
On finite groups isospectral to simple classical groups

A.V. Vasil′ev1

Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk, Russia

Abstract

The spectrum ω(G) of a finite group G is the set of element orders of G.
Finite groups G and H are isospectral if their spectra coincide. Suppose that
L is a simple classical group of sufficiently large dimension (the lower bound
varies for different types of groups but is at most 62) defined over a finite field
of characteristic p. It is proved that a finite group G isospectral to L cannot
have a nonabelian composition factor which is a group of Lie type defined
over a field of characteristic distinct from p. Together with a series of previous
results this implies that every finite group G isospectral to L is ‘close’ to L.
Namely, if L is a linear or unitary group, then L 6 G 6 AutL, in particular,
there are only finitely many such groups G for given L. If L is a symplectic
or orthogonal group, then G has a unique nonabelian composition factor S
and, for given L, there are at most 3 variants for S (including S ' L).
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Introduction

The spectrum ω(G) of a finite group G is the set of element orders of G.
Finite groups having the same spectra are said to be isospectral. Recently,
the following general result was obtained.

Theorem A. Suppose that L is a finite simple group, and G is a finite group
with ω(G) = ω(L) and |G| = |L|. Then G is isomorphic to L.
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The statement was conjectured by W. Shi [1] in 1987, while its proof
was completed in [2] (see the latter article for background information and
complete list of references). It is worth mentioning that Theorem A together
with [3, Corollary 5.2] implies that a finite simple group and a finite group
with the same Burnside rings are isomorphic as well.

What happens if we omit the condition |G| = |L| in Theorem A? Then
G is not necessary isomorphic to L. For example, there are infinitely many
groups with the same spectrum as the spectrum of the alternating permuta-
tion group of degree six [4]. On the other hand, it turns out that for a bulk
of finite nonabelian simple groups L, a finite group isospectral to L is iso-
morphic to L or, at least, to a group G with L 6 G 6 AutL. Investigations
on this subject have 30-year history and resulted in more than a hundred
papers of numerous authors. We do not intend to give a detailed review,
rather prefer to draw an overall picture. In order to do that we formulate
the following conjecture attributed to V.D. Mazurov:

Conjecture B. For every finite nonabelian simple group L, apart from a
finite number of sporadic, alternating and exceptional groups and apart from
several series of classical groups of small dimensions, if a finite group G is
isospectral to L then G is an almost simple group with socle isomorphic to L.

The conjecture was proved for sporadic groups [5], for alternating groups
[6], and very recently for exceptional groups of Lie type [7]. Here we deal with
groups isospectral to finite simple classical groups. Observe that there are
a lot of results on this topic concerning groups in particular characteristics
or dimensions. The peculiarity of our approach is that we sacrifice groups of
small dimensions in order to obtain a general result (cf. the theorems below
with recent papers [8, 9, 10, 11, 12, 13, 14, 15]). Throughout this paper
we use single-letter names for simple classical groups, following [16], i. e., for
example, Ln(q) means PSLn(q), as well as the standard abbreviation Lεn(q),
where ε ∈ {+,−}, L+

n (q) = Ln(q), and L−n (q) = Un(q).

Theorem 1. Suppose that L = Lεn(q) is a finite simple linear or unitary
group and n > 45. Then a finite group isospectral to L is isomorphic to a
group G with L 6 G 6 AutL. In particular, there are only finitely many
pairwise non-isomorphic finite groups G with ω(G) = ω(L).

Theorem 2. Suppose that L is a finite simple symplectic or orthogonal group,
where n > 28 for L ∈ {S2n(q), O2n+1(q)}, n > 31 for L = O+

2n(q), and n > 30
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for L = O−2n(q). If G is a finite group with ω(G) = ω(L), then G has a unique
nonabelian composition factor S, and one of the following holds:

(i) L ' S;
(ii) L ∈ {S2n(q), O2n+1(q)} and S ∈ {O2n+1(q), O

−
2n(q)};

(iii) n is even, L = O+
2n(q), and S ∈ {S2n−2(q), O2n−1(q)}.

In particular, there exist at most 3 possibilities for S for given L.

Remark 1. It seems very likely that the conclusion of Theorem 1 is valid
under the hypothesis of Theorem 2.

In fact, as shown in the last section, Theorems 1 and 2 are straightforward
consequences of a series of previous results [17, 18, 19, 20] and the following
theorem whose proof is the main goal of this paper.

Theorem 3. Let L be a simple classical group over a finite field of charac-
teristic p, and G be a finite group with ω(G) = ω(L). Suppose that n > 45
for L = Lεn(q), n > 28 for L ∈ {S2n(q), O2n+1(q)}, n > 31 for L = O+

2n(q),
and n > 30 for L = O−2n(q). Then G has a unique nonabelian composi-
tion factor S, and S is not isomorphic to a group of Lie type over a field of
characteristic distinct from p.

We strongly believe that the conclusion of Theorem 3 remains true for
all simple classical groups except the well-known examples of isomorphic
groups in different characteristics such as L2(4) ' L2(5); three groups L3(3),
U3(3), and S4(3), which are the only simple groups of Lie type isospectral
to some solvable groups [21, Corollary 1]; and a few exotic cases such as
ω(U3(5)) = ω(218 : L3(4)) [22]. Moreover, for many classical groups of small
dimensions and specific characteristics the conclusion of the theorem has
already been proved. In the article we concentrate on groups of sufficiently
large dimensions in order to achieve a generic proof covering classical groups
of all types in all characteristics.

A final remark. The determination of properties of a group by means of
its element orders is widely applied in computational group theory, especially
in development of the so-called black-box algorithms, i. e. algorithms that
do not exploit specific features of a group representation. We mention here
just one of the numerous results on this subject, which is nearest to our
main assertion. Namely, W. Kantor and Á. Seress in [23] proved that the
characteristic of a finite simple group G of Lie type can be determined if
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three greatest element orders of G are known (it is additionally assumed
that the characteristic of G is odd). One may observe that Theorem 3 says
the same thing but only for classical groups of large dimensions and involving
the whole spectrum of G. However, we do not presuppose that G is a simple
group, and this is an important distinction between our approach and that
of [23]. On the other hand, in contrast to [23] we do not propose here any
practical implementation of our results.

1. Preliminaries: arithmetic of Zsigmondy primes

For nonzero integers n1, . . . , nk, let (n1, . . . , nk) and [n1, . . . , nk] denote
their greatest common divisor and least common multiple, respectively. Given
a nonzero integer n, we put ϕ(n) for the Euler totient function of n, π(n) for
the set of prime divisors of n, and if G is a finite group then, as usual, π(G)
stands for π(|G|). If π is a set of primes, then nπ denotes the π-part of n,
that is, the largest divisor k of n with π(k) ⊆ π; and nπ′ denotes the π′-part
of n, that is, the ratio |n|/nπ. If n is a nonzero integer and r is an odd prime
with (r, n) = 1, then e(r, n) denotes the multiplicative order of n modulo r.
Given an odd integer n, we put e(2, n) = 1 if n ≡ 1 (mod 4), and e(2, n) = 2
otherwise.

Fix an integer a with |a| > 1. A prime r is said to be a primitive prime
divisor of ai− 1 if e(r, a) = i. We write ri(a) to denote some primitive prime
divisor of ai − 1, if such a prime exists, and Ri(a) to denote the set of all
such divisors. Zsigmondy [24] proved that primitive prime divisors exist for
almost all pairs (a, i).

Lemma 1.1 (Zsigmondy). Let a be an integer and |a| > 1. For every
natural number i the set Ri(a) is nonempty, except for the pairs (a, i) ∈
{(2, 1), (2, 6), (−2, 2), (−2, 3), (3, 1), (−3, 2)}.

