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Cocliques of maximal size in the prime graph of a
finite simple group

A. V. Vasil′ev, E. P. Vdovin

Abstract

A prime graph of a finite group is defined in the following way: the set of vertices
of the graph is the set of prime divisors of the group, and two distinct vertices r

and s are adjacent, if there is an element of order rs in the group. In this paper we
continue our investigation of the prime graph of a finite simple group started in [1],
namely we describe all cocliques of maximal size for all finite simple groups.

Let G be a finite group, let π(G) be the set of all prime divisors of its order, and let
ω(G) be the spectrum of G, i. e., the set of its element orders. A graph GK(G) is called
the prime graph (or the Gruenberg-Kegel graph) of G, if the set of vertices of GK(G) equals
π(G), and two distinct vertices r and s are adjacent in if and only if rs ∈ ω(G). Primes
r, s ∈ π(G) are called adjacent, if they are adjacent as vertices of GK(G). Otherwise, r
and s are called non-adjacent.

In the present paper we continue the investigation of the prime graphs of finite simple
groups started in [1]. We preserve notation and agreements from [1].

Denote by t(G) the maximal number of prime divisors of G that are pairwise non-
adjacent in GK(G). In other words t(G) is the maximal number of vertices in cocliques
of GK(G) (a set of vertices of a graph is called a coclique (or independent), if its elements
are pairwise non-adjacent). In the graph theory this number is called an independence

number of a graph. By analogy we denote by t(r, G) the maximal number of vertices
in cocliques of GK(G), containing a prime r. We call this number an r-independence
number.

In [1] for every finite nonabelian simple group G we gave an arithmetical criterion
of adjacency of vertices in the prime graph GK(G). Using this criterion we determined
the values of t(G), t(2, G), and in case, when G is a group of Lie type over a field of
characteristic p, the value of t(p,G). Denote by ρ(G) and ρ(r, G) a coclique of maximal
size in GK(G) and a coclique of maximal size, containing r, in GK(G) respectively. It is
not difficult to see that in general ρ(G) and ρ(r, G) are not uniquely determined. In [1]
all cocliques ρ(2, G), and also all cocliques ρ(p,G) for groups G of Lie type over a field of
characteristic p, were described. Moreover, in the same paper for every simple group G
at least one coclique ρ(G) have been determined, and this allows to calculate t(G), but
the problem of finding all such cocliques has not been considered.

The main goal of the present paper is to find all cocliques of maximal size in the prime
graph of a finite simple group G. In order to achieve this goal we introduce two sets Θ(G)
and Θ′(G) consisting of some subsets of π(G). Then every coclique ρ(G) of maximal size
can be derived then as θ(G) ∪ θ′(G), where θ(G) ∈ Θ(G) and θ′(G) ∈ Θ′(G).
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Theorem. Suppose that G is a finite nonabelian simple group. Then every coclique of

maximal size in GK(G) is the union of θ(G) ∈ Θ(G) and θ′(G) ∈ Θ′(G). The sets

Θ(G), Θ′(G) together with the maximal size t(G) of cocliques in GK(G) are described in

Proposition 1.1 for alternating groups, in Table 1 for sporadic groups, and in Tables 2, 3,
4 for groups of Lie type.

Article [1] appeared to contain several misprints and errors. Some of them were
found by the authors, and others were pointed out by the readers of this paper. We
are grateful to W. Shi, H.He, A.R.Moghaddamfar, A. Iranmanesh, Z.Taheri, S. Shariati,
M.A.Grechkoseeva, A.A.Buturlakin, and A. Zavarnitsine for their comments. Section 4
of the present article contains the corrections to all detected inaccuracies in [1].

1 Sporadic and alternating groups

Results of the section are easily developed from known ones, and we include them here
just for completeness. Let G be a finite simple sporadic or alternating group. Denote
by θ(G) the intersection of all cocliques of maximal size of GK(G), and by Θ(G) the set
{θ(G)}. The set Θ′(G) is defined as follows. A subset θ′(G) of π(G)\θ(G) is an element of
Θ′(G) if and only if ρ(G) = θ(G)∪θ′(G) is coclique of GK(G) of maximal size. Obviously,
the sets Θ(G) and Θ′(G) are uniquely determined, and Θ′(G) either is empty or contains
at least two elements.

We start with alternating groups. Let G = Altn be the alternating group of degree
n, and n > 5. In order to describe cocliques of maximal size in GK(G) we present the
following notation. For every prime r define e(r) = r if r is odd, and e(r) = 4 if r = 2.
Denote by τ(n) the set of all primes r with n/2 6 e(r) 6 n, and by sn and s′n the smallest
elements of τ(n) and τ(n) \ {sn} respectively. Define the sets τ ′(n) and τ ′′(n) as follows.
A prime r lies in τ ′(n) if and only if e(r) < n/2 and e(r) + e(sn) > n, and r lies in τ ′′(n)
if and only if e(r) < n/2 and e(r) + e(s′n) > n.

Proposition 1.1. Let G be an alternating group of degree n, and n > 5.

1. If τ ′(n) = τ ′′(n) = ∅, then θ(G) = τ(n), and Θ′(G) = ∅.

2. If τ ′(n) = ∅ and τ ′′(n) 6= ∅, then θ(G) = τ(n) \ {sn}, and Θ′(G) = {{r} | r ∈
τ ′′(n) ∪ {sn}}.

3. If |τ ′(n)| = 1, then θ(G) = τ(n) ∪ τ ′(n), and Θ′(G) = ∅.

4. If |τ ′(n)| > 2, then θ(G) = τ(n), and Θ′(G) = {{r} | r ∈ τ ′(n)}.

In all cases every coclique of maximal size in GK(G) is of the form θ(G) ∪ θ′(G),
where θ(G) ∈ Θ(G), and θ′(G) ∈ Θ′(G). The set Θ(G) = {θ(G)} is one-element, and all

elements θ′(G) of Θ′(G) are one-element subsets of π(G).

Proof. An adjacency criterion for vertices of GK(G) [1, Proposition 1.1] can be formulated
as follows. Distinct primes r, s ∈ π(G) are non-adjacent in GK(G) if and only if e(r) +
e(s) > n. Therefore, τ(n) is a coclique of GK(G), and π(G)\τ(n) is a clique. Moreover, if

4



r, s, t are distinct primes from π(G), and e(r) < e(s), then the adjacency of s and t implies
the adjacency of r and t, as well as the non-adjacency of r and t implies the non-adjacency
of s and t. These simple observations allow to verify the assertion easily.

Proposition 1.2. Let G be a simple sporadic group. If Θ′(G) = ∅, then θ(G) is the

unique coclique of maximal size in GK(G). If Θ′(G) 6= ∅, then every coclique of maximal

size is of the form θ(G) ∪ θ′(G), where θ′(G) ∈ Θ′(G). If G 6= M23 then every θ′(G) of

Θ′(G) contains precisely one element. The sets Θ(G) and Θ′(G), as well as the value of

t(G), are listed in Table 1.

Proof. The proposition is easy to verify using [2] or [3].

Remark. Note that in Columns 3 and 4 of Table 1 we list the elements of Θ(G)
and Θ′(G), that is sets θ(G) ∈ Θ(G) and θ′(G) ∈ Θ′(G), and omit the braces for one-
element sets. In particular, for group G = M11 we have Θ(G) = {θ(G)} = {{5, 11}}
and Θ′(G) = {{2}, {3}}, while for G = M23 we have Θ(G) = {θ(G)} = {{11, 23}} and
Θ′(G) = {{2, 5}, {3, 7}}.
Table 1. Cocliques of sporadic groups

G t(G) Θ(G) Θ′(G)

M11 3 {5, 11} 2, 3
M12 3 {3, 5, 11} ∅

M22 4 {5, 7, 11} 2, 3
M23 4 {11, 23} {2, 5}, {3, 7}
M24 4 {5, 7, 11, 23} ∅

J1 4 {7, 11, 19} 2, 3, 5
J2 2 7 2, 3, 5
J3 3 {17, 19} 2, 3, 5
J4 7 {11, 23, 29, 31, 37, 43} 5, 7
Ru 4 {7, 13, 29} 3, 5
He 3 {5, 7, 17} ∅

McL 3 {7, 11} 3, 5
HN 3 {11, 19} 3, 5, 7
HiS 3 {7, 11} 2, 3, 5
Suz 4 {5, 7, 11, 13} ∅

Co1 4 {11, 13, 23} 5, 7
Co2 4 {7, 11, 23} 3, 5
Co3 4 {5, 7, 11, 23} ∅

Fi22 4 {5, 7, 11, 13} ∅

Fi23 5 {11, 13, 17, 23} 5, 7
Fi′24 6 {11, 13, 17, 23, 29} 5, 7
O’N 5 {7, 11, 19, 31} 3, 5
LyS 6 {5, 7, 11, 31, 37, 67} ∅

F1 11 {11, 13, 19, 23, 29, 31, 41, 47, 59, 71} 7, 17
F2 8 {7, 11, 13, 17, 19, 23, 31, 47} ∅

F3 5 {5, 7, 13, 19, 31} ∅

In addition, we notice another substantial property of prime graphs of groups under
consideration.
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Proposition 1.3. Suppose that G is either an alternating group of degree n, n > 5, or a

sporadic group distinct from M23. Then the set π(G) \ θ(G) is a clique of GK(G).

Proof. This follows from [2] and [1, Proposition 1.1].

2 Preliminary results for groups of Lie type

We write [x] for the integer part of a rational number x. The set of prime divisors of
a natural number m is denoted by π(m). By (m1, m2, . . . , ms) we denote the greatest
common divisor of numbers m1, m2, . . . , ms. For a natural number r, the r-part of a
natural number m is the greatest divisor t of m with π(t) ⊆ π(r). We write mr for the
r-part of m and mr′ for the quotient m/mr.

If q is a natural number, r is an odd prime and (q, r) = 1, then e(r, q) denotes a multi-
plicative order of q modulo r, that is a minimal natural number m with qm ≡ 1 (mod r).
For an odd q, we put e(2, q) = 1 if q ≡ 1 (mod 4), and e(2, q) = 2 otherwise.

Lemma 2.1. (Corollary of Zsigmondy’s theorem [4]) Let q be a natural number greater

than 1. For every natural number m there exists a prime r with e(r, q) = m but for the

cases q = 2 and m = 1, q = 3 and m = 1, and q = 2 and m = 6.

Remark. In conclusion of the same corollary [1, Lemma 1.4] in our previous article we
miss two exceptions: m = 1 and q = 2, and m = 1 and q = 3. However, these exceptions
don’t arise in all proofs and arguments from [1], that use the corollary to Zsigmondy’s
theorem.

A prime r with e(r, q) = m is called a primitive prime divisor of qm − 1. By Lemma
2.1 such a number exists except for the cases mentioned in the lemma. Given q we denote
by Rm(q) the set of all primitive prime divisors of qm − 1 and by rm(q) any element
of Rm(q). If m 6= 2 then a divisor km(q) of qm − 1 is said to be the greatest primitive

divisor if π(km(q)) = π(Rm(q)) and km(q) is the greatest divisor with this property, i.e.,
km(q) = (qm − 1)t, where t =

∏
s∈Rm(q) s. The greatest primitive divisor k2(q) of q2 − 1

is the greatest divisor of q + 1 with π(k2(q)) = R2(q). The singularity in the definition
of the greatest primitive divisor in case m = 2 appears because of the singularity of the
definition for e(2, q). Following our definition of e(2, q), we derive that k1(q) = (q − 1)/2
if q ≡ −1 (mod 4), and k1(q) = q − 1 otherwise; k2(q) = (q + 1)/2 if q ≡ 1 (mod 4), and
k2(q) = q + 1 otherwise. The following lemma provides a formula for expressing greatest
primitive divisors km, m > 3, in terms of cyclotomic polynomials φm(x).

Lemma 2.2. [5] Let q and m be natural numbers, q > 1, m > 3, and let km(q) be the

greatest primitive divisor of qm − 1. Then

km(q) =
φm(q)

(φm
r′
(q), r)

,

where r is the greatest prime divisor of m.

Usually the number q is fixed (for example, by the choice of a group of Lie type G),
and we write Rm, rm, and km instead of Rm(q), rm(q), and km(q) respectively. According
to our definitions, if i 6= j, then π(Ri) ∩ π(Rj) = ∅, and so (ki, kj) = 1.
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Lemma 2.3. [6, Lemma 6(iii)] Let q, k, l be natural numbers. Then

(a) (qk − 1, ql − 1) = q(k,l) − 1;

(b) (qk + 1, ql + 1) =

{
q(k,l) + 1, if both k

(k,l)
and l

(k,l)
are odd,

(2, q + 1), otherwise;

(c) (qk − 1, ql + 1) =

{
q(k,l) + 1, if k

(k,l)
is even and l

(k,l)
is odd,

(2, q + 1), otherwise.

In particular, for every q > 2, k > 1 the inequality (qk − 1, qk + 1) 6 2 holds.

We recall also the following statements [1, statements (1) and (4)]. Given q = pα,
where p is a prime, and odd prime c 6= p we have:

c divides qx − 1 if and only if e(c, q) divides x; (1)

if c divides qx − ǫ, where ǫ ∈ {+1,−1}, then η(e(c, q)) divides x. (2)

The function η(n) is defined in Proposition 2.4.

