorphic to one of the group A3(u), A5(u), 2A3(u), 2A5(u),
B3(u), C3(u), D4(u), where u = vm and v is a prime. We may suppose that
v is odd, since otherwise t(2, L) = 3. Let wi be a primitive prime divisor of
ui − 1 and ki be the maximal primitive divisor of ui − 1.

Lemma 7 Let v be an odd prime and u = vm. Then the following statements
holds.

(1) If L ' A3(u), then for arbitrary w3 and w4 the set {v, w3, w4} is the
maximal coclique of GK(L).

(2) If L ' 2A3(u), then for arbitrary w4 and w6 the set {v, w4, w6} is the
maximal coclique of GK(L).

(3) If L ' A5(u), then for arbitrary w4, w5 and w6 the sets {v, w5, w6}
and {w4, w5, w6} are the maximal cocliques of GK(L).

(4) If L ' 2A5(u), then for arbitrary w3, w4 and w10 the sets {v, w3, w10}
and {w4, w3, w10} are the maximal cocliques of GK(L).

(5) If L ' B3(u), C3(u) or D4(u), then for arbitrary w3 and w6 the set
{v, w3, w6} is the maximal coclique of GK(L).
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(6) k3 = (u2 +u+1)/(3, u− 1), k4 = (u2 +1)/2, k5 = (u4 +u3 +u2 +u+
1)/(5, u−1), k6 = (u2−u+1)/(3, u+1), k10 = (u4−u3+u2−u+1)/(5, u+1).

Proof. The values of ki can be calculated directly. The rest holds by [4].
The lemma is proved.

The prime graph of every our group L has the maximal coclique ρ of
the form {v, wi, wj} from Lemma 7. As it was mentioned, the coclique ρ
contains exactly one prime r which is non-adjacent to 2 and this prime is not
the characteristic v, which is obviously adjacent to 2. For the definiteness
let wj is adjacent and wi is non-adjacent to 2. By our assumption wj divides
the order of K and (wj, |G/K|) = 1. On the other hand, wi and v divide the
order of S and (wiv, |K| · |G/S|) = 1. As it was proved S ' A1(p) for some
odd prime p, and the primes wi, v ∈ {p, r2}, where r2 is an odd prime divisor
of p + 1.

Suppose that v = p. Then wi must divide p + 1. On the other hand wi

is a primitive prime divisor of ui − 1 = pmi − 1, which is impossible, since
i > 2 by Lemma 7. Thus, v divides p + 1 and wi = p. Consider the maximal
primitive prime divisor ki of ui − 1. Since L contains an element of order
ki, so does G. On the other hand, (ki, |K| · |G/S|) = 1. Hence S contains
an element of order ki. Since by Lemma 7 the equality wi = p holds for
arbitrary primitive prime divisor wi of ui − 1, the maximal primitive prime
divisor ki is equal to p.

Let L ' B3(u), C3(u) or D4(u). Then p = k3 or k6 by Lemma 7.
Suppose that p = k3 = (u2 +u+1)/(3, u−1). Since v divides p+1, prime

v divides u2 +u+2 if (3, u−1) = 1, and v divides u2 +u+4 if (3, u−1) = 3.
In both cases v = 2; a contradiction.

Suppose that p = k6 = (u2−u+1)/(3, u+1). Then v divides u2−u+2 if
(3, u+1) = 1, and v divides u2−u+4 otherwise. Again v = 2; a contradiction.

Let L ' A3(u) or 2A3(u). Since the equalities p = k3 and p = k6 lead to
contradiction, we may assume that p = k4 = (u2 +1)/2. Therefore, v divides
p + 1 = (u2 + 3)/2, and so v = 3. The group L contains the element of order
9. On the other hand, v = 3 divides only the order of S. It follows that 9
divides p + 1 = (u2 + 3)/2 = (32m + 3)/2; a contradiction.

Let L ' A5(u). If p = k5 = u4 + u3 + u2 + u + 1, then v = 2, which
is impossible. If p = k5 = (u4 + u3 + u2 + u + 1)/5, then v divides u4 +
u3 + u2 + u + 6, and so v = 3. By Lemma 7 the graph GK(L) contains the
coclique {w4, w5, w6} which is also maximal. Since w5 = p and w6 ∈ π(K),
all the primitive prime divisors w4 of u4 − 1 must divide p + 1. The group L
contains an element of order k4 and so does S, hence, k4 = (u2 +1)/2 divides
p+1 = u4 +u3 +u2 +u+6. Therefore, u2 +1 divides 2(u4 +u3 +u2 +u+6)
and so u2 + 1 divides 12; a contradiction.
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Let L ' 2A5(u). If p = k10 = u4 − u3 + u2 − u + 1, then v = 2,
which is impossible. If p = k5 = (u4 − u3 + u2 − u + 1)/5, then v divides
u4−u3+u2−u+6, and so v = 3. By Lemma 7 the graph GK(L) contains the
coclique {w4, w10, w3} which is also maximal. Since w10 = p and w3 ∈ π(K),
all the primitive prime divisors w4 of u4 − 1 must divide p + 1, and so, as
in the previous case, k4 = (u2 + 1)/2 divides p + 1 = u4 − u3 + u2 − u + 6.
Therefore, u2 + 1 divides 2(u4 − u3 + u2 − u + 6) and so u2 + 1 divides 12; a
contradiction.

Theorem 2 is proved.
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