For i 6= 2 the product of all primitive divisors of ai − 1 taken with multi-
plicities is denoted by ki(a). Put k2(a) = k1(−a). The number ki(a) is said
to be the greatest primitive divisor of ai − 1. It follows from the definition
that (ki(a), kj(a)) = 1 if i 6= j. It is easy to check that k1(a) = |a − 1| if
a 6≡ 3 (mod 4), and k1(a) = |a−1|/2 if a ≡ 3 (mod 4), as well as k2(a) = |a+1|
if a 6≡ 1 (mod 4), and k2(a) = |a + 1|/2 if a ≡ 1 (mod 4). It follows from [25]
that for i > 2,

ki(a) =
|Φi(a)|

(r,Φi{r}′
(a))

, (1)
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where Φi(x) is the ith cyclotomic polynomial and r is the largest prime
dividing i; moreover, if i{r}′ does not divide r − 1 then (r,Φi{r}′

(a)) = 1.
Note that for a divisor, the property of being primitive depends on the

pair (a, i) and is not determined by the number ai−1. For example, k6(2) = 1
but k3(4) = 7, and k2(2) = 3 but k2(−2) = 1.

Lemma 1.2. Suppose that a and i are integers with |a| > 1 and i > 0, and
p is a prime. Then kip(a) divides ki(a

p). Furthermore, if p divides i then
kip(a) = ki(a

p).

Proof. Let r be odd. Then r ∈ Rip(a) means that the multiplicative order
of a modulo r equals ip. Hence the order of ap modulo r equals i, that is
r ∈ Ri(a

p). Vice versa, if the order of ap modulo r is equal to i, and p divides
i, then the order of a modulo r is equal to ip. Thus, for odd kip(a) and ki(a

p)
the assertion holds by the definition of a greatest primitive divisor.

Assume that 2 ∈ Rip(a). Then a is odd, p = 2, and i = 1. Therefore,
kip(a) = k2(a) divides |a + 1|, and so divides a2 − 1 = k1(a

2) = ki(a
p). If

2 ∈ Ri(a
p) and p divides i, then a is odd, p = 2, and i = 2, so ki(a

p) =
k2(a

2) = (a2 + 1)/2 = k4(a) = kip(a).

Lemma 1.3. Let a and i be integers with |a| > 1 and i > 0. If i is odd then
ki(−a) = k2i(a), and if i is a multiple of 4 then ki(−a) = ki(a).

Proof. Let i be odd. By the definition of k2(a), we may assume that i > 3,
so both ki(−a) and k2i(a) are odd. The order of a modulo an odd prime r
is equal to 2i if and only if the order of −a modulo r is equal to i. Hence
Ri(−a) = R2i(a). It follows that ki(−a) = k2i(a) because k2i(a) divides ai+1.

The latter assertion follows from Lemma 1.2. Indeed, put i = 2 · 2j and
observe that ki(−a) = k2·2j(−a) = k2j(a

2) = k2·2j(a) = ki(a).

Lemma 1.4. Suppose that a, i, and γ are integers with |a| > 1, i > 0, and
γ > 1, r is an odd prime such that (r, a) = 1 and r divides ki(a) − 1. The
following hold:

(i) if i = 2γ, then e(r, a) divides 2γ−1;
(ii) if i = 3 · 2γ, then e(r, a) divides 2γ;
(iii) if i = 5 · 2γ+1, then e(r, a) divides 2γ+1;
(iv) if i = 7 · 2γ, then e(r, a) divides 3 · 2γ;
(v) if i = 9 · 2γ, then e(r, a) divides 3 · 2γ−1;
(vi) if i = 11 · 2γ, then e(r, a) divides 5 · 2γ.
In particular, e(r, a) 6 i/2. Moreover, e(r, a) 6 i/3 in (ii) and (v).
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Proof. Observe that, by (1), for γ > 2 and i ∈ {2γ, 3 · 2γ, 5 · 2γ+1, 7 · 2γ, 9 ·
2γ, 11 · 2γ} we have ki(a) = ki(−a) = Φi(a). It is easy to verify the following
equalities:

if i = 2γ, then Φi(a)− 1 = a2
γ−1

for even a, and Φi(a)− 1 = (a2
γ−1 − 1)/2

for odd a;
if i = 3 · 2γ, then Φi(a)− 1 = a2

γ−1
(a2

γ−1
+ 1);

if i = 5 · 2γ+1, then Φi(a)− 1 = a2
γ−1

(a2
γ

+ 1)(a2
γ−1 − 1);

if i = 7 · 2γ, then Φi(a)− 1 = a2
γ−1

(a3·2
γ − 1)/(a2

γ−1
+ 1);

if i = 9 · 2γ, then Φi(a)− 1 = a3·2
γ−1

(a3·2
γ−1 − 1);

if i = 11 · 2γ, then Φi(a)− 1 = a2
γ−1

(a5·2
γ − 1)/(a2

γ−1
+ 1).

These equalities yield the lemma.

Lemma 1.5. Let a and i be integers, and ε ∈ {+,−}. If a > 2, i > 3, and
(a, i) 6∈ {(2, 3), (2, 6)}, then ki(εa) > aϕ(i)/2.

Proof. We prove that ki(a) > aϕ(i)/2 first. Let r be the greatest prime divi-
sor of i and i = rαk where (r, k) = 1. It follows that ki(a) = Φi(a)/(r,Φk(a)),
and if r− 1 is not a multiple of k, then (r,Φk(a)) = 1. If (r,Φk(a)) = 1, then
the desired inequality holds by [25, Lemma 7], so we assume that r divides
Φk(a) and, in particular, k divides r − 1.

As observed in [25], the inequality

Φi(a) >

(
br + 1

b+ 1

)ϕ(k)
,

where b = ar
α−1

, holds true. Since Φk(a) 6 (a+ 1)ϕ(k), we have

ki(a) >
(br + 1)ϕ(k)

r(b+ 1)ϕ(k)
>

(br + 1)ϕ(k)

(a+ 1)ϕ(k)(b+ 1)ϕ(k)
>

(
br + 1

(b+ 1)2

)ϕ(k)
. (2)

Let r > 5 and (r, b) 6= (5, 2). Then b(r+1)/2 > (b + 1)2 and, therefore,
ki(a) > bϕ(k)(r−1)/2 = aϕ(i)/2 by (2).

Let r = 5 and b = 2. Then a = 2, α = 1. Furthermore, k divides r−1 = 4.
If k ∈ {1, 2}, then (5,Φk(2)) = 1, so we may assume that k = 4 and i = 20. In
this case the assertion follows because k20(2) = k20(−2) = 41 > 16 = 2ϕ(20)/2.

Let r = 3. Then k ∈ {1, 2} and ϕ(k) = 1. If b > 4 then b2 > 3(b + 1).
Therefore, by (2),

ki(a) >
(b3 + 1)ϕ(k)

3(b+ 1)ϕ(k)
=

b3 + 1

3(b+ 1)
> b = bϕ(k) = aϕ(i)/2.
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Thus, b ∈ {2, 3}, so a ∈ {2, 3} and α = 1. Since i = rαk ∈ {3, 6}, the case
a = 2 is impossible by the hypothesis. If a = 3 then (3,Φk(3)) = 1.

Let, finally, r = 2. Then ki(a) = (aϕ(i) + 1)/(2, a− 1) > aϕ(i)/2 > aϕ(i)/2,
as required. Thus, the inequality ki(a) > aϕ(i)/2 is proved.

Now we apply Lemma 1.3. If i ≡ 0 (mod 4) then ki(−a) = ki(a). If
i ≡ 2 (mod 4) then ϕ(i) = ϕ(i/2), so ki(−a) = ki/2(a) > aϕ(i/2)/2 = aϕ(i)/2.
Finally, if i is odd then ϕ(i) = ϕ(2i), hence ki(−a) = k2i(a) > aϕ(2i)/2 =
aϕ(i)/2. The lemma is proved.