In the proofs of Propositions 2.4, 2.5, and 2.7 by ǫ, ǫi we denote elements from the
set {+1, 1}. For groups of Lie type our notation agrees with that of [1]. We write
Aε

n(q), Dε
n(q), and Eε

6(q), where ε ∈ {+,−}, and A+
n (q) = An(q), A−

n (q) = 2An(q),
D+

n (q) = Dn(q),D
−
n (q) =

2Dn(q), E
+
6 (q) = E6(q), E

−
6 (q) =

2E6(q). In [1, Proposition 2.2],
considering unitary groups, we define the function

ν(m) =





m if m ≡ 0(mod 4),
m
2

if m ≡ 2(mod 4),
2m if m ≡ 1(mod 2).

(3)

Clearly ν(m) is a bijection from N onto N and ν−1(m) = ν(m). In most cases it is natural
to consider linear and unitary groups together. So we define

νε(m) =

{
m if ε = +,

ν(m) if ε = −.
(4)

Proposition 2.4. Let G be one of simple groups of Lie type Bn(q) or Cn(q) over a field

of characteristic p. Define

η(m) =

{
m if m is odd,
m
2

otherwise.

Let r, s be odd primes with r, s ∈ π(G) \ {p}. Put k = e(r, q) and l = e(s, q), and suppose

that 1 6 η(k) 6 η(l). Then r and s are non-adjacent if and only if η(k) + η(l) > n, and
k, l satisfy the following condition:

l

k
is not an odd natural number (5)
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Proof. We prove the “if” part first. Assume that η(k) + η(l) 6 n, then there exists a
maximal torus T of order 1

(2,q−1)
(qη(k) + (−1)k)(qη(l) + (−1)l)(q − 1)n−η(k)−η(l) of G (see

[1, Lemma 1.2(2)], for example). Both r, s divide |T |, hence r, s are adjacent in G.
If l

k
is an odd integer, then either both k, l are odd and Lemma 2.3(a) implies that

qη(k)+(−1)k = qk−1 divides qη(l)+(−1)l = ql−1, or both k, l are even and Lemma 2.3(b)
implies that qη(k)+(−1)k = qk/2+1 divides qη(l)+(−1)l = ql/2+1. Again both r, s divide
|T |, where T is a maximal torus of order 1

(2,q−1)
(qη(l)+(−1)l)(q−1)n−η(l) of G (the existence

of such torus follows from [1, Lemma 1.2(2)]), so r, s are adjacent.
Now we prove the “only if” part. Assume by contradiction that η(k)+η(l) > n and l/k

is not an odd natural number, but r, s are adjacent. Then G contains an element g of order
rs. The element g is semisimple, since (rs, p) = 1, hence g is contained in a maximal torus
T of G. By [1, Lemma 1.2(2)] it follows that |T | = 1

(2,q−1)
(qn1 − ǫ1)(q

n2 − ǫ2) . . . (q
nk − ǫk),

where n1+n2+ . . .+nk = n. Up to renumberring, we may assume that r divides (qn1−ǫ1),
while s divides either (qn1 − ǫ1) or (q

n2 − ǫ2). Assume first that s divides (qn2 − ǫ2). Then
(2) implies that η(k) divides n1 and η(l) divides n2, so n1 + n2 > η(k) + η(l) > n, a
contradiction.

Now assume that both r, s divide (qn1 − ǫ1). Again (2) implies that both η(k), η(l)
divide n1. Now η(k) + η(l) > n and η(k) 6 η(l), so η(l) = n1. Assume first that l is odd.
Then l = η(l) = n1 and s divides ql−1. Since s is odd, Lemma 2.3 imples that s does not
divide ql+1, hence qn1 − ǫ1 = qn1 −1. Since r divides qn1 −1, by using (1) we obtain that
k divides n1 = l, hence k is odd. Therefore l

k
is an odd integer, a contradiction with (5).

Now assume that l is even. Then l/2 = η(l) = n1 and s divides ql − 1. In view of (1), s
does not divide ql/2 − 1, hence s divides ql/2 + 1 and qn1 − ǫ1 = qn1 + 1. Now (2) implies
that η(k) divides n1, hence k divides 2n1 = l. By Lemma 2.3(c) we obtain that r does
not divide ql/2 − 1, hence k does not divide l/2 and l

k
is an odd integer, a contradiction

with (5).

Proposition 2.5. Let G = Dε
n(q) be a finite simple group of Lie type over a field of

characteristic p, and let the function η(m) be defined as in Proposition 2.4. Suppose r, s
are odd primes and r, s ∈ π(Dε

n(q))\{p}. Put k = e(r, q), l = e(s, q), and 1 6 η(k) 6 η(l).
Then r and s are non-adjacent if and only if 2 · η(k) + 2 · η(l) > 2n − (1 − ε(−1)k+l), k
and l satisfy (5), and, if ε = +, then the chain of equalities:

n = l = 2η(l) = 2η(k) = 2k (6)

is not true.

Proof. The following inclusions are known B̃n−1(q) ≤ D̃ε
n(q) ≤ B̃n(q) (see [7, Table 2]),

where B̃n−1(q), D̃
ε
n(q), B̃n(q) are central extensions of corresponding simple groups and

n > 4. Since the Schur multiplier for each of simple groups Bn−1(q), D
ε
n(q), Bn(q) has

order equal to 1, 2, or 4, it is clear that two odd prime divisors of the order of a simple
group isomorphic to Bn(q) or D

ε
n(q) are adjacent if and only if they are adjacent in every

central extension of the group. Hence if two odd prime divisors of |Dε
n(q)| are adjacent

in GK(Bn−1(q)), then they are adjacent in GK(Dε
n(q)) and if two odd prime divisors of

|Dε
n(q)| are non-adjacent in GK(Bn(q)), then they are non-adjacent in GK(Dε

n(q)). There
can be the following cases:
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(i) η(k) + η(l) 6 n− 1;

(ii) η(k) + η(l) > n, l/k is an odd number and η(l) 6 n− 1;

(iii) η(k) + η(l) = n and l
k
is not an odd natural number;

(iv) η(l) = n and l
k
is an odd natural number;

(v) η(k) + η(l) > n and l
k
is not an odd natural number.

By Lemma 2.4 in cases (i), (ii) primes r, s are adjacent in GK(Bn−1(q)), while in case
(v) primes r, s are non-adjacent in GK(Bn(q)). In view of above notes it follows that we
need to consider (iii) and (iv).

Assume first that η(k) + η(l) = n and l
k
is not an odd natural number, i. e., case (iii)

holds. Since (rs, p) = 1, the primes r, s are adjacent in GK(Dε
n(q)) if and only if there

exists a maximal torus T of G of order divisible by rs. In view of [1, Lemma 1.2(3)] the
order |T | is equal to 1

(4,qn−ε1)
(qn1 − ǫ1) · . . . · (qnm − ǫm), where n1 + . . . + nm = n and

ǫ1 · . . . · ǫm = ε1. Up to renumberring, we may assume that r divides qn1 − ǫ1, while s
divides either qn1 − ǫ1, or q

n2 − ǫ2.

If s divides qn1 − ǫ1, then (2) implies that both η(k), η(l) divide n1. As in the proof
of Proposition 2.4 we derive that r, s are adjacent if and only if l

k
is an odd integer.

Assume now that s divides qn2 − ǫ2. Then (2) implies that η(k) divides n1 and η(l)
divides n2. Hence we obtain the following inequalities n > n1 + n2 > η(k) + η(l) = n, so
η(k) = n1, η(l) = n2, and qn1 −ǫ1 = qη(k)+(−1)k, qn2−ǫ2 = qη(l)+(−1)l. If ε = −, then a
maximal torus T of order 1

(4,qn+1)
(qη(k)+(−1)k)(qη(l)+(−1)l) of G exists if and only if k, l

have the distinct parity, i. e., if and only if 2n− (1−ε(−1)k+l) = 2n− (1+(−1)k+l) = 2n.
Hence in this case r, s are non-adjacent if and only if the inequality 2 · η(k) + 2 · η(l) >
2n − (1 − ε(−1)k+l) holds. If ε = + and n1 6= n2, then a maximal torus T of order

1
(4,qn−1)

(qη(k) + (−1)k)(qη(l) + (−1)l) of G exists if and only if k, l have the same parity,

i. e., if and only if 2n − (1 − ε(−1)k+l) = 2n − (1 − (−1)k+l) = 2n. Hence in this case
r, s are non-adjacent if and only if the inequality 2 · η(k) + 2 · η(l) > 2n− (1− ε(−1)k+l)
holds. If n1 = n2 = n/2 and l

k
is an odd integer, then, r, s are adjacent. Assume that

n1 = n2 = n/2 and l
k
is not an odd integer. The condition l

k
is not an odd integer implies

that l 6= k, so the chain of equalities (6) holds. In this case there exists a maximal torus T
of order 1

(4,qn−1)
(qn− 1) = 1

(4,qn−1)
(qn/2− 1)(qn/2+1) of G, so condition (6) is not satisfied

and r, s are adjacent.

Now assume that η(l) = n and l
k
is an odd natural number, i. e., case (iv) holds. In

this case there exists a maximal torus T of order 1
(4,qn−ε1)

(qn+(−1)l) of G (if such a torus

does not exist then s does not divide |G|). The fact that l
k
is an odd prime implies that

r divides |T |, so r, s are adjacent.

Now we consider simple exceptional groups of Lie type. Note that the orders of
maximal tori of simple exceptional groups were listed in [1, Lemma 1.3]. However, for
groups E7(q), E8(q), and Ree groups 2F4(2

2n+1) (items (4), (5), and (9) of the lemma
respectively), the list of orders of tori is incorrect. The following lemma corrects this.
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Lemma 2.6. (see [8]) Let G be a connected simple exceptional algebraic group of adjoint

type and let G = Op′(Gσ) be a finite simple exceptional group of Lie type.

1. For every maximal torus T of G = E7(q), the number m = (2, q − 1)|T | is equal to one

of the following: (q + 1)n1(q − 1)n2 , n1 + n2 = 7; (q2 + 1)n1(q + 1)n2(q − 1)n3, 1 6 n1 6 2,
2n1+n2+n3 = 7, and m 6= (q2+1)(q±1)5; (q3+1)n1(q3−1)n2(q2+1)n3(q+1)n4(q−1)n5, 1 6

n1+n2 6 2, 3n1+3n2+2n3+n4+n5 = 7, and m 6= (q3+ǫ1)(q−ǫ1)4, m 6= (q3±1)(q2+1)2,
m 6= (q3 + ǫ1)(q2 +1)(q+ ǫ1)2; (q4 +1)(q2 ± 1)(q± 1); (q5 ± 1)(q2 − 1); (q5 + ǫ1)(q+ ǫ1)2;
q7±1; (q−ǫ1)·(q2+ǫq+1)3; (q5−ǫ1)·(q2+ǫq+1); (q3±1)·(q4−q2+1); (q−ǫ1)·(q6+ǫq3+1);
(q3 − ǫ1) · (q2 − ǫq + 1)2, where ǫ = ±. Moreover, for every number m given above there

exists a torus T with (2, q − 1)|T | = m.

2. Every maximal torus T of G = E8(q) has one of the following orders: (q+1)n1(q−1)n2,
n1 + n2 = 8; (q2 + 1)n1(q + 1)n2(q − 1)n3, 1 6 n1 6 4, 2n1 + n2 + n3 = 8, and |T | 6=
(q2 + 1)3(q ± 1)2, |T | 6= (q2 + 1)(q ± 1)6; (q3 + 1)n1(q3 − 1)n2(q2 + 1)n3(q + 1)n4(q − 1)n5,
1 6 n1 + n2 6 2, 3n1 + 3n2 + 2n3 + n4 + n5 = 8, and |T | 6= (q3 ± 1)2(q2 + 1), |T | 6=
(q3 + ǫ1)(q − ǫ1)5, |T | 6= (q3 + ǫ1)(q2 + 1)(q + ǫ1)3, |T | 6= (q3 + ǫ1)(q2 + 1)2(q − ǫ1);
q8 − 1; (q4 + 1)2; (q4 + 1)(q2 ± 1)(q ± 1)2; (q4 + 1)(q2 − 1)2; (q4 + 1)(q3 + ǫ1)(q − ǫ1);
(q5 + ǫ1)(q + ǫ1)3; (q5 ± 1)(q + ǫ1)2(q − ǫ1); (q5 + ǫ1)(q2 + 1)(q − ǫ1); (q5 + ǫ1)(q3 + ǫ1);
(q6+1)(q2±1); (q7±1)(q±1); (q−ǫ1) ·(q2+ǫq+1)3 ·(q±1); (q5−ǫ1) ·(q2+ǫq+1) ·(q+ǫ1);
(q3±1) · (q4−q2+1) · (q±1); (q−ǫ1) · (q6+ǫq3+1) · (q±1); (q3−ǫ1) · (q2−ǫq+1)2 · (q±1);
q8−q4+1; q8+q7−q5−q4−q3+q+1; q8−q6+q4−q2+1; (q4−q2+1)2; (q6+ǫq3+1)(q2+ǫq+1);
q8 − q7 + q5 − q4 + q3 − q + 1; (q4 + ǫq3 + q2 + ǫq + 1)2; (q4 − q2 + 1)(q2 ± q + 1)2;
(q2 − q+1)2 · (q2 + q+1)2; (q2 ± q+1)4, where ǫ = ±. Moreover, for every number given

above there exists a torus of corresponding order.