Define the following function on positive integers:

η(k) =

{
k, if k is odd,
k/2, if k is even.

(3)

Lemma 1.6. Let u be a prime power, ε ∈ {+,−}, p be an odd prime, and
j be a natural number with η(j) > 11. Then kj(εu) > u7 and kjp(εu) > u5p.

Proof. By Lemma 1.5, the assertion holds for sufficiently large j. Indeed,
if ϕ(j) > 15, then

kj(εu) > uϕ(j)/2 > u7,

kjp(εu) > uϕ(jp)/2 > uϕ(j)(p−1)/2 > u15(p−1)/2 > u5p,

where the latest inequality follows because p > 3. Therefore, we may assume
that ϕ(j) 6 14 and, in particular, j 6 ϕ(j)2 6 196.

Let M stand for the set of j, satisfying the hypothesis of the lemma and
the inequality ϕ(j) 6 14. By brute-force attack, we obtain that M = {42, 36,
30, 28, 26, 24, 22, 21, 15, 13, 11}. If j = 21, 15, 13, 11, then k2j(εu) = kj(−εu)
by (1), so it is sufficient to prove the assertion for all j ∈ M ′ = {36, 28, 24,
21, 15, 13, 11}.

We use the following inequalities on Φj(εu) for j ∈M ′:

u12 > Φ36(εu) = u12 − u6 + 1 > u11,

u12 > Φ28(εu) =
u14 + 1

u2 + 1
> u11,

u8 > Φ24(εu) = u8 − u4 + 1 > u7,

u13 > Φ21(εu) = u12 − εu11 + εu9 − u8 + u6 − u4 + εu3 − εu+ 1 > u11,

u9 > Φ15(εu) = u8 − εu7 + εu5 − u4 + εu3 − εu+ 1 > u7,
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u13 > Φ13(εu) =
u13 − ε1
u− ε1

> u11,

u11 > Φ11(εu) =
u11 − ε1
u− ε1

> u9.

By (1), for j = 36, 28, 24, 15 the equality kj(εu) = Φj(εu) holds, so
kj(εu) > u7 by the above inequalities. For the other numbers from M ′ we
have:

k21(εu) =
Φ21(εu)

(7,Φ3(εu))
>

u11

u2 + u+ 1
> u8,

k13(εu) =
Φ13(εu)

(13, u− ε1)
>

u11

u+ 1
> u9,

k11(εu) =
Φ11(εu)

(11, u− ε1)
>

u9

u+ 1
> u7.

Thus, the first required inequality is proved.
If p divides j then kjp(εu) = kj(εu

p) by Lemma 1.2, so kjp(εu) > u7p.
Therefore, we assume that p does not divide j. Then Φjp(x) = Φj(x

p)/Φj(x).
Suppose that p > 13. Then p is the greatest prime divisor of jp, hence,
using (1), we obtain

kjp(εu) =
Φj(εu

p)

Φj(εu)(p,Φj(εu))
>

Φj(εu
p)

Φ2
j(εu)

>
u7p

u26
> u5p.

Suppose that 5 6 p 6 11. In this case the greatest prime divisor of jp is at
most 13. It follows that

kjp(εu) =
Φj(εu

p)

Φj(εu)(p,Φj(εu))
>

Φj(εu
p)

13Φj(εu)
>

u9p

13u13
>
u9p

u17
> u5p,

unless j equals 15 or 24. For j ∈ {15, 24}, the greatest prime divisor of jp is
equal to p, and p− 1 is not a multiple of j, hence

kjp(εu) =
Φj(εu

p)

Φj(εu)
>
u7p

u9
> u5p.

Let p = 3. Then j = 28, 13, 11, and the assertion follows from the inequalities:

k54(εu) =
Φ28(εu

3)

Φ28(εu)
>
u33

u12
> u15,
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k39(εu) =
Φ13(εu

3)

13Φ13(εu)
>

u33

13u13
> u15,

k33(εu) =
Φ11(εu

3)

Φ11(εu)
>
u27

u11
> u15.

The lemma is proved.

Lemma 1.7. Let q and m be integers greater than 1, and ε ∈ {+,−}.
(i) If an odd prime r divides εq−1, then ((εq)m−1){r} = m{r}(εq−1){r}.
(ii) If an odd prime r divides (εq)m − 1, then r divides (εq)m{r}′ − 1.
(iii) If εq − 1 is a multiple of 4, then ((εq)m − 1){2} = m{2}(εq − 1){2}.

Proof. See, for example, [26, Chapter IX, Lemma 8.1].

Let [x] denote the integer part of a real number x.

Lemma 1.8. Let a, b be positive integers, b > a, and A = {i ∈ N | b − a <
η(i) 6 b}. If b is even then |A| = [3a/2]. If b is odd then |A| = [(3a+ 1)/2].

Proof. Since the equation η(x) = j has two integer solutions for odd j and
one solution for even j, the cardinality of A is equal to the sum of a and
the quantity of odd numbers in the interval (b − a, b]. If b is even then this
quantity is equal to [a/2], and if b is odd then it equals [(a+ 1)/2].

Lemma 1.9. If n is a natural number and n > 30, then the interval (5n/6, n)
contains a prime. If, in addition, n 6= 35, 36, 37, 53, then the interval (8n/9, n)
contains a prime.

Proof. The first part is proved in [27]. It is shown in [28] that for every
natural number m > 119, the interval [m, 1.073m] contains a prime. Since
9/8 > 1.073, the second part holds for all sufficiently large n (precisely, for
n > 129). For smaller n the assertion can be verified directly.

2. Preliminaries: the prime graph and the spectrum of a finite
group

The prime graph GK(G) of a finite group G is the nonoriented graph with
the vertex set π(G) and two distinct vertices r and s are adjacent if and only
if rs ∈ ω(G). The notion of prime graph was introduced by G.K. Gruenberg
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and O. Kegel (for this reason it is also called the Gruenberg–Kegel graph).
They established that a finite group with disconnected prime graph is either
Frobenius or 2-Frobenius group, or has a unique nonabelian composition
factor with disconnected prime graph. J.S. Williams [29] published this result
and started the classification of finite simple groups with disconnected prime
graph. The classification was completed by A.S. Kondrat′ev [30]. The full
list of nonabelian simple groups with disconnected prime graph can be found,
e.g., in [31, Tables 1a-1c].

Recall that an independent set of vertices or a coclique of a graph Γ is
any subset of pairwise nonadjacent vertices of Γ. We write t(Γ) to denote
the independence number of Γ, that is the greatest size of coclique in Γ. For
a group G, put t(G) = t(GK(G)). By analogy, for each prime r, define the
r-independence number t(r,G) to be the greatest size of cocliques containing
the vertex r in GK(G). For convenience, we refer to a coclique containing r
as an {r}-coclique. In [32] there was proved the following assertion which is,
in some sense, a generalization of the Gruenberg–Kegel theorem (below we
give the statement of this result from [33, Theorem 1]).

Lemma 2.1. Let G be a finite group with t(G) > 3 and t(2, G) > 2. Then
the following hold:

(i) There exists a nonabelian simple group S such that S 6 G = G/K 6
AutS, where K is the maximal normal soluble subgroup of G.

(ii) For every coclique ρ of GK(G) of size at least 3, at most one prime
of ρ divides the product |K| · |G/S|. In particular, t(S) > t(G)− 1.

(iii) One of the following holds:
(a) every prime r ∈ π(G) nonadjacent to 2 in GK(G) does not divide

the product |K| · |G/S|; in particular, t(2, S) > t(2, G);
(b) there exists a prime r ∈ π(K) nonadjacent to 2 in GK(G); in

which case t(G) = 3, t(2, G) = 2, and S ' A7 or L2(q) for some odd q.

Let L and G be isospectral finite groups. It follows by the definition of
prime graph that GK(L) = GK(G). Therefore, if L satisfies the hypothesis
of Lemma 2.1, then so does G. In [34, 35], for every finite nonabelian simple
group, an adjacency criterion of its prime graph is developed and all cocliques
and {2}-cocliques of greatest size in this graph are found, as well as {p}-
cocliques of greatest size for groups of Lie type in characteristic p. This
information and Williams–Kondrat′ev’s classification, imply the following
assertion which is the first step toward a proof of main results of the present
paper.
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Proposition 1. Let L be a finite simple group of Lie type different from the
groups L3(3), U3(3), and S4(3). If G is a finite group isospectral to L, then
the following hold true for G:

(i) There exists a nonabelian simple group S such that S 6 G = G/K 6
AutS, where K is the maximal normal soluble subgroup of G.

(ii) For every coclique ρ of GK(G) of size at least 3, at most one prime
of ρ divides the product |K| · |G/S|. In particular, t(S) > t(L)− 1.

(iii) Every prime r ∈ π(G) nonadjacent to 2 in GK(G) does not divide
the product |K| · |G/S|. In particular, t(2, S) > t(2, L).

Proof. If L is a finite nonabelian simple group with connected prime graph
and is different from an alternating group, then it satisfies the hypothesis
of Lemma 2.1 by [34]. If L has a disconnected prime graph then the exis-
tence and uniqueness of a nonabelian composition factor S follow from the
Gruenberg–Kegel theorem and [36]. By [32, Propositions 2,3], the inequality
t(2, G) > 2 and the insolubility of G imply that (ii) and (iii) of Lemma 2.1
hold. It remains to observe that the exceptional case (b) of assertion (iii) of
Lemma 2.1 does not hold by [33, Theorem 2]. The proposition is proved.

For a classical group L, we put prk(L) to denote its dimension if L is a
linear or unitary group, and its Lie rank if L is a symplectic or orthogonal
group. Observe that n = prk(L) in Theorems 1–3 in Introduction.

Proposition 2. Suppose that L is a finite simple classical group, prk(L) >
27 if L is linear or unitary, and prk(L) > 19 if L is symplectic or orthog-
onal. Suppose that G is a finite group isospectral to L, and S is a unique
nonabelian composition factor of G. If S is a group of Lie type, then S is a
classical group, prk(S) > 25 if S is linear or unitary, and prk(S) > 16 if S
is symplectic or orthogonal.

Proof. Applying [35, Tables 2,3], it is easy to obtain that t(L) > 14
provided the hypothesis of the proposition. By Proposition 1(ii), we have
t(S) > 13. On the other hand, it follows from [35, Table 4] that t(H) 6
t(E8(u)) = 12 for every simple exceptional group H of Lie type. Thus, S is a
classical group. The required inequalities on prk(S) hold by [35, Tables 2,3].
The proposition is proved.

Given a classical group L over a field of order q, put

δ(L) =

{
π(εq − 1), if L = Lεn(q),

π((2, q − 1)), if L is symplectic or orthogonal.
(4)
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Lemma 2.2. Let L be a simple classical group over a field of order q and
characteristic p. Suppose that r and s are distinct primes, r, s 6∈ δ(L), r ∈
Ri(q), and s ∈ Rj(q).

(i) If rs ∈ ω(L), then r′s′ ∈ ω(L) for every distinct odd primes r′ ∈ Ri(q)
and s′ ∈ Rj(q).

(ii) If pr ∈ ω(L), then pr′ ∈ ω(L) for every odd prime r′ ∈ Ri(q).

Proof. It follows from [34].

Thus, for two distinct primes r, s ∈ π(L) \ δ(L), where r 6= p, the answer
to the question whether they are adjacent in GK(L) depends only on e(r, q),
if s = p, and e(r, q), e(s, q), if s 6= p.

In [34] several functions of natural argument are used to formulate an
adjacency criterion, one of them is η defined in (3), and two others we define
here.

ν(k) =


k, if k ≡ 0 (mod 4),
k/2, if k ≡ 2 (mod 4),
2k, if k is odd.

(5)

For ε ∈ {+,−}, put

νε(k) =

{
k, if ε = +,
ν(k) if ε = −. (6)

It is an easy observation that νε is a bijection and ν2ε is an identity.
For linear and unitary groups, we exploit also a reformulation of an ad-

jacency criterion (see [18, Lemmas 2.1–2.3]), if it is more convenient for our
goals than an initial formulation from [34] which used the function νε. This
reformulation is based on the equality kνε(i)(q) = ki(εq), which follows from
Lemma 1.3 and the definition of νε.

Now we introduce a new function in order to unify further arguments.
Namely, given a simple classical group L over a field of order q and a prime r
coprime to q, we put

ϕ(r, L) =

{
e(r, εq), if L = Lεn(q),
η(e(r, q)), if L is symplectic or orthogonal.

(7)

It follows that

12



e(r, q) =


2ϕ(r, L), if either e(r, q) is even and L is symplectic

or orthogonal,
or e(r, q) ≡ 2 (mod 4) and L is unitary;

ϕ(r, L)/2, if e(r, q) ≡ 1 (mod 2) and L is unitary;
ϕ(r, L) otherwise.

(8)

Observe that e(r,−q) = ϕ(r, L) in the case of e(r, q) = ϕ(r, L)/2.

Lemma 2.3. Let L be a simple classical group over a field of order q and
characteristic p. If r is an odd prime from π(L) \ {p} then ϕ(r, L) divides
r−1, and if L is a symplectic or orthogonal group then 2ϕ(r, L) divides r−1.

Proof. If L is not unitary, then ϕ(r, L) divides e(r, q), which divides r − 1
by Fermat’s little theorem. If L is unitary, then ϕ(r, L) does not divide e(r, q)
only when e(r, q) is odd. But then ϕ(r, L) = e(r,−q) = 2e(r, q) and ϕ(r, L)
divides r − 1 because r is odd. Let L be a symplectic or orthogonal group.
If ϕ(r, L) is even then 2ϕ(r, L) = e(r, q), and if not, then ϕ(r, L) divides
(r − 1)/2.

Lemma 2.4. Let L be a simple classical group over a field of order q and
characteristic p, and let prk(L) = n > 4.

(i) If r ∈ π(L) \ {p}, then ϕ(r, L) 6 n.
(ii) If r and s are distinct primes from π(L) \ {p} with ϕ(r, L) 6 n/2 and

ϕ(s, L) 6 n/2, then r and s are adjacent in GK(L).
(iii) If r and s are distinct primes from π(L)\{p} with n/2 < ϕ(r, L) 6 n

and n/2 < ϕ(s, L) 6 n, then r and s are adjacent in GK(L) if and only if
e(r, q) = e(s, q).

(iv) If r and s are distinct primes from π(L) \ {p} and e(r, q) = e(s, q),
then r and s are adjacent in GK(L).

Proof. It follows from [34, 35].

Let L be a simple classical group over a field of order q and characteris-
tic p. For σ ⊆ π(L) \ {p}, set E(σ, L) = {e(r, q) | r ∈ σ}. If prk(L) = n > 13
then, by [35], every coclique ρ of greatest size in GK(L) does not contain p,
so the set E(ρ, L) is well-defined for ρ. Define J(L) as the union of sets
E(ρ, L), and E(L) as the intersection of these sets, where ρ runs over all
cocliques of greatest size in GK(L). The next lemma is a particular case of
the main theorem of [35].
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Lemma 2.5. Let L be a simple classical group over a field of order q and
characteristic p, and let prk(L) = n > 13. Let ρ be a coclique of greatest
size in GK(L). If J(L) = E(L) then E(ρ, L) = E(L). If J(L) 6= E(L) then
E(ρ, L) = E(L) ∪ {j} for some j ∈ J(L) \ E(L). In particular, |E(L)| 6
t(L) 6 |E(L)|+ 1. The sets E(L), J(L) \ E(L) and numbers t(L) are listed
in Table 1.