3. Every maximal torus T of G = 2F4(2
2n+1) with n > 1 has one of the following orders:

q2+ǫq
√
2q+q+ǫ

√
2q+1; q2−ǫq

√
2q+ǫ

√
2q−1; q2−q+1; (q±√

2q+1)2; (q−1)(q±√
2q+1);

(q±1)2; q2±1; where q = 22n+1 and ǫ = ±. Moreover, for every number given above there

exists a torus of corresponding order.

Proposition 2.7. Let G be a finite simple exceptional group of Lie type over a field of

order q and characteristic p. Suppose that r, s are odd primes, and assume that r, s ∈
π(G) \ {p}. Put k = e(r, q), l = e(s, q), and assume that 1 6 k 6 l. Then r and s are

non-adjacent if and only if k 6= l and one of the following holds:

1. G = G2(q) and either r 6= 3 and l ∈ {3, 6} or r = 3 and l = 9− 3k.

2. G = F4(q) and either l ∈ {8, 12}, or l = 6 and k ∈ {3, 4}, or l = 4 and k = 3.

3. G = E6(q) and either l = 4 and k = 3, or l = 5 and k > 3, or l = 6 and k = 5, or
l = 8, k > 3, or l = 8, r = 3, and (q − 1)3 = 3, or l = 9, or l = 12 and k 6= 3.

4. G = 2E6(q) and either l = 6 and k = 4, or l = 8, k > 3, or l = 8, r = 3, and
(q + 1)3 = 3, or l = 10 and k > 3, or l = 12 and k 6= 6, or l = 18.

5. G = E7(q) and either l = 5 and k = 4, or l = 6 and k = 5, or l ∈ {14, 18}
and k 6= 2, or l ∈ {7, 9} and k > 2, or l = 8 and k > 3, k 6= 4, or l = 10 and

k > 3, k 6= 6, or l = 12 and k > 4, k 6= 6.
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6. G = E8(q) and either l = 6 and k = 5, or l ∈ {7, 14} and k > 3, or l = 9 and

k > 4, or l ∈ {8, 12} and k > 5, k 6= 6, or l = 10 and k > 3, k 6= 4, 6, or l = 18 and

k 6= 1, 2, 6, or l = 20 and r · k 6= 20, or l ∈ {15, 24, 30}.

7. G = 3D4(q) and either l = 6 and k = 3, or l = 12.

Proof. Recal that km is the greatest primitive divisor of qm − 1, while Rm is the set of all
prime primitive divisors of qm − 1. The orders of maximal tori in exceptional groups are
given in [1, Lemma 1.3] and Lemma 2.6, for example.

1. Since |G2(q)| = q6(q2 − 1)(q6 − 1), the numbers k, l are in the set {1, 2, 3, 6}. If
{k, l} ⊆ {1, 2}, then the existence of a maximal torus of order q2 − 1 = (2, q − 1) · k1 · k2
implies the existence of an element of order rs, i. e., r and s are adjacent in GK(G). If
l = 3 (resp. l = 6), then an element g of order s is contained in a unique, up to conjugation,
maximal torus of order q2 + q + 1 = (3, q − 1)k3 (resp. q2 − q + 1 = (3, q + 1)k6). In this
case r, s are non-adjacent if and only if r does not divide |T |, whence statement 1 of the
lemma follows.

2. Since |F4(q)| = q24(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1), the numbers k, l are in the set
{1, 2, 3, 4, 6, 8, 12}. If l 6 3, then the existence of maximal torus of order (q3−1)(q+1) =
(2, q − 1) · (3, q − 1)k1 · k2 · k3 implies that for every k 6 3 the primes r, s are adjacent.
If l = 4, then an element of order s of G lies in a maximal torus T of order equals to
either (q − ǫ)2(q2 + 1), or (q2 − ǫ)(q2 + 1). In particular, for every such maximal torus T
the inclusion π(T ) ⊆ R1 ∪R2 ∪R4 holds. Moreover there exists a maximal torus of order
q4−1 = (2, q−1)2 ·k1 ·k2 ·k4. So in this case r, s are non-adjacent if and only if r does not
divide k1 ·k2 ·k4, i. e., if and only if k = 3. If l = 6, then each element of order s of G is in
a maximal torus T of order equals to either (q3+1)(q−ǫ) = (3, q+1) ·k6 ·(q+1) ·(q−ǫ), or
(q2−q+1)2 = (3, q+1)2 ·k2

6. In particular, for T the inclusion π(T ) ⊆ R1∪R2∪R6 holds.
Moreover there exists a maximal torus of order (q3+1)(q−1) = (2, q−1)(3, q+1)k1 ·k2 ·k6.
Thus r, s are non-adjacent if and only if k ∈ {3, 4}. If, finally, l = 8 (resp. l = 12), then
every element of order s of G lies in a maximal torus of order (2, q − 1)k8 (resp. k12).
Thus r, s are non-adjacent if and only if k 6= 8 (resp. k 6= 12).

3. Since |E6(q)| = 1
(3,q−1)

q36(q2−1)(q5−1)(q6−1)(q8−1)(q9−1)(q12−1), the numbers

k, l are in the set {1, 2, 3, 4, 5, 6, 8, 9, 12}. If l 6 3, then the existence in G of a maximal
torus T of order 1

(3,q−1)
(q3− 1)(q2− 1)(q− 1) = (2, q− 1) · k3 · k2 · k1 · (q− 1)2 implies that

r, s are adjacent. If l = 4, then each element of order s of G is in a maximal torus of order
equals either 1

(3,q−1)
(q4−1)(q− ǫ1)(q− ǫ2) =

1
(3,q−1)

· (2, q−1)2 ·k1 ·k2 ·k4 · (q− ǫ1) · (q− ǫ2),

or 1
(3,q−1)

(q3 + 1)(q2 + 1)(q − 1) = 1
(3,q−1)

· (2, q − 1)2 · (3, q + 1) · k6 · k4 · k2 · k1, or
1

(3,q−1)
(q2+1)2(q− 1)2 = 1

(3,q−1)
· (2, q− 1)2 · k2

4 · (q− 1)2. Thus r, s are non-adjacent if and
only if k = 3. If l = 5, then each element of order s of G is in a maximal torus of order

1
(3,q−1)

(q5−1)(q−ǫ) = 1
(3,q−1)

(5, q−1)k5(q−1)(q−ǫ). Thus r, s are non-adjacent if and only

if k ∈ {3, 4}. If l = 6, then every element of order s of G is in a maximal torus of order
equals either 1

(3,q−1)
(q3+1)(q2+q+1)(q−ǫ) = (3, q+1)·k6 ·k3 ·(q+1)·(q−ǫ), or 1

(3,q−1)
(q3+

1)(q2+1)(q−1) = 1
(3,q−1)

·(3, q+1)·k6 ·(2, q−1)·k1 ·k2 ·k4, or 1
(3,q−1)

(q3+1)(q2−1)(q−1) =
1

(3,q−1)
· (3, q+1) ·k6 · (2, q−1)2 ·k2

1 ·k2
2, or

1
(3,q−1)

(q2+q+1)(q2−q+1)2 = (3, q+1)2 ·k2
6 ·k3.

Thus r, s are non-adjacent if and only if k = 5. If l = 8, then each element of order s of G
is in a maximal torus of order 1

(3,q−1)
(q4+1)(q2−1) = 1

(3,q−1)
·(2, q−1)2 ·k8 ·k2 ·k1. Hence r, s
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are non-adjacent if and only if either k > 3 and k 6= 8, or r = 3 and (q−1)3 = 3. If l = 9,
then each element of order s of G is in a maximal torus of order 1

(3,q−1)
(q6 + q3 + 1) = k9.

Hence r, s are non-adjacent if and only if k 6= 9. If, finally, l = 12, then every element of
order s of G is in maximal torus of order 1

(3,q−1)
(q4 − q2 + 1)(q2 + q + 1) = k12 · k3. So r, s

are non-adjacent if and only if k 6= 3, 12.

4. Since |2E6(q)| = 1
(3,q+1)

q36(q2 − 1)(q5 + 1)(q6 − 1)(q8 − 1)(q9 + 1)(q12 − 1), the

numbers k, l are in the set {1, 2, 3, 4, 6, 8, 10, 12, 18}. If l 6 4, the existence in G of
maximal tori of orders 1

(3,q+1)
(q3 − 1)(q2 + 1)(q + 1) = 1

(3,q+1)
· (2, q − 1) · k1 · k2 · k3 · k4,

1
(3,q+1)

(q2+1)2(q+1)2 = 1
(3,q+1)

· (2, q−1)2 ·k2
4 · (q+1)2, and 1

(3,q+1)
(q3−1)(q2−1)(q+1) =

1
(3,q+1)

· (3, q − 1) · (2, q − 1)2 · k3 · k2
1 · k2

2 implies that r, s are adjacent. If l = 6, then
each element of order s of G is contained in a maximal torus of order equals either

1
(3,q+1)

(q3 + 1)2 = (3, q + 1) · (q + 1)2 · k2
6, or 1

(3,q+1)
(q3 + 1)(q + 1)(q − ǫ1)(q − ǫ2) =

k6(q+1)2(q−ǫ1)(q−ǫ2), or
1

(3,q+1)
(q2−q+1)(q3−ǫ)(q−1) = (3, q+1)·k6 ·(q3−ǫ)·(q−1), or

1
(3,q+1)

(q2−q+1)(q2+q+1)2 = k6 ·(3, q−1)2 ·k2
3, or

1
(3,q+1)

(q4−q2+1)(q2−q+1) = k12 ·k6.
Thus r, s are non-adjacent if and only if k = 4. If l = 8, then every element of order s of
G is in a maximal torus of order 1

(3,q+1)
(q4 + 1)(q2 − 1) = 1

(3,q+1)
· (2, q − 1)2 · k8 · k2 · k1.

So r, s are non-adjacent if and only if either k > 3 and k 6= 8, or r = 3 and (q + 1)3 = 3.
If l = 10, then each element of order s of G is in a maximal torus of order equals

1
(3,q+1)

(q5+1)(q− ǫ) = 1
(3,q+1)

· k10 · (q+1) · (q− ǫ). Hence r, s are non-adjacent if and only
if k > 3, k 6= 10. If l = 12, then every element of order s of G is contained in a maximal
torus of order 1

(3,q+1)
(q4 − q2 + 1)(q2 − q + 1) = k12 · k6. Therefore r, s are non-adjacent

if and only if k 6= 6, 12. If, finally l = 18, then each element of order s of G is contained
in a maximal torus of order 1

(3,q+1)
(q6 − q3 + 1) = k18. Hence r, s are non-adjacent if and

only if k 6= 18.

5. Since |E7(q)| = 1
(2,q−1)

q63(q2 − 1)(q6 − 1)(q8 − 1)(q10 − 1)(q12 − 1)(q14 − 1)(q18 − 1),

the numbers k, l are in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18}. There exist maximal tori of G
of orders equal 1

(2,q−1)
(q5 − 1)(q2 + q + 1) = 1

(2,q−1)
· (3, q − 1) · (5, q − 1) · (q − 1) · k5 · k3,

1
(2,q−1)

(q4−1)(q3−1) = (2, q−1)·k4 ·k1 ·k2 ·k3 ·(3, q−1)·(q−1) and 1
(2,q−1)

(q5−1)(q2−1) =

k5 · k2 · k1 · (5, q− 1) · (q− 1), so for l 6 5 and (k, l) 6= (4, 5) the numbers r, s are adjacent.
Since for l = 5 every element of order s of G is contained in a maximal torus of order
either 1

(2,q−1)
(q5 − 1)(q − 1)(q − ǫ), or 1

(2,q−1)
(q5 − 1)(q2 + q + 1) = 1

(2,q−1)
· (3, q − 1) ·

(5, q − 1) · (q − 1) · k5 · k3, we obtain that r, s are non-adjacent if (k, l) 6= (4, 5). If
l = 6, then the existence of maximal tori of G of orders equal 1

(2,q−1)
(q3 + 1)(q4 − 1) =

(2, q−1)·(3, q+1)·k1·k2·k4·k6·(q+1) and 1
(2,q−1)

(q6−1)(q−1) = (3, q2−1)·k6·k3·k2·k1·(q−1)
implies that for k 6 4 and k = 6 the numbers r, s are adjacent. Every element of order
s is in a maximal torus of order equals either 1

(2,q−1)
(q3 + 1)(q2 + 1)(q − ǫ1)(q − ǫ2) =

(3, q+ 1) · (q + 1) · k6 · k4 · (q− ǫ1) · (q− ǫ2) with (ǫ1, ǫ2) 6= (−1,−1), or 1
(2,q−1)

(q3 + 1)(q−
ǫ1)(q − ǫ2)(q − ǫ3)(q − ǫ4) =

1
(2,q−1)

· (3, q + 1) · k6 · (q + 1)(q − ǫ1)(q − ǫ2)(q − ǫ3)(q − ǫ4),

or 1
(2,q−1)