Proof. See [35, Tables 2,3].

Table 1: Cocliques of greatest size

L Conditions t(L) E(L) J(L) \ E(L)
Lεn(q) n odd n+1

2
{i | n

2
< νε (i) ≤ n} ∅

n even n
2

{i | n
2
< νε (i) < n} {n

2
, n}

S2n(q) or n ≡ 0 (mod 4) 3n+4
4

{i | n
2
6 η(i) 6 n} ∅

O2n+1(q) n ≡ 1 (mod 4) 3n+5
4

{i | n
2
< η(i) 6 n} ∅

n ≡ 2 (mod 4) 3n+2
4

{i | n
2
< η(i) 6 n} {n

2
, n}

n ≡ 3 (mod 4) 3n+3
4

{i | n+1
2
< η(i) 6 n} {n−1

2
, n− 1,

n+ 1}
O+

2n(q) n ≡ 0 (mod 4) 3n
4

{i | n
2
6 η(i) 6 n, ∅
i 6= 2n}

n ≡ 1 (mod 4) 3n+1
4

{i | n
2
< η(i) 6 n, {n− 1, n+ 1}

i 6= 2n, n+ 1}
n ≡ 2 (mod 4) 3n−2

4
{i | n

2
< η(i) 6 n, {n

2
, n}

i 6= 2n}
n ≡ 3 (mod 4) 3n+3

4
{i | n−1

2
6 η(i) 6 n, ∅

i 6= 2n, n− 1}
O−2n(q) n ≡ 0 (mod 4) 3n+4

4
{i | n

2
6 η(i) 6 n} ∅

n ≡ 1 (mod 4) 3n+1
4

{i | n
2
< η(i) 6 n, {n+1

2
, n− 1}

i 6= n, n+1
2
}

n ≡ 2 (mod 4) 3n+2
4

{i | n
2
< η(i) 6 n} {n

2
, n− 2, n}

n ≡ 3 (mod 4) 3n+3
4

{i | n−1
2

6 η(i) 6 n, ∅
i 6= n, n−1

2
}

Define J(p, L) as the union of sets E(ρ \ {p}, L), and E(p, L) as the
intersection of these sets, where ρ runs over all {p}-cocliques of greatest size
in GK(L).
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Table 2: Cocliques containing the characteristic

L Conditions t(p, L) J(p, L)
Lεn(q) 3 {νε(n− 1), νε(n)}

S2n(q) or n is even 2 {2n}
O2n+1(q) n is odd 3 {n, 2n}
O+

2n(q) n is even 3 {n− 1, 2n− 2}
n is odd 3 {n, 2n− 2}

O−2n(q) n is even 4 {n− 1, 2n− 2, 2n}
n is odd 3 {2n− 2, 2n}

Lemma 2.6. Let L be a simple classical group over a field of order q and
characteristic p, and let prk(L) = n. Suppose that n > 4 and (n, εq) 6∈
{(4,−2), (6, 2), (7, 2)} for L = Lεn(q); n > 3 and (n, q) 6= (3, 2) for L ∈
{S2n(q), O2n+1(q)}; n > 4 and (n, q) 6= (4, 2) for L = O±2n(q). If ρ is a {p}-
coclique of greatest size in GK(L), then E(ρ\{p}, L) = J(p, L) = E(p, L), in
particular, t(p, L) = |J(p, L)| + 1. The sets J(p, L) and numbers t(p, L) are
listed in Table 2. In particular, if n > 9 then t(p, L) < t(L). Furthermore,
ϕ(r, L) > n/2 for every prime r nonadjacent to p in GK(L).

Proof. It follows from [34, Proposition 6.3, Table 4].

A prime r ∈ π(L) is called large (with respect to L), if r lies in some
coclique of greatest size in the prime graph GK(L), and small (with respect
to L) otherwise.

Lemma 2.7. Let L be a simple classical group over a field of order q and
characteristic p, and let prk(L) = n > 13.

(i) If ϕ(r, L) > n/2, then r is large with respect to L.
(ii) If r is large with respect to L, then ϕ(r, L) > n/2− 1.
(iii) If r is large with respect to L, then

ϕ(r, L) >

{
t(L), if L is linear or unitary;
(2t(L)− 4)/3, if L is symplectic or orthogonal.

(9)

(iv) If ρ is a coclique in GK(L) and n/2 < ϕ(r, L) for every r ∈ ρ, then
GK(L) has a coclique σ of size t(L) with ρ ⊆ σ.
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Proof. Apply Table 1.

Lemma 2.8. Let L be a simple classical group over a field of order q and
characteristic p, and let prk(L) = n > 13. Suppose that r ∈ π(L) and ρ is an
{r}-coclique of greatest size in GK(L). Then every s ∈ ρ′ = ρ \ {r} is large
with respect to L. Further, if r is small with respect to L, then ϕ(s, L) > n/2
for every s ∈ ρ′, and E(ρ′, L) is uniquely determined by r. If, in addition,
i = e(r, q) > 2, then E(ρ′, L) is uniquely determined by i.

Proof. If r is large with respect to L, then the assertion is obvious. Suppose
that r is small and s ∈ ρ′. If r = p then ϕ(s, L) > n/2 and E(ρ′, L) = J(p, L)
is uniquely determined by Lemma 2.6. Let r 6= p. Lemma 2.6 implies that
s 6= p. Since ϕ(r, L) < n/2 by Lemma 2.5, the inequality ϕ(s, L) > n/2
follows from Lemma 2.4(ii). Let σ be another {r}-coclique of greatest size
and σ′ = σ \ {r}. Assume that E(ρ′, L) 6= E(σ′, L). Then there is w ∈ σ′
with e(w, q) 6∈ E(ρ′, L). It follows from Lemma 2.4(iii) that {w} ∪ ρ is
an {r}-coclique in GK(L), which contradicts to the maximality of ρ. If
i = e(r, q) > 2 then Ri(q) and δ(L) are disjoint. As shown above, ρ′ consists
of primes large with respect to L, and so ρ′ and δ(L) are disjoint as well.
Lemma 2.2 yields that E(ρ′, L) depends only on i.

Let L be a simple classical group over a field of order q and characteristic
p, and let prk(L) = n > 13. Let r be small with respect to L and ρ be an
{r}-coclique of greatest size. As shown in Lemma 2.8, the set E(ρ \ {r}, L)
is contained in J(L) and does not depend on a choice of ρ, so we denote it
by J(r, L).

Lemma 2.9. Let L be a simple classical group over a field of order q and
characteristic p, and let prk(L) = n > 13. Suppose that r ∈ π(L), 2 6= r 6= p,
and t(r, L) 6 4. Then e(r, q), t(r, L), and J(r, L) are listed in Table 3.

Proof. The application of an adjacency criterion from [34, 35] reduces the
proof to easy arithmetical calculations.

Lemma 2.10. Suppose that L is a finite simple classical group over a field
of characteristic p. Then for every r ∈ π(L) there is s ∈ π(L) such that
p 6= s 6= r and rs 6∈ ω(L).
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Table 3: Cocliques of size at most 4

L e(r, q) Conditions t(r, L) J(r, L)

Lεn(q) νε(1) |εq − 1|r = nr 3 {νε(n− 1), νε(n)}
|εq − 1|r > nr 2 {νε(n)}
|εq − 1|r < nr 2 {νε(n− 1)}

νε(2) n ≡ 0 (mod 2) 2 {νε(n− 1)}
n ≡ 1 (mod 2) 2 {νε(n)}

νε(3) n ≡ 0 (mod 3) 3 {νε(n− 2), νε(n− 1)}
n ≡ 1 (mod 3) 3 {νε(n− 2), νε(n)}
n ≡ 2 (mod 3) 3 {νε(n− 1), νε(n)}

νε(4) n ≡ 0 (mod 4) 4 {νε(n− 3), νε(n− 2), νε(n− 1)}
n ≡ 1 (mod 4) 4 {νε(n− 3), νε(n− 2), νε(n)}
n ≡ 2 (mod 4) 4 {νε(n− 3), νε(n− 1), νε(n)}
n ≡ 3 (mod 4) 4 {νε(n− 2), νε(n− 1), νε(n)}

S2n(q) or 1 2 {2n}
O2n+1(q) 2 n ≡ 0 (mod 2) 2 {2n}

n ≡ 1 (mod 2) 2 {n}
4 n ≡ 0 (mod 4) 4 {n− 1, 2n− 2, 2n}

n ≡ 1 (mod 4) 4 {n, 2n− 2, 2n}
n ≡ 2 (mod 4) 3 {n− 1, 2n− 2}
n ≡ 3 (mod 4) 3 {n, 2n}

3 n ≡ 4 (mod 6) 4 {2n− 4, 2n− 2, 2n}
6 n ≡ 4 (mod 6) 4 {2n− 4, n− 1, 2n}

O+
2n(q) 1 2 {2n− 2}

2 n ≡ 0 (mod 2) 2 {n− 1}
n ≡ 1 (mod 2) 2 {n}

4 n ≡ 0 (mod 4) 3 {n− 1, 2n− 2}
n ≡ 1 (mod 4) 4 {n− 2, 2n− 2, n}
n ≡ 2 (mod 4) 3 {n− 1, 2n− 2}
n ≡ 3 (mod 4) 3 {n− 2, n}

3 n ≡ 4 (mod 6) 4 {2n− 6, 2n− 4, 2n− 2}
6 n ≡ 4 (mod 6) 4 {2n− 4, n− 3, n− 1}

n ≡ 5 (mod 6) 4 {2n− 2, n− 2, n}
O−2n(q) 1 2 {2n}

2 n ≡ 0 (mod 2) 2 {2n}
n ≡ 1 (mod 2) 2 {2n− 2}

4 n ≡ 0 (mod 4) 4 {n− 1, 2n− 2, 2n}
n ≡ 1 (mod 4) 4 {2n− 4, 2n− 2, 2n}
n ≡ 2 (mod 4) 4 {n− 1, 2n− 4, 2n− 2}
n ≡ 3 (mod 4) 3 {2n− 4, 2n}

3 n ≡ 5 (mod 6) 4 {2n− 4, 2n− 2, 2n}



Proof. It follows from [34] (e.g., see [37, Lemma 4] and [20, Lemma 12]).

We note without proof a more general result following from [34]: for
every finite nonabelian simple group L, which is not alternating, and for
every r ∈ π(L) there exists s ∈ π(L) not equal to r and satisfying rs 6∈ ω(L).

Lemma 2.11. Let r be a prime divisor of the order of a simple classical
group L over a field of order q, and let e(r, q) divide l ·2k, where l ∈ {1, 3, 5},
k is a nonnegative integer. If L = Lεn(q), then either ϕ(r, L) 6 2l or ϕ(r, L) =
e(r, q). If L is a symplectic or orthogonal group, then either ϕ(r, L) 6 l or
ϕ(r, L) = e(r, q)/2.

Proof. It follows from (7) by direct verification.

Lemma 2.12. Let L be a simple classical group over a field of order q and
characteristic p, and let prk(L) = n > 4. If r ∈ π(L) \ {p}, i = e(r, q), and
n/2 < ϕ(r, L) 6 n, then L includes a cyclic Hall subgroup of order ki(q).

Proof. It follows from formulae for orders of simple classical groups and
information on cyclic structure of their maximal tori (see, e.g., [38]).

Our main source on spectra of classical group is a series of papers [38, 39,
40] containing an explicit arithmetical criterion for a natural number to lie
in the spectrum of a classical group. In particular, the following lemma is a
direct corollary of these results and properties of e(r, q).

Lemma 2.13. Let L be a simple classical group over a field of order q and
characteristic p, and let prk(L) = n. Let k and l be integers, k > 0, l > 0,
and δ = δ(L). For j = 1, . . . , l, suppose that pairwise distinct primes rj lie
in π(L)\ (δ∪{p}) and put ij = e(rj, q). The product pkr1r2 · · · rl lies in ω(L)
if and only if the δ′-part of pka lies in ω(L), where

a =

{
[(εq)νε(i1) − 1, (εq)νε(i2) − 1, . . . , (εq)νε(il) − 1], if L = Lεn(q),

[qη(i1) + (−1)i1 , qη(i2) + (−1)i2 , . . . , qη(il) + (−1)il ] otherwise.

In particular, if i1, i2, . . . , il are greater than 2 and pairwise distinct, then
pkr1r2 · · · rl ∈ ω(L) if and only if pkki1(q)ki2(q) · · · kil(q) ∈ ω(L).

Proof. See [38, 39, 40].
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Remark 2. The last assertion of the lemma in the particular case k = 0,
l = 1 means the following: If r with e(r, q) = i > 2 divides |L|, then
ki(q) ∈ ω(L). If in addition n > 4, then obviously ki(q) ∈ ω(L) for i = 1, 2.
In particular, it gives another proof of Lemma 2.4(iv).

Lemma 2.14. Let L be a simple classical group over a field of order q and
characteristic p, and let prk(L) = n.

(i) If L = Lεn(q) and n > 23, then ω(L) contains a number k with k >
q4t(L)/3 and all prime divisors of k are large with respect to L.

(ii) If L ∈ {S2n(q), O2n+1(q)} and n > 29, or L = Oε
2n(q) and n > 30,

then ω(L) contains a number k with k > q10t(L)/9 and all prime divisors of k
are large with respect to L.

(iii) The numbers from ω(L) do not exceed q2t(L).
(iv) If pγ > 2n − 1, then the exponent of a Sylow p-subgroup of L does

not exceed pγ.

Proof. (i) Suppose that L = Lεn(q), where n > 29. Then t(L) = [(n +
1)/2] > 15 and n + 1 > 2t(L). By Lemma 1.9, there is a prime j such that
5(n + 1)/6 < j < n + 1. The inequalities j 6 n and j > n/2 imply that
kj(εq) lies in ω(L) and all its prime divisors are large with respect to L.
Furthermore, applying (1) it is easy to get the inequality kj(εq) > qj−3 (see,
for example, [17, Lemma 3.1]). It follows

j − 3 >
5(n+ 1)

6
− 3 >

5t(L)

3
− 3 >

4t(L)

3
.

If 23 6 n 6 28, then we prove the assertion by putting j = 23.
(ii) Let L be a symplectic or orthogonal group. To prove the lemma it

is sufficient to find a prime j such that j − 2 > 10t(L)/9, and either j < n
or L ∈ {S2n(q), O2n+1(q)} and j 6 n. Indeed, if these conditions hold, then
both numbers kj(q) and kj(−q) lie in ω(G), all their prime divisors are large,
and at least one of kj(q) and kj(−q) is greater than qj−2 (applying (1) again).
The required assertion will be also proved, if we find j, which is a power of
2, satisfying n/2 < j < n and k2j(q) = (qj + 1)/(2, q − 1) > q10t(L)/9.

Suppose that n > 54. Then t(L) > (3n − 2)/4 > 40. We find desired j
applying Lemma 1.9.