(q3 + 1)(q3 − ǫ1)(q − ǫ2), or
1

(2,q−1)
(q2 − q + 1)3(q + 1) = 1

(2,q−1)
· (3, q + 1)3 · k3

6 ·
(q + 1), or 1

(2,q−1)
(q5 + 1)(q2 − q + 1) = 1

(2,q−1)
· (3, q + 1) · (5, q + 1) · k6 · k10 · (q + 1), or

1
(2,q−1)

(q3 − 1)(q2 − q+1)2 = 1
(2,q−1)

· (q− 1) · (3, q− 1) · k3 · (3, q+1)2 · k2
6. Since for k = 5

the prime r does not divide these numbers, we obtain that r, s are non-adjacent if and
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only if k = 5. If l = 7, then each element of order s of G is in a maximal torus of order
1

(2,q−1)
(q7 − 1) = 1

(2,q−1)
· (7, q − 1) · k7 · (q − 1). Hence r, s are non-adjacent if and only if

k 6= 1, 7. If l = 8, then every element of order s of G is in a maximal torus of order equals
1

(2,q−1)
(q4+1)(q2−ǫ1)(q−ǫ2) = k8 ·(q2−ǫ1)(q−ǫ2). Hence r, s are non-adjacent if and only

if k > 3, k 6= 4. If l = 9, then an element of order s of G is contained in a maximal torus of
order 1

(2,q−1)
(q−1)(q6+q3+1) = 1

(2,q−1)
·(q−1)·(3, q−1)·k9. Therefore r, s are non-adjacent

if and only if k 6= 1, 9. If l = 10, then an element of order s of G is contained in a maximal
torus of order equals either 1

(2,q−1)
(q5+1)(q−1)(q−ǫ) = (2, q−1)·(5, q+1)·k10·k2·k1·(q−ǫ),

or 1
(2,q−1)

(q5+1)(q2− q+1) = 1
(2,q−1)

· (5, q+1) · (q+1) · k10 · (3, q+1) · k6. So r, s are non-
adjacent if and only if k > 3 and k 6= 6. If l = 12, then each element of order s is contained
in a maximal torus of order equals 1

(2,q−1)
(q3− ǫ)(q4−q2+1) = 1

(2,q−1)
· (q3− ǫ) ·k12. Hence

r, s are non-adjacent if and only if k > 4 and k 6= 6, 12. If l = 14, then an element of order
s of G is contained in a maximal torus of order 1

(2,q−1)
(q7+1) = 1

(2,q−1)
·(7, q+1)·k14 ·(q+1).

Therefore r, s are non-adjacent if and only if k 6= 2, 14. If, finally, l = 18, then an element
of order s of G is contained in a maximal torus of order 1

(2,q−1)
(q + 1)(q6 − q3 + 1) =

1
(2,q−1)

· (3, q + 1) · (q + 1) · k18. Therefore r, s are non-adjacent if and only if k 6= 2, 18.

6. Since |E8(q)| = q120(q2−1)(q8−1)(q12−1)(q14−1)(q18−1)(q20−1)(q24−1)(q30−1),
the numbers k, l are in the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24, 30}. Since G
contains maximal tori of orders (q3−ǫ1)(q

4−1)(q−ǫ2), (q
5−1)(q2+1)(q+1) = (5, q−1)·k5 ·

(2, q−1)2 ·k4·k2 ·k1, and (q5−1)(q3−1) = (3, q−1)·(5, q−1)·k5 ·k3 ·(q−1)2, for l 6 6 primes
r, s are adjacent if (k, l) 6= (5, 6). If k = 5, then every element of order r of G is contained
in a maximal torus of order equals either (q5−1)(q3−1) = (3, q−1)·(5, q−1)·k5·k3·(q−1)2,
or (q5−1)(q2+1)(q+1) = (5, q−1) · k5 · (2, q−1)2 · k4 · k2 · k1, or (q5−1)(q2−1)(q− ǫ) =
(5, q−1) ·k5 ·(2, q−1) ·k2 ·k1 ·(q−1) ·(q−ǫ), or (q5−1)(q−1)3, or (q4+q3+q2+q+1)2, and
all these orders are not divisible by s for l = 6. It follows that if (k, l) = (5, 6), then r, s are
non-adjacent. If l = 7, then every element of order s of G is contained in a maximal torus
of order (q7−1)(q−ǫ) = (7, q−1) ·k7 · (q−1)(q−ǫ). So r, s are non-adjacent if and only if
k > 3 and k 6= 7. If l = 8, then an element of order s ofG is contained in a maximal torus of
order equals either (q4+1)(q4−ǫ) = (2, q−1)·k8 ·(q4−ǫ), or (q4+1)(q3−ǫ1)(q−ǫ2) = (2, q−
1) ·k8 ·(q3−ǫ1)(q−ǫ2) with (ǫ1, ǫ2) 6= (−1,−1), or (q4+1)(q2−1)2 = (2, q−1) ·k8 ·(q2−1)2,
or (q4+1)(q2− ǫ1)(q− ǫ2)

2 = (2, q−1) ·k8 · (q2− ǫ1) · (q− ǫ2)
2. Hence r, s are non-adjacent

if and only if k = 5, 7. If l = 9, then an element of order s of G is contained in a maximal
torus of order equals either (q6 + q3 + 1)(q− 1)(q− ǫ) = (3, q− 1) · k9 · (q− 1) · (q− ǫ), or
(q6 + q3 + 1)(q2 + q + 1) = (3, q − 1)2 · k9 · k3. Hence r, s are non-adjacent if and only if
k > 4 and k 6= 9. If l = 10 then every element of order s of G is contained in a maximal
torus of order either (q5 + 1)(q2 − ǫ1)(q − ǫ2) = (5, q + 1) · k10 · (q + 1)(q2 − ǫ1)(q − ǫ2)
with (ǫ1, ǫ2) 6= (−1,−1), or (q5 + 1)(q3 + 1) = (5, q + 1) · k10 · (q + 1)2 · (3, q + 1) · k6,
or (q5 + 1)(q2 − q + 1)(q − 1) = (5, q + 1) · k10 · (3, q + 1) · k6 · (2, q − 1) · k1 · k2, or
(q5+1)(q+1)3 = (5, q+1) ·k10 · (q+1)(q+1)3, or (q4−q3+q2−q+1)2 = ((5, q+1) ·k10)2.
Hence r, s are non-adjacent if and only if k > 3 and k 6= 4, 6, 10. If l = 12, then
each element of order s of G is contained in a maximal torus of order equals either
(q4− q2+1)(q2+1)(q2− ǫ) = (2, q− 1) · k12 · k4 · (q2− ǫ), or (q4− q2+1)(q2+1)(q− ǫ)2 =
(2, q − 1) · k12 · k4 · (q − ǫ)2, or (q4 − q2 + 1)(q3 − ǫ1)(q − ǫ2) = k12 · (q3 − ǫ1) · (q − ǫ2),
or (q4 − q2 + 1)(q2 + q + 1)2 = (3, q − 1)2 · k12 · k2

3, or (q4 − q2 + 1)(q2 − q + 1)2 =
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(3, q + 1)2 · k12 · k2
6. Hence r, s are non-adjacent if and only if k > 5 and k 6= 6, 12.

If l = 14, then an element of order s of G is contained in a maximal torus of order
(q7 + 1)(q − ǫ) = (7, q + 1) · k14 · (q + 1) · (q − ǫ). Therefore r, s are non-adjacent if
and only if k > 3 and k 6= 14. If l = 15, 24, 30, then each element of order s of G
is contained in a maximal torus of order kl. So r, s are non-adjacent if and only if
k 6= l. If l = 18, then an element of order s of G is contained in a maximal torus of
order equals either (q6 − q3 + 1)(q + 1)(q − ǫ) = (3, q + 1) · k18 · (q + 1) · (q − ǫ), or
(q6 − q3 + 1)(q2 − q + 1) = (3, q + 1)2 · k18 · k6. Hence r, s are non-adjacent if and only
if k > 3 and k 6= 6, 18. If l = 20, then every element of order s of G is contained in a
maximal torus of order q8 − q6 + q4 − q2 + 1 = (5, q2 + 1) · k20. So r, s are non-adjacent if
and only if r · k 6= 20 (i. e., r 6= 5 or k 6= 4) and k 6= 20.

7. Since |3D4(q)| = q12(q2 − 1)(q6 − 1)(q8 + q4 + 1), the numbers k, l are in the set
{1, 2, 3, 6, 12}. Since G contains maximal tori of orders (q3 − ǫ1)(q − ǫ2), then for l 6 3
primes r, s are adjacent. If l = 6, then each element of order s of G is in a maximal torus
of order (q3 + 1)(q − ǫ) = (3, q + 1) · k6 · (q + 1) · (q − ǫ). Hence r, s are non-adjacent if
and only if k = 3. If l = 12, then and element of order s of G is contained in a maximal
torus of order q4 − q2 + 1 = k12 and r, s are non-adjacent if and only if k 6= 12.

Now we consider simple Suzuki and Ree groups.

Lemma 2.8. Let n be a natural number.

1. Let m1(B, n) = 22n+1 − 1,

m2(B, n) = 22n+1 − 2n+1 + 1,

m3(B, n) = 22n+1 + 2n+1 + 1.
Then (mi(B, n), mj(B, n)) = 1 if i 6= j.

2. Let m1(G, n) = 32n+1 − 1,

m2(G, n) = 32n+1 + 1,

m3(G, n) = 32n+1 − 3n+1 + 1,

m4(G, n) = 32n+1 + 3n+1 + 1.

Then (m1(G, n), m2(G, n)) = 2 and (mi(G, n), mj(G, n)) = 1 otherwise.

3. Let m1(F, n) = 22n+1 − 1,

m2(F, n) = 22n+1 + 1,

m3(F, n) = 24n+2 + 1,
m4(F, n) = 24n+2 − 22n+1 + 1,

m5(F, n) = 24n+2 − 23n+2 + 22n+1 − 2n+1 + 1,

m6(F, n) = 24n+2 + 23n+2 + 22n+1 + 2n+1 + 1.

Then (m2(F, n), m4(F, n)) = 3 and (mi(F, n), mj(F, n)) = 1 otherwise.

Proof. Items (1) and (2) are repeated items (1) and (2) of [1, Lemma 1.5]. Item (3) is
corrected with respect to Lemma 2.6.

If G is a Suzuki or a Ree group over a field of order q, then denote by Si(G) the set
π(mi(B, n)) for G = 2B2(2

2n+1), the set π(mi(G, n))\{2} for G = 2G2(3
2n+1), and the set

π(mi(F, n)) \ {3} for G = 2F4(2
2n+1). If G is fixed, then we put Si = Si(G), and denote

by si any prime from Si.

14



Proposition 2.9. Let G be a finite simple Suzuki or Ree group over a field of characte-

ristic p, let r, s be odd primes with r, s ∈ π(G) \ {p}. Then r, s are non-adjacent if and

only if one of the following holds:

1. G = 2B2(2
2n+1), r ∈ Sk(G), s ∈ Sl(G) and k 6= l.

2. G = 2G2(3
2n+1), r ∈ Sk(G), s ∈ Sl(G) and k 6= l.

3. G = 2F4(2
2n+1), either r ∈ Sk(G), s ∈ Sl(G) and k 6= l, {k, l} 6= {1, 2}, {1, 3}; or

r = 3 and s ∈ Sl(G), where l ∈ {3, 5, 6}.
Proof. Follows from [1, Lemma 1.3], Lemma 2.6, and Lemma 2.8.

3 Cocliques for groups of Lie type

Let G be a finite simple group of Lie type with the base field of order q and characteristic p.
Every r ∈ π(G)\{p} is known to be a primitive prime divisor of qi−1, where i is bounded
by some function depending on the Lie rank of G. Given a finite simple group of Lie type
G, define a set I(G) as follows. If G is neither a Suzuki, nor a Ree group, then i ∈ I(G)
if and only if π(G) ∩ Ri(q) 6= ∅. If G is either a Suzuki or a Ree group, then i ∈ I(G) if
and only if π(G)∩Si(G) 6= ∅. Notice that if π(G)∩Ri(q) 6= ∅ (resp. π(G)∩Si(G) 6= ∅),
then Ri(q) ⊆ π(G) (resp. Si(G) ⊆ π(G)). Thus, the following partition of π(G) arises:

π(G) = {p} ⊔
⊔

i∈I(G)

Ri,

or
π(G) = {2} ⊔

⊔

i∈I(G)

Si

in case of Suzuki groups, or

π(G) = {2} ⊔ {3} ∪
⊔

i∈I(G)

Si

in case of Ree groups.
As followed from an adjacency criterion, two distinct primes from the same class of

the partition are always adjacent. Moreover, in most cases an answer to the question:
whether two primes from distinct classes Ri and Rj (or Si and Sj) of the partition are
adjacent, depends only on the choice of the indices i and j. We formalize this inference
by the following definitions.

Definition 3.1. Suppose G is a finite simple group of Lie type with the base field of order
q and characteristic p, and G is not isomorphic to 2B2(2

2m+1), 2G2(3
2m+1), 2F4(2

2m+1),
and Aε

2(q). Define the set M(G) to be a subset of I(G) such that i ∈ M(G) if and only
if the intersection of Ri and every coclique of maximal size of GK(G) is nonempty.

Definition 3.2. If G = 2B2(2
2m+1) or 2G2(3

2m+1), m > 1, then put M(G) = I(G).
If G = 2F4(2

2m+1), m > 2, then put M(G) = {2, 3, 4, 5, 6}. If G = 2F4(8), then put
M(G) = {5, 6}.
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Definition 3.3. Suppose G is a finite simple group of Lie type with the base field of order
q and characteristic p, andG is not isomorphic to 2B2(2

2m+1), 2G2(3
2m+1), 2F4(2

2m+1), and
Aε

2(q). A set Θ(G) consists of all subsets θ(G) of π(G) satisfying the following conditions:
(a) p lies in θ(G) if and only if p lies in every coclique of maximal size of GK(G);
(b) for every i ∈ M(G) exactly one prime from Ri lies in θ(G).

Definition 3.4. Let G = 2B2(2
2m+1). A set Θ(G) consists of all subsets θ(G) of π(G)

satisfying the following conditions:
(a) p = 2 lies in θ(G);
(b) for every i ∈ M(G) exactly one prime from Si lies in θ(G).

Definition 3.5. Let G = 2G2(3
2m+1). A set Θ(G) consists of all subsets θ(G) of π(G)

satisfying the following conditions:
(a) p = 3 lies in θ(G);
(b) for every i ∈ M(G) exactly one prime from Si lies in θ(G).

Definition 3.6. Let G = 2F4(2
2m+1), m > 1. A set Θ(G) consists of all subsets θ(G) of

π(G) satisfying the following condition:
(a) for every i ∈ M(G) exactly one prime from Si lies in θ(G).

Definition 3.7. Let G = Aε
2(q), and (q, ε) 6= (2,−). If q + ε1 6= 2k, then put M(G) =

{νε(2), νε(3)}, and if q+ε1 = 2k, then M(G) = {νε(3)}. A set Θ(G) consists of all subsets
θ(G) of π(G) satisfying the following conditions.

(1) p lies in θ(G) if and only if q + ε1 6= 2k;
(2) if (q − ε1)3 = 3, then 3 ∈ θ(G).
(3) for every i ∈ M(G) exactly one prime from Rνε(i) lies in θ(G), excepting one case:

if 2 ∈ Rνε(2), then 2 does not lie in θ(G).

Remark. A function νε is defined in (4).

Definition 3.8. Let G be a finite simple group of Lie type. The subset θ′(G) of π(G) is
an element of Θ′(G), if for every θ(G) ∈ Θ(G) the union ρ(G) = θ(G)∪θ′(G) is a coclique
of maximal size in GK(G).

Now we describe cocliques of maximal size for groups of Lie type. First we consider
classical groups postponing groups A1(q), A

ε
2(q) to the end of the section.

Proposition 3.9. If G is one of finite simple groups An−1(q),
2An−1(q) with the base field

of characteristic p and order q, and n > 4, then t(G), and the sets Θ(G), Θ′(G) are listed

in Table 2.

Proof. It is obvious that the function νε defined in (4) is a bijection on N, so ν−1
ε is well

defined. Moreover, since ν2
ε is the identity map, we have ν−1

ε = νε.
Using Lemma 2.1 and an information on the orders of groups Aε

n−1(q), we obtain that
a number i lies in I(G), if the following conditions holds:

(a) νε(i) 6 n;
(b) i 6= 1 for q = 2, 3, and i 6= 6 for q = 2.
By [1, Propositions 2.1, 2.2, 4.1, and 4.2] two distinct primes from Ri are adjacent for

every i ∈ I(G).
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Denote by N(G) the set {i ∈ I(G) | n/2 < νε(i) 6 n} and by χ any set of type
{ri | i ∈ N(G)} such that |χ∩Ri| = 1 for all i ∈ N(G). Note that 1, 2 can not lie in N(G),
because n > 4. In particular, 2 does not lie in any χ. Let i 6= j and n/2 < νε(i), νε(j) 6 n.
Then νε(i)+νε(j) > n and νε(i) does not divide νε(j). By [1, Propositions 2.1, 2.2], primes
ri and rj are not adjacent. Thus, every χ forms a coclique of GK(G).

Denote by ξ the set

{p} ∪
⋃

i∈I(G)\N(G)

Ri.

By [1, Propositions 2.1, 2.2, 3.1, 4.1, 4.2] every two distinct primes from ξ are adjacent in
GK(G). Thus, every coclique of GK(G) contains at most one prime from ξ.

Case 1. Let n > 7.
If q = 2 and G = An−1(q) we assume that n > 13 first, in order to avoid the exceptions

arising because of R6 = ∅ for q = 2.
The conditions on n implies that |N(G)| > 4. By [1, Proposition 3.1], we have that

t(p,G) 6 3, so p can not lie in any coclique of maximal size. By [1, Propositions 4.1,
4.2], the same assertion is true for any primitive prime divisor ri, where νε(i) = 1. Thus,
solving the problem, does a prime r lie in a coclique of maximal size of GK(G), we may
assume that r is neither a characteristic, nor a divisor of q−ε1. Hence [1, Propositions 2.1
and 2.2] will be the main technical tools.

Suppose that n = 2t + 1 is odd. If νε(i) 6 n/2, then there exist at least two distinct
numbers j, k from N(G) such that ri is adjacent to rj and rk. Indeed, if νε(i) < t, then
we take j and k such that νε(j) = t+1 and νε(k) = t+2, while if νε(i) = t, then we take
j and k such that νε(j) = t+1 and νε(k) = 2t. Thus, M(G) = N(G), every θ(G) ∈ Θ(G)
is of type {ri | n/2 < νε(i) 6 n}, Θ′(G) = ∅, and t(G) = t + 1 = [(n+ 1)/2].

Suppose that n = 2t is even. If νε(i) < n/2, then there exist at least two distinct
numbers j, k from N(G) such that ri is adjacent to rj and rk. It is sufficient, to take j
and k such that νε(j) = t + 1, and νε(k) = t + 2 if νε(i) < t − 1, or νε(k) = 2t − 2 if
νε(i) = t − 1. On the other hand, if νε(i) = t = n/2, then ri is adjacent to rj, where
νε(j) = 2t = n, and is non-adjacent to every rk, where k ∈ N(G) and k 6= j. Thus,
M(G) = N(G) \ {νε(n)}, every θ(G) ∈ Θ(G) is of type {ri | n/2 < νε(i) < n}, and Θ′(G)
consists of one-element sets of type {rνε(n/2)} or {rνε(n)}. Hence, t(G) = t = [(n + 1)/2].

It remains to consider the following cases: q = 2, G = An−1(q), and 7 6 n 6 12.
All results (see Table 2) are obtained by arguments similar to that in general case with
respect to the fact: R6 = ∅, and can be easily verified by using [1, Propositions 2.1, 2.2,
3.1, 4.1, 4.2]. The most interesting case arises, when n = 8. In that case Θ(G) consists
of one-element sets θ(G) of type {r7}, while Θ′(G) consists of two-elements sets θ′(G) of
types {p, r8}, {r4, r5}, {r3, r8}, or {r5, r8}.

Case 2. Let n = 6.
First, we assume that q 6= 2. Then N(G) = {νε(4), νε(5), νε(6)}, and |N(G)| = 3.

Therefore, a set of type {rνε(4), rνε(5), rνε(6)} forms a coclique in GK(G), and t(G) > 3.
Arguing as in previous case, we obtain that any prime rνε(3) is adjacent to rνε(6), and a
set of type {rνε(3), rνε(4), rνε(5)} is a coclique. By [1, Proposition 3.1], we have that a set of
type {p, rνε(5), rνε(6)} is a coclique, and p is adjacent to any prime rνε(4). If νε(i) = 2, then
ri is adjacent to p, and is non-adjacent to rj if and only if νε(j) = 5, so t(ri, G) = 2. Let
r be a divisor of q − ε1. If r 6= 3 or (q − ε1)3 6= 3, then [1, Propositions 4.1, 4.2] implies
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that t(r, G) = 2, while if r = 3 and (q − ε1)3 = 3, we have that t(3, G) = 3 and a set of
type {3, rνε(5), rνε(6)} is a coclique in GK(G). Thus, if q 6= 2, then M(G) = {νε(5)}, and
every θ(G) ∈ Θ(G) is of type {rνε(5)}. Every θ′(G) ∈ Θ′(G) is a two-element set of type
{p, rνε(6)}, {rνε(3), rνε(4)}, {rνε(4), rνε(6)}, and if (q − ε1)3 = 3 is also of type {3, rνε(6)}.

Let G = A5(2). Since R6 = R1 = ∅, we have that every θ(G) ∈ Θ(G) is of type
{r3, r4, r5}, and Θ′(G) = ∅.

Let G = 2A5(2). Since R6 = Rν(3) = ∅ and (q + 1)3 = 3, we have that every
θ(G) ∈ Θ(G) is of type {r3, r10}, and every θ′(G) ∈ Θ′(G) is a one element set of type
{p}, {r4}, or {3}.

In all cases t(G) = 3.

Case 3. Let n = 5.

We have N(G) = {νε(4), νε(5)}, and |N(G)| = 2, so t(G) 6 3. Assume now that
G 6= 2A4(2). Then Rνε(3) is always nonempty, and a set of type {rνε(3), rνε(4), rνε(5)} is a
coclique in GK(G). By [1, Proposition 3.1], we have that a set of type {p, rνε(4), rνε(5)} is
also a coclique. A prime rνε(2) is adjacent to p, and is non-adjacent to rj if and only if
νε(j) = 5. Let r be a divisor of q− ε1. If r 6= 5 or (q− ε1)5 6= 5, then [1, Propositions 4.1,
4.2] implies that t(r, G) = 2, while if r = 5 and (q − ε1)5 = 5, we have that t(5, G) = 3
and a set of type {5, rνε(4), rνε(5)} is a coclique in GK(G). Thus, if G 6= 2A4(2), then
M(G) = N(G), every θ(G) ∈ Θ(G) is of type {rνε(4), rνε(5)}. Every θ′(G) ∈ Θ′(G) is a
one-element set of type {p} or {rνε(3)}, and if (q − ε1)5 = 5 is also of type {5} .

Let G = 2A4(2). Since R6 = Rν(3) = ∅ and (q + 1)5 = 1, we have that every
θ(G) ∈ Θ(G) is of type {p, r4, r10}, and Θ′(G) = ∅.

In all cases t(G) = 3.

Case 4. Let n = 4.

First, we assume that G 6= 2A3(2). Then N(G) = {νε(3), νε(4)}, and |N(G)| = 2, so
t(G) 6 3. By [1, Proposition 3.1], we have that a set of type {p, rνε(3), rνε(4)} is a coclique
in GK(G). A prime rνε(2) is adjacent to p and any prime rνε(4). If r is an odd prime divisor
of q − ε1, then [1, Propositions 4.1, 4.2] implies that t(r, G) = 2. The same assertion is
true for r = 2 if and only if (q − ε1)2 6= 4, while if (q − ε1)2 = 4 then {2, rνε(3), rνε(4)} is a
coclique. Therefore, if (q − ε1)2 6= 4, then every θ(G) ∈ Θ(G) is of type {p, rνε(3), rνε(4)},
and Θ′(G) = ∅. But if (q − ε1)2 = 4, then M(G) = N(G), every θ(G) ∈ Θ(G) is of type
{rνε(3), rνε(4)}, and Θ′(G) = {{2}, {p}}. Anyway, t(G) = 3.

Let G = 2A3(2). Since R6 = Rν(3) = ∅ and (q + 1)4 = 1, we obtain that Θ(G) =
{{r4}}, and Θ′(G) = {{p}, {r2}}. In this case, t(G) = 2.

Proposition 3.10. If G is one of finite simple groups Bn(q), Cn(q), Dn(q) or 2Dn(q)
with the base field of characteristic p and order q, then t(G), and the sets Θ(G), Θ′(G)
are listed in Table 3.

Proof. Using Lemma 2.1 and an information on the orders of groups under consideration,
we obtain that a number i lies in I(G), if the following conditions holds:

(a) η(i) 6 n;

(b) i 6= 1 for q = 2, 3, and i 6= 6 for q = 2;

(c) i 6= 2n for G = Dn(q);

(d) i 6= n for G = 2Dn(q) and n odd.
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By [1, Proposition 4.3 and 4.4] and Propositions 2.4 and 2.5 it follows that for every
i ∈ I(G) two distinct primes from Ri are adjacent.

Denote by N(G) the set {i ∈ I(G) | n/2 < η(i) 6 n} and by χ any set of type
{ri | i ∈ N(G)} such that |χ∩Ri| = 1 for all i ∈ N(G). Let i 6= j and n/2 < η(i), η(j) 6 n.
We have η(i) + η(j) > n. Suppose that i/j is an odd natural number. Then i and j is
of the same parity, so η(i)/η(j) is also an odd natural number. Since i 6= j, we have
η(j) > 2η(i) > n, contrary to the choice of j. Thus i/j is not an odd number. By
Propositions 2.4 and 2.5, primes ri and rj are not adjacent. Thus, every χ forms a
coclique of GK(G).