Let n be even. Then t(L) 6 (3n+ 4)/4 and, therefore, n+ 1 > (4t(L)−
1)/3. There exists a prime j with 8(n+ 1)/9 < j < n+ 1 and, in particular,
j > 8(4t(L)− 1)/27. Since n is even, we have j < n.
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Let n be odd and L ∈ {S2n(q), O2n+1(q)}. Then t(L) 6 (3n + 5)/4, and
so n + 2 > (4t(L) + 1)/3. There is a prime j with 8(n + 2)/9 < j < n + 2
and, in particular, j > 8(4t(L) + 1)/27. Since n is odd, the inequality j 6 n
holds.

Let, finally, n be odd and L = Oε
2n(q). Then t(L) 6 (3n + 3)/4, and so

n > (4t(L)− 3)/3. There is a prime j with 8n/9 < j < n and, in particular,
j > 8(4t(L)− 3)/27.

In all cases j > 8(4t(L)− 3)/27, hence

j − 2 >
8(4t(L)− 3)

27
− 2 =

32t(L)− 78

27
>

10t(L)

9
.

For n 6 53 we point out j explicitly.
If 48 6 n 6 53 then t(L) 6 41, and if t(L) = 41 then n = 53 and

L ∈ {S2n(q), O2n+1(q)}. Put j = 47, if t(L) 6 40, and j = 53, if t(L) = 41.
If 44 6 n 6 47, then t(L) 6 36 and j = 43 can be taken. If n = 42, 43, then
t(L) 6 33 and j = 41. If 38 6 n 6 41, then t(L) 6 32 and j equals 41 or 37
according to a type of group. If n = 32, then t(L) 6 25 and j = 31. If either
29 6 n 6 31 and L ∈ {S2n(q), O2n+1(q)}, or n = 30, 31 and L = Oε

2n(q), then
t(L) 6 24 and j = 29.

It remains to treat the case 33 6 n 6 37. It follows that t(L) 6 29. If
t(L) = 29, then n = 37 and L ∈ {S2n(q), O2n+1(q)}, so we put j = 37. Let
t(L) 6 28. We show that j = 32 is suitable in this case. If q is even then
k2j(q) = q32 + 1 > q280/9. If q is odd then q8/9 > 2, so k2j(q) > q32/2 >
q32/q8/9 = q280/9.

(iii) It follows from [2, Lemma 1.3] that numbers from ω(L) do not exceed
qm+1/(q − 1), where m is the Lie rank of L. Now the required assertion can
be easily obtained by using the formulae for t(L) from Table 1.

(iv) By [41, Proposition 0.5], the exponent of a Sylow p-subgroup of L is
equal to the minimal power of p greater than the maximal height h(L) of a
root in the root system of L. Since h(L) = n−1 for linear and unitary groups,
h(L) = 2n− 3 for orthogonal groups of even dimension, and h(L) = 2n− 1
for symplectic groups and orthogonal groups of odd dimension, the required
assertion follows.

3. Preliminaries: actions and automorphisms

In this section we collect some facts concerning spectra of covers and
automorphic extensions of classical groups. Our main tools are well-known
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results on Frobenius actions, Hall–Higman type theorems, as well as a de-
scription of parabolic subgroups and centralizers of field automorphisms of
classical groups.

We start with two known results on covers of finite groups.

Lemma 3.1 ([42, Lemma 10]). Suppose that K is a normal elementary
abelian p-subgroup of a finite group G, H ' G/K, and G1 = K o H is the
natural semidirect product under the action of H on K via conjugation. Then
ω(G1) ⊆ ω(G).

Lemma 3.2 ([18, Lemma 1.5]). Let G be a finite group, K be a normal
subgroup of G, and r ∈ π(K). Suppose that the factor group G/K has a
section isomorphic to a non-cyclic abelian p-group for some odd prime p
distinct from r. Then rp ∈ ω(G).

Now we put a result on a faithful Frobenius action and its corollary for a
cover of Frobenius group.

Lemma 3.3. If a Frobenius group FC with kernel F and cyclic complement
C = 〈c〉 of order n acts faithfully on a vector space V of positive characteristic
p coprime to the order of F , then the minimal polynomial of c on V is equal
to xn − 1. In particular, the natural semidirect product V o C contains an
element of order pn and dimCV (c) > 0.

Proof. See, e.g., [42, Lemma 2].

Lemma 3.4 ([43, Lemma 1]). Let G be a finite group, K be a normal
subgroup of G, and let G/K be a Frobenius group with kernel F and cyclic
complement C. If (|F |, |K|) = 1 and F does not lie in KCG(K)/K, then
r|C| ∈ ω(G) for some prime divisor r of |K|.

Next step is to discuss several results based on theorems of Hall–Higman
type. Our main source here is Di Martino and Zalesskii’s theorem [44] on min-
imal polynomials of elements of prime-power order lying in proper parabolic
subgroups of classical groups. We begin with a direct corollary of this theo-
rem.

Lemma 3.5. Let L be a simple classical group over a field of order q and
characteristic p, r ∈ π(L), rs ∈ ω(P ), where P is a proper parabolic subgroup
of L, and (r, 6p(q+ 1)) = 1. If L acts faithfully on a vector space V over the
field of characteristic t distinct from p, then trs ∈ ω(V o L).
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Proof. Let an element g ∈ P have an order rs. Since (r, 6p(q + 1)) = 1, it
follows from the main result of [44] that the minimal polynomial of g on V
has degree rs, so the lemma holds.

The proof of Di Martino and Zalesskii’s theorem is based on the appli-
cation of the Hall–Higman theorem and its cross-characteristic analogues to
the restriction of faithful representation of a classical group on its parabolic
subgroups. Next two lemmas contain very similar arguments, and we include
them because their formulations are convenient for our further purposes.

Lemma 3.6. Let s and p be distinct primes, a group H be a semidirect
product of a normal p-subgroup T and a cyclic subgroup C = 〈g〉 of order s,
and let [T, g] 6= 1. Suppose that H acts faithfully on a vector space V of
positive characteristic t not equal to p. If the minimal polynomial of g on V
does not equal xs − 1, then

(i) CT (g) 6= 1;
(ii) T is nonabelian;
(iii) p = 2 and s = 22δ + 1 is a Fermat prime.

Proof. If CT (g) = 1, then TC is a Frobenius group and the minimal
polynomial of g on V equals xs − 1 by Lemma 3.3. If T is abelian, then
T = [T, g] × CT (g) and [T, g]C is a Frobenius group acting on V faithfully.
Therefore, (ii) also holds. The last assertion follows from the Hall–Higman
theorem [45, Theorem 2.1.1] in the case t = s, and can be easily derived from
[46, Satz 17.13] (see, e.g., [47] and [48]) for t 6= s.

Lemma 3.7. Let L be a simple classical group over a field of order q and
characteristic p, and prk(L) > 4. Suppose that a prime s divides the order
of a proper parabolic subgroup of L, and (s, p(q2 − 1)) = 1. Then L includes
a subgroup H such that H is a semidirect product of a normal p-subgroup T
and a cyclic subgroup C = 〈g〉 of order s with [T, g] 6= 1, and at least one of
three assertions from the conclusion of Lemma 3.6 does not hold for H.