Denote by ξ the set

{p} ∪
⋃

i∈I(G)\N(G)

Ri.

By Propositions 2.4, 2.5 and [1, Propositions 3.1, 4.3, 4.4] every two distinct primes from
ξ are adjacent in GK(G). Thus, every coclique of GK(G) contains at most one prime
from ξ.

Now we determine cocliques of maximal size considering the groups of different types
separately. However, by [1, Theorem 7.5], we have GK(Bn(q)) = GK(Cn(q)), and so
analysis for groups of types Bn and Cn is mutual.

Case 1. Let G be one of the simple groups Bn(q) or Cn(q).
Suppose that n = 2. If q = 2, then the group G is not simple, so we can assume that

q > 3. If q = 3, then I(G) = {2, 4}, and if q > 3, then I(G) = {1, 2, 4}. In both cases,
N(G) = {4}. Since r4 is non-adjacent to every r ∈ ξ, we have M(G) = N(G) = {4},
every θ(G) ∈ Θ(G) is a one-element set containing exactly one element r4 from R4. Every
θ′(G) ∈ Θ′(G) is a one-element set containing exactly one element from ξ. Thus, t(G) = 2.

Suppose that n = 3. If q 6= 2 then N(G) = {3, 6}, and if q = 2 then N(G) = {3}. The
set {1, 2, 3, 4, 6} includes I(G), and so ξ = {p} ∪R1 ∪R2 ∪R4, where {p}, R2 and R4 are
always nonempty. The prime p and any prime r4 are adjacent one to another, and are
non-adjacent to every ri with i ∈ N(G). On the other hand, for i ∈ {1, 2} and j ∈ {3, 6},
primes ri and rj are adjacent. Therefore, M(G) = N(G), θ(G) is of type {r3} for q = 2,
and is of type {r3, r6} otherwise. The set Θ′(G) consists of one-element sets of type {p},
{r2}, and {r4}, if q = 2, and sets of type {p}, and {r4} otherwise. Thus, t(G) = 2 for
q = 2, and t(G) = 3 otherwise.

Let n > 4. Now we consider four different cases subject to residue of n modulo 4. We
write n = 4t + k, where k = 0, 1, 2, 3, and t > 1. If q = 2 we assume that t > 1 to avoid
exceptional cases that arise because of R6 = ∅ for q = 2.

Suppose that n = 4t. Then

N(G) = {2t+ 1, 2t+ 3, . . . , 4t− 1, 4t+ 2, 4t+ 4, . . . , 8t},

and so |N(G)| = 3t. By adjacency criterion, r4t is non-adjacent to every ri, where
i ∈ N(G). Therefore, t(G) > 3t+ 1 > 4. By [1, Propositions 3.1, 4.3], we have t(2, G) 6
t(p,G) < 4, so p and 2 cannot lie in any coclique of maximal size. Furthermore, if
η(i) < n/2 = 2t, then any odd ri is adjacent to r4t, r2t+1, r4t+2. Therefore, M(G) =
N(G) ∪ {n}, every θ(G) ∈ Θ(G) is of type {ri | n/2 6 η(i) 6 n}, Θ′(G) = ∅, so
t(G) = 3t+ 1 = [(3n+ 5)/4].
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Suppose that n = 4t+ 1. Then

N(G) = {2t+ 1, 2t+ 3, . . . , 4t+ 1, 4t+ 2, 4t+ 4, . . . , 8t+ 2},

so |N(G)| = 3t+2 and t(G) > 5. By [1, Propositions 3.1, 4.3], we have t(2, G) 6 t(p,G) <
4. Therefore, p and 2 cannot lie in any coclique of maximal size. If η(i) < n/2, then any
odd ri is adjacent to r2t+1, r4t+2, so cannot lie in any coclique of maximal size. Thus,
M(G) = N(G), every θ(G) ∈ Θ(G) is of type {ri | n/2 < η(i) 6 n} = {ri | n/2 6 η(i) 6
n}, Θ′(G) = ∅, and t(G) = 3t+ 2 = [(3n+ 5)/4].

Suppose that n = 4t+ 2. Then

N(G) = {2t+ 3, 2t+ 5, . . . , 4t+ 1, 4t+ 4, 4t+ 6, . . . , 8t+ 4},

so |N(G)| = 3t + 1 and t(G) > 4. Since t(2, G) 6 t(p,G) < 4, primes p and 2 cannot lie
in any coclique of maximal size. Any primes r2t+1 and r4t+2 are adjacent one to another
and are non-adjacent to every ri with i ∈ N(G). If η(i) < n/2, then ri is adjacent
to r4t+4, r4t+2, and r2t+1. Therefore, N(G) = M(G), every θ(G) ∈ Θ(G) is of type
{ri | n/2 < η(i) 6 n}, and Θ′(G) consists of one-element sets of type {r2t+1} or {r4t+2}.
Thus, t(G) = 3t + 2 = [(3n+ 5)/4].

Suppose that n = 4t+ 3. Then

N(G) = {2t+ 3, 2t+ 5, . . . , 4t+ 3, 4t+ 4, 4t+ 6, . . . , 8t+ 6},

so |N(G)| = 3t + 3 and t(G) > 6. Since t(2, G) 6 t(p,G) < 4, primes p and 2 cannot
lie in a coclique of maximal size. If η(i) < 2t + 1, then ri is adjacent to r4t+4, r4t+6, and
r2t+3. Assume that η(i) = 2t + 1. If ri is adjacent to rj with j ∈ N(G), then j = 4t + 4.
Since there are two distinct numbers 2t + 1 and 4t + 2 such that the value of function η
of them is equal to 2t+1, we have that Θ′(G) consists of one-element sets of one of three
types: {r4t+4}, {r2t+1} or {r4t+2}. Thus, M(G) = N(G) \ {4t+ 4}, every θ(G) ∈ Θ(G) is
of type {ri | (n + 1)/2 < η(i) 6 n}, and t(G) = 3t+ 3 = [(3n+ 5)/4].

It remains to consider the cases: q = 2 and n = 4 + k, where k = 0, 1, 2, 3. All
results (see Table 3) are obtained by arguments similar to that in general case with
respect to the fact: R4t+2 = R6 = ∅, and can be easily verified by using Proposition 2.4
and [1, Propositions 3.1, 4.3].

Case 2. Let G = Dn(q).
Suppose that n = 4. If q 6= 2 then N(G) = {3, 6}, and if q = 2 then N(G) = {3}.

The set {1, 2, 3, 4, 6} includes I(G), so ξ = {p} ∪R1 ∪R2 ∪R4, where {p}, R2 and R4 are
always nonempty. The prime p and any prime r4 are adjacent one to another, and are
non-adjacent to every ri with i ∈ N(G). On the other hand, for i ∈ {1, 2} and j ∈ {3, 6},
primes ri and rj are adjacent. Therefore, M(G) = N(G), θ(G) is of type {r3} for q = 2,
and is of type {r3, r6} otherwise. The set Θ′(G) consists of one-element sets of type {p},
{r2}, and {r4}, if q = 2, and sets of type {p}, and {r4} otherwise. Thus, t(G) = 2 for
q = 2, and t(G) = 3 otherwise.

Let n > 4. Now we consider four different cases subject to residue of n modulo 4. We
write n = 4t + k, where k = 0, 1, 2, 3, and t > 1. If q = 2 we assume that t > 1 to avoid
exceptional cases that arise because of R6 = ∅ for q = 2.
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Suppose that n = 4t > 4. Then

N(G) = {2t+ 1, 2t+ 3, . . . , 4t− 1, 4t+ 2, 4t+ 4, . . . , 8t− 2},

so |N(G)| = 3t − 1 > 4. By [1, Propositions 3.1, 4.4], we have t(2, G) 6 t(p,G) < 4, so
p and 2 cannot lie in any coclique of maximal size. By adjacency criterion, r4t is non-
adjacent to every ri, where i ∈ N(G). On the other hand, any prime r4t−2 is adjacent to
r4t, r4t+2, any prime r2t−1 is adjacent to r4t, r2t+1, and if η(i) < 2t− 1, then ri is adjacent
to at least three primes from every χ. Therefore, M(G) = N(G)∪{n}, every θ(G) ∈ Θ(G)
is of type {ri | n/2 6 η(i) 6 n, i 6= 2n}, Θ′(G) = ∅, and t(G) = 3t = [(3n+ 1)/4].

Suppose that n = 4t+ 1. Then

N(G) = {2t+ 1, 2t+ 3, . . . , 4t+ 1, 4t+ 2, 4t+ 4, . . . , 8t},

so |N(G)| = 3t + 1 > 4. By [1, Propositions 3.1, 4.4], we have t(2, G) 6 t(p,G) < 4.
Therefore, p and 2 cannot lie in any coclique of maximal size. If η(i) < 2t, then any
prime ri is adjacent to r4t+2, r2t+1. Assume that i = 4t, then ri is adjacent to rj, where
j ∈ N(G), if and only if j = 4t + 2. Thus, M(G) = N(G) \ {n + 1}, every θ(G) ∈ Θ(G)
is of type {ri | n/2 < η(i) 6 n, i 6= n + 1, 2n}, and Θ′(G) consists of one-element sets of
type {r4t} or {r4t+2}. Therefore, t(G) = 3t+ 1 = [(3n+ 1)/4].

Suppose that n = 4t+ 2. Then

N(G) = {2t+ 3, 2t+ 5, . . . , 4t+ 1, 4t+ 4, 4t+ 6, . . . , 8t+ 2},

so |N(G)| = 3t > 3. Any primes r2t+1 and r4t+2 are adjacent one to another and are
non-adjacent to every ri with i ∈ N(G). Hence t(G) > 4. Since t(2, G) 6 t(p,G) < 4,
primes p and 2 cannot lie in any coclique of maximal size. If η(i) < n/2, then ri is
adjacent to r2t+1, r4t+2, r4t+4. Therefore, N(G) = M(G), every θ(G) ∈ Θ(G) is of type
{ri | n/2 < η(i) 6 n, i 6= 2n}, and Θ′(G) consists of one-element sets of type {r2t+1} or
{r4t+2}. Thus, t(G) = 3t+ 1 = [(3n+ 1)/4].

Suppose that n = 4t+ 3. Then

N(G) = {2t+ 3, 2t+ 5, . . . , 4t+ 3, 4t+ 4, 4t+ 6, . . . , 8t+ 4},

so |N(G)| = 3t + 2 > 5. Since t(2, G) 6 t(p,G) < 4, primes p and 2 cannot lie in a
coclique of maximal size. By adjacency criterion, r2t+1 is non-adjacent to every ri, where
i ∈ N(G). On the other hand, if η(i) < 2t + 1 or i = 4t + 2, then ri is adjacent to
r4t+4, r2t+1. Therefore, M(G) = N(G) ∪ {(n − 1)/2}, every θ(G) ∈ Θ(G) is of type
{ri | (n− 1)/2 6 η(i) 6 n, i 6= 2n, n− 1}, Θ′(G) = ∅, and t(G) = 3t+ 3 = (3n+ 3)/4. In
case n = 4t + 3, any coclique of maximal size does not contain primes of type r4t+2, and
so the group D7(2) is considered as well.

It remains to consider the cases: q = 2 and n = 4 + k, where k = 1, 2. Both results
(see Table 3) are obtained by arguments similar to that in general case with respect to
the fact: R6 = ∅, and can be easily verified by using Proposition 2.5 and [1, Propositions
3.1, 4.4].

Case 3. Let G = 2Dn(q).
Suppose that n = 4. If q 6= 2 then N(G) = {3, 6, 8}, and if q = 2 then N(G) = {3, 8}.

The set {1, 2, 3, 4, 6, 8} includes I(G), and so ξ = {p}∪R1∪R2∪R4, where {p}, R2, and R4

21



are always nonempty. The prime p and any prime r4 are adjacent one to another, and are
non-adjacent to every ri with i ∈ N(G). On the other hand, for i ∈ {1, 2} and j ∈ {3, 6},
primes ri and rj are adjacent. Therefore, M(G) = N(G), θ(G) is of type {r3, r8} for
q = 2, and is of type {r3, r6, r8} otherwise. The set Θ′(G) consists of one-element sets of
type {p}, and {r4}. Thus, t(G) = 3 for q = 2, and t(G) = 4 otherwise.

Let n > 4. Now we consider four different cases subject to residue of n modulo 4. We
write n = 4t + k, where k = 0, 1, 2, 3, and t > 1. If q = 2 we assume that t > 1 to avoid
exceptional cases that arise because of R6 = ∅ for q = 2.

Suppose that n = 4t > 4. Then

N(G) = {2t+ 1, 2t+ 3, . . . , 4t− 1, 4t+ 2, 4t+ 4, . . . , 8t},

so |N(G)| = 3t > 4. By [1, Propositions 3.1, 4.4], we have t(2, G) 6 t(p,G) 6 4, so p and
2 cannot lie in any coclique of maximal size. By adjacency criterion, r4t is non-adjacent
to every ri, where i ∈ N(G). On the other hand, any prime r2t−1 is adjacent to r4t, r4t+2,
any prime r4t−2 is adjacent to r4t, r2t+1, and if η(i) < 2t − 1, then ri is adjacent to at
least three primes from every χ. Therefore, M(G) = N(G) ∪ {n}, every θ(G) ∈ Θ(G) is
of type {ri | n/2 6 η(i) 6 n}, Θ′(G) = ∅, and t(G) = 3t+ 1 = [(3n+ 4)/4].

Suppose that n = 4t+ 1. Then

N(G) = {2t+ 1, 2t+ 3, . . . , 4t− 1, 4t+ 2, 4t+ 4, . . . , 8t+ 2},

so |N(G)| = 3t + 1 > 4. By [1, Propositions 3.1, 4.4], we have t(2, G) 6 t(p,G) < 4.
Therefore, p and 2 cannot lie in any coclique of maximal size. If η(i) < 2t, then any
prime ri is adjacent to r4t+2, r2t+1. Assume that i = 4t, then ri is adjacent to rj, where
j ∈ N(G), if and only if j = 2t+1. Thus, M(G) = N(G)\{(n+1)/2}, every θ(G) ∈ Θ(G)
is of type {ri | n/2 < η(i) 6 n, i 6= (n + 1)/2, n}, and Θ′(G) consists of one-element sets
of type {r4t} or {r2t+1}. Therefore, t(G) = 3t+ 1 = [(3n+ 4)/4].

Suppose that n = 4t+ 2. Then

N(G) = {2t+ 3, 2t+ 5, . . . , 4t+ 1, 4t+ 4, 4t+ 6, . . . , 8t+ 4},

so |N(G)| = 3t+ 1 > 4. Any primes r2t+1, r4t and r4t+2 are adjacent one to another and
are non-adjacent to every ri with i ∈ N(G). Hence t(G) > 4. Since t(2, G) 6 t(p,G) 6 4,
primes p and 2 cannot lie in any coclique of maximal size. If η(i) < 2t, then ri is adjacent
to r2t+1, r4t+2, r4t, r4t+4. Therefore, N(G) = M(G), every θ(G) ∈ Θ(G) is of type
{ri | n/2 < η(i) 6 n}, and Θ′(G) consists of one-element sets of type {r2t+1}, {r4t} or
{r4t+2}. Thus, t(G) = 3t+ 2 = [(3n+ 4)/4].

Suppose that n = 4t+ 3. Then

N(G) = {2t+ 3, 2t+ 5, . . . , 4t+ 1, 4t+ 4, 4t+ 6, . . . , 8t+ 6},

so |N(G)| = 3t + 2 > 5. Since t(2, G) 6 t(p,G) < 4, primes p and 2 cannot lie in
a coclique of maximal size. By adjacency criterion, r4t+2 is non-adjacent to every ri,
where i ∈ N(G). On the other hand, if η(i) < 2t + 1 or i = 2t + 1, then ri is adjacent
to r4t+4, r4t+2. Therefore, M(G) = N(G) ∪ {n − 1}, every θ(G) ∈ Θ(G) is of type
{ri | (n−1)/2 6 η(i) 6 n, i 6= n, (n−1)/2}, Θ′(G) = ∅, and t(G) = 3t+3 = [(3n+4)/4].
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It remains to consider the cases: q = 2 and n = 4+k, where k = 1, 2, 3. All results (see
Table 3) are obtained by arguments similar to that in general case with respect to the fact:
R4t+2 = R6 = ∅, and can be easily verified by using Proposition 2.5 and [1, Propositions
3.1, 4.4].

Proposition 3.11. If G is an finite simple exceptional group of Lie type over a field of

characteristic p, then t(G), and the sets Θ(G), Θ′(G) are listed in Table 4.

Proof. We consider all types of exceptional groups of Lie type separately. Following [9],
we use the compact form of the prime graph GK(G). By the compact form we mean a
graph whose vertices are labeled with marks Ri. A vertex labeled Ri represents the clique
of GK(G) such that every vertex in this clique labeled by a prime from Ri. An edge
connecting Ri and Rj represents the set of edges of GK(G) that connect each vertex in
Ri with each vertex in Rj . If an edge occurs under some condition, we draw such edge
by a dotted line and write corresponding occurence condition. The technical tools for
determining the compact form of the prime graph GK(G) for an exceptional group of Lie
type G are Propositions 2.7 and 2.9, and also [1, Propositions 3.2, 3.3, and 4.5]. Notice
that the compact form of GK(G) can be considered as a graphical form of the adjacency
criterion in GK(G).

The compact form for GK(G2(q))
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Let G = G2(q). In the compact form for GK(G2(q)) the vector from 3 to R1 (resp. R2)
and the dotted edge (3, R3) (resp.(3, R6)) mean that R1 (resp. R2) and R3 (resp. R6) are
not connected, but if 3 ∈ R1, i. e., q ≡ 1 (mod 3) (resp. 3 ∈ R2, i. e., q ≡ −1 (mod 3)),
then there exists an edge between 3 and R3 (resp. R6). If R1 = ∅, then one need to
remove vertex R1 with all corresponding edges. From the compact form of GK(G) it is
evident, that Θ(G) = {{r3, r6} | ri ∈ Ri}, while Θ′(G) = {{p}, {r1}, {r2} | ri ∈ Ri \ {3}}.

The compact form for GK(F4(q))
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LetG = F4(q). It is evident from the compact form forGK(F4(q)) that {2, p, R1, R2, R3}
is a clique, while the remaining vertices in the compact form are pairwise non-adjacent.
Since R3 in non-adjacent to R4, R6, R8, R12 and the remaining vertices from the set
{2, p, R1, R2} are adjacent to at least two vertices from the set {R4, R6, R8, R12}, we
obtain that Θ(G) = {{r3, r4, r6, r8, r12} | ri ∈ Ri} if R6 6= ∅ and Θ(G) = {{r3, r4, r8, r12} |
ri ∈ Ri} if R6 = ∅ (i. e., if q = 2). In both cases Θ′(G) = ∅.

The compact form for GK(Eε
6(q))
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Let G = Eε
6(q). In the compact form for GK(E6(q)) the set {3, p, R1, R2, Rνε(3), Rνε(6)}

forms a clique, while the remaining vertices are pairwise non-adjacent. Moreover, Rνε(3)

and Rνε(6) are the only vertices from {3, p, R1, R2, Rνε(3), Rνε(6)}, which are adjacent to pre-
cisely one of the remaining vertices (namely, Rνε(3) is adjacent to R12, andRνε(6) is adjacent
toR4). Thus Θ(G) = {{rνε(5), r8, rνε(9)} | ri ∈ Ri} and Θ′(G) = {{r4, rνε(3)}, {rνε(6), r12}, {r4, r12} |
ri ∈ Ri}. Since R6 = ∅ for q = 2, we obtain exceptions mentioned in Table 4.

The compact form for GK(E7(q))
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Let G = E7(q). In the compact form for GK(E7(q)) the set {p, R1, R2, R3, R4, R6}
forms a clique, while the remaining vertices are pairwise non-adjacent. Moreover, R4 is
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the only vertices from {p, R1, R2, R3, R4, R6}, which are adjacent to precisely one of the re-
maining vertices (namely, R4 is adjacent toR8). Thus Θ(G) = {{r5, r7, r9, r10, r12, r14, r18} |
ri ∈ Ri} and Θ′(G) = {{r4}, {r8} | ri ∈ Ri}.

The compact form for GK(E8(q))
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Let G = E8(q). In the compact form for GK(E8(q)), the vector from 5 to R4 and the
dotted edge (5, R20) mean that R4 and R20 are not connected, but if 5 ∈ R4 (i. e., q

2 ≡ −1
(mod 5)), then there exists an edge between 5 and R20. Now {p, R1, R2, R3, R4, R6} forms
a clique, while the remaining vertices are pairwise non-adjacent. Notice that each vertex
from the clique {p, R1, R2, R3, R4, R6} is adjacent to at least two vertices from the set of
remaining vertices. So

Θ(G) = {{r5, r7, r8, r9, r10, r12, r14, r15, r18, r20, r24, r30} | ri ∈ Ri}
and Θ′(G) = ∅.

The compact form for GK(3D4(q))
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Let G = 3D4(q). From the compact form for GK(3D4(q)) we immediately obtain that
Θ(G) = {{r3, r6, r12} | ri ∈ Ri} and Θ′(G) = ∅ if q 6= 2. For q = 2 the result follows from
the compact form for the prime graph GK(3D4(q)), and the fact that R6 = ∅.
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Let G = 2B2(q). In this case primes si ∈ Si and sj ∈ Sj are adjacent if and only if
i = j, while p = 2 is non-adjacent to all vertices, and the proposition follows.

Let G = 2G2(q). In this case odd primes si ∈ Si and sj ∈ Sj are adjacent if and only
if i = j, while p = 3 is non-adjacent to all odd primes. Since 2 is adjacent to s1, s2, and
p, we obtain the statement of the proposition in this case.

Let G = 2F4(q). If q > 8, then any set of type {s2, s3, s4, s5, s6} forms a coclique
in GK(G) by Proposition 2.9. The same proposition together with [1, Proposition 3.3]
implies that the set {2}∪S1∪S2 forms a clique in GK(G), any prime s3 is adjacent to s1
and 2, and 3 is adjacent to s2 and s4. By using this information we obtain the proposition
in this case. If G = 2F4(8) then S2 = π(9)\{3} = ∅, whence every θ(G) ∈ Θ(G) is of type
{s5, s6}, and every θ′(G) ∈ Θ′(G) is a two-element set of type either {s1, s4}, or {3, s3},
or {2, s4}, or {s3, s4}. The group G = 2F4(2) is not simple, and its derived subgroup
T = 2F4(2)

′ is the simple Tits group. Using [2], we obtain that the prime graph of the
Tits group T contains a unique coclique ρ(T ) = {3, 5, 13} of maximal size.

Proposition 3.12. If G ≃ Aε
n−1(q) is an finite simple groups of Lie type over a field of

characteristic p and n ∈ {2, 3}, then t(G), and the sets Θ(G), Θ′(G) are listed in Table 2.

Proof. Let G = A1(q). Then the compact form for GK(A1(q)) is a coclique with the set
of vertices {R1, R2, p}. Thus Θ(G) = {{r1, r2, p} | ri ∈ Ri} and Θ′(G) = ∅.

The compact form for GK(Aε
2(q))
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sR′
νε(2)

(q − ε1)3 6= 3 6= p

(q − ε1)3 > 3

s 2

s3

spsR′
νε(1)

sRνε(3)

Let G = Aε
2(q). Set R′

νε(1)
= Rνε(1) \ {2, 3}, and R′

νε(2)
= Rνε(2) \ {2, 3}. Assume

first that (q − ε1)3 > 3. Then the set {2, 3, p, R′
νε(1)

} is a clique in the compact form for

GK(Aε
2(q)), while R

′
νε(2)

and Rνε(3) are non-adjacent. If Rνε(2) 6= {2} (i. e., q+ε1 6= 2k and

R′
νε(2)

6= ∅), then p is the only vertex from the clique {2, 3, p, R′
νε(1)

}, which is non-adjacent

to both R′
νε(2)

and Rνε(3). Hence Θ(G) = {{p, rνε(2) 6= 2, rνε(3)} | ri ∈ Ri} and Θ′(G) = ∅.

If Rνε(2) = {2} (i. e., q + ε1 = 2k and R′
νε(2)

= ∅), then Θ(G) = {{rνε(3)} | rνε(3) ∈ Rνε(3)}
and Θ′(G) = {{2}, {p}, {rνε(1)} | rνε(1) ∈ Rνε(1)}.

Now assume that (q − ε1)3 = 3. Then the set {2, p, R′
νε(1)

} is a clique in the compact

form for GK(Aε
2(q)), while 3, R′

νε(2)
, and Rνε(3) are pairwise non-adjacent. Since p is

the only vertex from the clique {2, p, R′
νε(1)

}, which is non-adjacent to 3, R′
νε(2)

, and

Rνε(3), we obtain that Θ(G) = {{3, p, rνε(2) 6= 2, rνε(3)} | ri ∈ Ri} if Rνε(2) 6= {2}, and
Θ(G) = {{3, p, rνε(3)} | rνε(3) ∈ Rνε(3)} if Rνε(2) = {2}. In both cases Θ′(G) = ∅.

Assume at the end that (q − ε1)3 = 1, i. e., either (q + ε1)3 > 1 and 3 ∈ Rνε(2) 6= {2},
or p = 3. As above we have that the set {2, p, R′

νε(1)
} is a clique in the compact form

for GK(Aε
2(q)), while R′

νε(2)
and Rνε(3) are pairwise non-adjacent. Since p is the only

vertex from the clique {2, p, R′
νε(1)

}, which is non-adjacent to R′
νε(2)

and Rνε(3), and since

26



either 3 ∈ Rνε(2) or p = 3, we obtain that Θ(G) = {{p, rνε(2) 6= 2, rνε(3)} | ri ∈ Ri \ {2}}
and Θ′(G) = ∅ if Rνε(2) 6= {2}, and Θ(G) = {{rνε(3)} | rνε(3) ∈ Rνε(3)} and Θ′(G) =
{{p}, {rνε(1)}, {2 = rνε(2)} | rνε(1) ∈ Rνε(1)} if Rνε(2) = {2}.

Below we give Tables 2, 3, 4. These tables are organized in the following way. Column 1
represents a group of Lie type G with the base field of order q and characteristic p,
Column 2 contains conditions on G, and Column 3 contains value of t(G). In Columns 4
and 5 we list the elements of Θ(G) and Θ′(G), that is sets θ(G) ∈ Θ(G) and θ′(G) ∈ Θ′(G),
and omit the braces for one-element sets. In particular, the item {p, 3, r2 6= 2, r3} in
Column 4 means Θ(G) = {{p, 3, r2, r3} | r2 ∈ R2 \ {2}, r3 ∈ R3} and the item p, r4 in
Column 5 means Θ′(G) = {{p}, {r4} | r4 ∈ R4}.
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Table 2. Cocliques for finite simple linear and unitary groups

G Conditions t(G) Θ(G) Θ′(G)

A1(q) q > 3 3 {p, r1, r2} ∅

A2(q) (q − 1)3 = 3, q + 1 6= 2k 4 {p, 3, r2 6= 2, r3} ∅

(q − 1)3 = 3, q + 1 = 2k 3 {3, p, r3} ∅

(q − 1)3 6= 3, q + 1 6= 2k 3 {p, r2 6= 2, r3} ∅

(q − 1)3 6= 3, q + 1 = 2k 2 r3 p, r1, 2 = r2
A3(q) (q − 1)2 6= 4 3 {p, r3, r4} ∅

(q − 1)2 = 4 3 {r3, r4} p, 2

A4(q) (q − 1)5 6= 5 3 {r4, r5} p, r3
(q − 1)5 = 5 3 {r4, r5} 5, p, r3

A5(q) q = 2 3 {r3, r4, r5} ∅

q > 2 and (q − 1)3 6= 3 3 r5 {p, r6},{r3, r4},
{r4, r6}

(q − 1)3 = 3 3 r5 {p, r6},{r3, r4},
{r4, r6}, {3, r6}

An−1(q), n is odd and q 6= 2 [n+1
2 ] {ri | n

2 < i 6 n} ∅

n > 7 for 7 6 n 6 11
n is even and q 6= 2 [n+1

2 ] {ri | n
2 < i < n} rn

2

,rn
for 8 6 n 6 12
n = 7, q = 2 3 {r5, r7} r3, r4
n = 8, q = 2 3 r7 {p, r8},{r5, r8},

{r3, r8},{r4, r5}
n = 9, q = 2 4 {r5, r7, r8, r9} ∅

n = 10, q = 2 4 {r7, r9} {r4, r10},{r8, r10}
{r5, r8}

n = 11, q = 2 5 {r7, r8, r9, r11} r5, r10
n = 12, q = 2 6 {r7, r8, r9, r10, r11, r12} ∅

2A2(q), (q + 1)3 = 3, q − 1 6= 2k 4 {p, 3, r1 6= 2, r6} ∅

q > 2 (q + 1)3 = 3, q − 1 = 2k 3 {3, p, r6} ∅

(q + 1)3 6= 3, q − 1 6= 2k 3 {p, r1 6= 2, r6} ∅

(q + 1)3 6= 3, q − 1 = 2k > 2 2 r6 p, r2, 2 = r1
q = 3 2 r6 p, r2 = 2

2A3(q) (q + 1)2 6= 4 and q 6= 2 3 {p, r6, r4} ∅

(q + 1)2 = 4 3 {r6, r4} p, 2
q = 2 2 r4 p, r2

2A4(q) q = 2 3 {p, r4, r10} ∅

q > 2 and (q + 1)5 6= 5 3 {r4, r10} p, r6
(q + 1)5 = 5 3 {r4, r10} 5, p, r6

2A5(q) q = 2 3 {r10, r3} 3, p, r4
(q + 1)3 6= 3 3 r10 {p, r3},{r6, r4},

{r4, r3}
q > 2 and (q + 1)3 = 3 3 r10 {p, r3},{r6, r4},

{r4, r3}, {3, r3}
2An−1(q), n is odd [n+1

2 ] {ri | n
2 < ν(i) 6 n} ∅

n > 7 n is even [n+1
2 ] {ri | n

2 < ν(i) < n} rν(n
2
), rν(n)
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Table 3. Cocliques for finite simple symplectic and orthogonal groups

G Conditions t(G) Θ(G) Θ′(G)

Bn(q) or n = 2, q = 3 2 r4 p, r2
Cn(q) n = 2, q > 3 2 r4 p, r1, r2

n = 3 and q = 2 2 r3 p, r2, r4
n = 3 and q > 2 3 {r3, r6} p, r4
n = 4 and q = 2 3 {r3, r4, r8} ∅

n = 5 and q = 2 4 {r5, r8, r10} r3, r4
n = 6 and q = 2 5 {r3, r5, r8, r10, r12} ∅

n = 7 and q = 2 6 {r5, r7, r10, r12, r14} r3, r8
n > 3, n ≡ 0, 1(mod 4) and

[
3n+5
4

]
{ri | n

2 6 η(i) 6 n} ∅

(n, q) 6= (4, 2), (5, 2)
n > 3, n ≡ 2(mod 4) and

[
3n+5
4

]
{ri | n

2 < η(i) 6 n} rn/2, rn
(n, q) 6= (6, 2)
n > 3, n ≡ 3(mod 4) and

[
3n+5
4

]
{ri | n+1

2 < η(i) 6 n} r(n−1)/2, rn−1,

(n, q) 6= (7, 2) rn+1

Dn(q) n = 4, q = 2 2 r3 p, r2, r4
n = 4 and q > 2 3 {r3, r6} p, r4
n = 5 and q = 2 4 {r3, r4, r5, r8} ∅

n = 6 and q = 2 4 {r3, r5, r8, r10} ∅

n > 4, n ≡ 0(mod 4)
[
3n+1
4

]
{ri | n

2 6 η(i) 6 n, ∅

i 6= 2n}
n > 4, n ≡ 1(mod 4) and

[
3n+1
4

]
{ri | n

2 < η(i) 6 n, rn−1, rn+1

(n, q) 6= (5, 2) i 6= 2n, n+ 1}
n > 4, n ≡ 2(mod 4) and

[
3n+1
4

]
{ri | n

2 < η(i) 6 n, rn/2, rn
(n, q) 6= (6, 2) i 6= 2n}
n > 4, n ≡ 3(mod 4) 3n+3

4 {ri | n−1
2 6 η(i) 6 n, ∅

i 6= 2n, n− 1}
2Dn(q) n = 4, q = 2 3 {r3, r8} p, r4

n = 4 and q > 2 4 {r3, r6, r8} p, r4
n = 5 and q = 2 3 {r8, r10} p, r3, r4
n = 6 and q = 2 5 {r5, r8, r10, r12} r3, r4
n = 7 and q = 2 5 {r5, r10, r12, r14} r3, r8
n > 4, n ≡ 0(mod 4) and

[
3n+4
4

]
{ri | n

2 6 η(i) 6 n} ∅

n > 4, n ≡ 1(mod 4) and
[
3n+4
4

]
{ri | n

2 < η(i) 6 n, r(n+1)/2, rn−1

(n, q) 6= (5, 2) i 6= n, n+1
2 }

n > 4, n ≡ 2(mod 4) and
[
3n+4
4

]
{ri | n

2 < η(i) 6 n} rn/2, rn−2, rn
(n, q) 6= (6, 2)
n > 4, n ≡ 3(mod 4) and

[
3n+4
4

]
{ri | n−1

2 6 η(i) 6 n, ∅

(n, q) 6= (7, 2) i 6= n, n−1
2 }
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Table 4. Cocliques for finite simple exceptional groups

G Conditions t(G) Θ(G) Θ′(G)

G2(q) q = 3, 4 3 {r3, r6} p, r2
q = 8 3 {r3, r6} p, r1
q = 3m > 3 3 {r3, r6} p, r1, r2
q ≡ 1(mod 3) and q 6= 4 3 {r3, r6} p, r2, r1 6= 3
q ≡ 2(mod 3) and q 6= 8 3 {r3, r6} p, r1, r2 6= 3

F4(q) q = 2 4 {r3, r4, r8, r12} ∅

q > 2 5 {r3, r4, r6, r8, r12} ∅

E6(q) q = 2 5 {r4, r5, r8, r9} r3, r12
q > 2 5 {r5, r8, r9} {r3, r4}, {r4, r12},

{r6, r12}
2E6(q) q = 2 5 {r8, r10, r12, r18} r3, r4

q > 2 5 {r8, r10, r18} {r3, r12}, {r4, r6},
{r4, r12}

E7(q) 8 {r5, r7, r9, r10, r4, r8
r12, r14, r18}

E8(q) 12 {r5, r7, r8, r9, r10, r12, ∅

r14, r15, r18, r20, r24, r30}
3D4(q) q = 2 2 r12 p, r2, r3

q > 2 3 {r3, r6, r12} ∅

2B2(2
2n+1) n > 1 4 {2, s1, s2, s3} ∅

2G2(3
2n+1) n > 1 5 {3, s1, s2, s3, s4} ∅

2F4(2
2n+1) n > 2, 5 {s2, s3, s4, s5, s6} ∅

2F4(8) 4 {s5, s6} {3, s3}, {s1, s4},
{2, s4}, {s3, s4}

2F4(2)
′ 3 {3, 5, 13} ∅
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4 Appendix

In this section we give a list of corrections for [1] which we obtain in the present paper.
Items (4), (5), (9) of Lemma 1.3 should be substituted by items (1), (2), (3) of Lemma

2.6 of the present paper respectively.
Lemma 1.4 should be substituted by Lemma 2.1.
Lemma 1.5 should be substituted be Lemma 2.8.
Proposition 2.3 should be substituted by Proposition 2.4.
Proposition 2.4 should be substituted by Proposition 2.5.
Proposition 2.5 should be substituted by Proposition 2.7.
In Tables 4 and 8 the following corrections are necessary.
The lines

An−1(q) n = 3, (q − 1)3 = 3, and q + 1 6= 2k 4 {p, 3, r2, r3}
n = 3, (q − 1)3 6= 3, and q + 1 6= 2k 3 {p, r2, r3}

should be substituted by the lines

An−1(q) n = 3, (q − 1)3 = 3, and q + 1 6= 2k 4 {p, 3, r2 6= 2, r3}
n = 3, (q − 1)3 6= 3, and q + 1 6= 2k 3 {p, r2 6= 2, r3}

The lines

2An−1(q) n = 3, (q + 1)3 = 3, and q − 1 6= 2k 4 {p, 3, r1, r6}
n = 3, (q + 1)3 6= 3, and q − 1 6= 2k 3 {p, r1, r6}

should be substituted by the lines

2An−1(q) n = 3, (q + 1)3 = 3, and q − 1 6= 2k 4 {p, 3, r1 6= 2, r6}
n = 3, (q + 1)3 6= 3, and q − 1 6= 2k 3 {p, r1 6= 2, r6}

In Table 4 in the penultimate line corresponding to Dn(q) instead of n ≡ 1 (mod 1),
n > 4 there should be n ≡ 1 (mod 2), n > 4.

In Table 8 the following corrections are necessary.
The line

Dn(q) n > 4, (n, q) 6= (4, 2), (5, 2), (6, 2)
[
3n+1
4

]
{r2i |

[
n+1
2

]
6 i < n}∪

∪{ri |
[
n
2

]
< i 6 n,

i ≡ 1 (mod 2)}

should be substituted by

Dn(q) n > 4, n 6≡ 3 (mod 4),
[
3n+1
4

]
{r2i |

[
n+1
2

]
6 i < n}∪

(n, q) 6= (4, 2), (5, 2), (6, 2) ∪{ri |
[
n
2

]
< i 6 n,

i ≡ 1 (mod 2)}
n ≡ 3 (mod 4) 3n+3

4
{r2i |

[
n+1
2

]
6 i < n}∪

∪{ri |
[
n
2

]
6 i 6 n,
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In Table 8 the line

2Dn(q) n > 4, n 6≡ 1 (mod 4),
[
3n+4
4

]
{r2i |

[
n
2

]
6 i 6 n}∪

(n, q) 6= (4, 2), (6, 2), (7, 2) ∪{ri |
[
n
2

]
< i 6 n,

i ≡ 1 (mod 2)}

should be substituted by the line

2Dn(q) n > 4, n 6≡ 1 (mod 4),
[
3n+4
4

]
{r2i |

[
n
2

]
6 i 6 n}∪

(n, q) 6= (4, 2), (6, 2), (7, 2) ∪{ri |
[
n
2

]
< i < n,

i ≡ 1 (mod 2)}

In Table 9 the following corrections are necessary.
The line

E6(q) q = 2 5 {5, 12, 17, 19, 31}
q > 2 6 {r4, r5, r6, r8, r9, r12}

should be substituted by the line

E6(q) none 5 {r4, r5, r8, r9, r12}

The line

E7(q) none 7 {r7, r8, r9, r10, r12, r14, r18}

should be substituted by the line

E7(q) none 8 {r5, r7, r8, r9, r10, r12, r14, r18}

The line

E8(q) none 11 {r7, r8, r9, r10, r12, r14, r15, r18, r20, r24, r30}

should be substituted by the line

E8(q) none 12 {r5, r7, r8, r9, r10, r12, r14, r15, r18, r20, r24, r30}

A revised variant of [1] can be found in
http://arxiv.org/abs/math/0506294.
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