Proof. First of all, observe that s > 3 because (s, p(q2 − 1)) = 1. Let g
be an element of order s in L. There exists a proper parabolic subgroup
P of L admitting the Levi decomposition A : B, where A is the unipotent
radical, B is the Levi factor, and g ∈ B. By [49, 13.2], we have g 6∈ CL(A),
so [A, g] 6= 1. Suppose that the conclusion of the lemma does not hold. Then
q = 2β, s = 22δ + 1 is a Fermat prime, A is nonabelian, and CA(g) 6= 1. First
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we assume that s is coprime to the order of a stabilizer of one-dimensional
totally isotropic (totally singular) subspace in the natural representation of L.
If it occurs, the one of the following holds: L = Un(q), e(s,−q) is even and
e(s,−q) > n − 1; L = S2n(q) = O2n+1(q) or L = O+

2n(q) and e(s, q) = n is
odd; L = O−2n(q) and e(s, q) = n − 1 is odd. However, in all these cases, it
follows from [34, Table 4] that s and p are not adjacent in GK(L), and so
CA(g) = 1, a contradiction. Thus, we may assume that P is a stabilizer of
one-dimensional totally isotropic subspace. Since p = 2, the unipotent radical
A of P is abelian, unless L = Un(q) (see, for example, [44, Lemma 3.1]).
Therefore, L = Un(q). Now s = 22δ + 1 is a Fermat prime greater than 3,
so e(s, 2) = 2δ+1 > 4. Putting e(s, q) = l, we have 2δ+1 divides βl and does
not divide βi for i < l. If l{2} 6 2, then 2δ+1 divides 2β, which is impossible
because l > 2. Hence e(s,−q) = e(s, q) = l ≡ 0 (mod 4). Furthermore, as
proved, e(s,−q) < n−1. By [20, Lemma 5], L has a Frobenius subgroup TC
such that its kernel T is a p-subgroup, and a complement C has the order s.
This completes the proof.

The subgroup H from the conclusion of Lemma 3.7 is said to be good in
L with respect to a prime s.

The next lemma gives an easy criterion whether a prime divisor of the
order of a classical group divides the order of some its proper parabolic
subgroup.

Lemma 3.8. For a simple classical group L over a field of order q and char-
acteristic p with prk(L) = n > 4, put

j =


n, if L ' Ln(q);
2n− 2, if either L ' O+

2n(q) or L ' Un(q) and n is even,
2n, otherwise.

Then (kj(q), |P |) = 1 for every proper parabolic subgroup P of L. If i 6= j and
a primitive prime divisor ri(q) lies in π(L), then there is a proper parabolic
subgroup P of L such that ki(q) lies in ω(P ). In particular, if two distinct
primes r, s ∈ π(L) do not divide the order of any proper parabolic subgroup
of L, then r and s are adjacent in GK(L).

Proof. The order and structure of parabolic subgroups of finite classical
groups are well-known (see, for example, [50, Propositions 4.1.17–4.1.20]). So
it is easy to verify that (kj(q), |P |) = 1 for every proper parabolic subgroup
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P of L. Let r ∈ π(L) and e(r, q) = i 6= j. Since n > 4, it is clear that if
i 6 2 then there is a proper parabolic subgroup P with ki(q) ∈ ω(P ). So we
may assume that i > 2. Applying [50, Propositions 4.1.17–4.1.20] again, we
obtain a proper parabolic subgroup P with the Levi factor having a section
isomorphic to a simple classical group M over a field of order q (with one
exception when M is over a field of order q2) such that r divides M . If
M is over a field of order q, then ki(q) ∈ ω(M) ⊆ ω(P ) by Lemma 2.13.
In the exceptional case L = Un(q), n even, M ' Ln/2(q

2). Again, using
Lemma 2.13, we have kn/2(q

2) ∈ ω(M), and kn(q) ∈ ω(M) ⊆ ω(P ) by
Lemma 1.2. Finally, if two distinct primes r, s ∈ π(L) do not divide the
order of any proper parabolic subgroup of L, then r, s ∈ Rj(q), so they are
adjacent to each other by Lemma 2.4(iv).

In the end of the section we handle the spectra of extensions of classical
groups by field automorphisms.

Lemma 3.9. Let a symbol X be chosen from the set {SLεn, Sp2n,Ω2n+1,Ω
ε
2n}.

Suppose that q is a prime power, and τ is a field automorphism of odd order
t of the group X(q). Then

ω(X(q) o 〈τ〉) =
⋃
k|t

kω(X(q1/k)). (10)

Proof. If X = SLεn, then the assertion is proved in (i) of Corollary 14 in
[51]. The proof is based on the general result on connected linear algebraic
groups [51, Proposition 13]. So it can be extended to the other cases exactly
by the same way as in the proof of Corollary 14 from [51].

Given a finite group G and a prime r, let expr(G) stand for the r-exponent
of G, i.e., the exponent of its Sylow r-subgroup.

Lemma 3.10. Let L be a simple classical group over a field of order q, and
r ∈ π(L). Suppose that (r, q| InndiagL/L|) = 1, and if L = Oε

8(q) then r 6= 3.
If L 6 G 6 AutL, then expr(L) = expr(G).

Proof. It is nothing to prove if |G/L|r = 1. Let |G/L|r = rκ > 1. Since
(r, q| InndiagL/L|) = 1 and r 6= 3 for L = Oε

8(q), the group G includes
a subgroup H isomorphic to the extension of L by the field automorphism
τ of order rκ, and expr(G) = expr(H). Choose the symbol X from the
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statement of Lemma 3.9 so that L is the nonabelian composition factor
of X(q). Then expr(X(q)) = expr(L). Furthermore, τ can be lifted to the
field automorphism of X(q), which we denote by the same letter τ . Thus,
expr(X(q)) = expr(L) 6 expr(H) 6 expr(X(q) o 〈τ〉), and it is sufficient to
prove that the r-exponents of X(q) and X(q) o 〈τ〉 are equal.

Put q0 = q1/r. Since i = e(r, q) divides r − 1, we have (r, i) = 1. It
follows from Lemma 1.7(ii) that i = e(r, q0) and (qi − 1){r} = r((q0)

i − 1){r}.

Applying Lemma 1.7(i), it is easy to see that expr(X(q)) = (qir
l − 1){r}

for some nonnegative integer l. Therefore, expr(X(q)) = (qir
l − 1){r} =

rl(qi − 1){r} = rl+1((q0)
i − 1){r} = r((q0)

irl − 1){r} = r expr(X(q0)). The
equality expr(X(q)) = r expr(X(q0)) yields the validity of the following chain
of equalities:

expr(X(q)) = r expr(X(q1/r)) = . . . = rκ expr(X(q1/r
κ

)). (11)

By Lemma 3.9, we have

ω(X(q) o 〈τ〉) =
⋃

06l6κ

rlω(X(q1/r
l

)). (12)

The lemma follows from (11) and (12).

4. Proof: restrictions on K and G/S

The following four sections contain the proof of Theorem 3. Throughout
L is a simple classical group over a field of order q and characteristic p, and
prk(L) = n. We will prove the theorem by contradiction. So we assume
that there exists a finite group G isospectral to L with a unique nonabelian
composition factor S isomorphic to a simple group of Lie type over a field of
order u and characteristic v distinct from p. Further, since the assumptions
on prk(L) in the hypothesis of Proposition 2 are weaker than ones from
the hypothesis of Theorem 3, we obtain that S is a classical group and put
prk(S) = m. Here and below K is the soluble radical of G, G = G/K, S is
treated as a subgroup of G, so S E G 6 AutS and G/S 6 OutS.

The purpose of this section is to prove the following three propositions
under the assumption that the dimension of the natural representation of
L, denoted by dimL, is at least 40. Observe that the hypothesis of Theo-
rem 3 yields dimL > 40, and the later inequality implies the validity of the
assumptions on prk(L) from Proposition 2.

25



Proposition 3. Suppose that dimL > 40. Then the soluble radical K of G
is nilpotent. If r ∈ π(K) \ {v}, then t(r, L) = 2, and (s, |K| · |G/S| · |P |) = 1
for every s ∈ π(L) nonadjacent to r in GK(L) and every proper parabolic
subgroup P of S.

Proposition 4. Suppose that dimL > 40. If a prime r not equal to p divides
the order of G/S, then either ϕ(r, L) 6 n/3, or L = Lεn(q), n ∈ [2γ+3, 9 · 2γ),
and e(r, εq) = ϕ(r, L) = 3 · 2γ for some integer γ > 3. In particular, r is
small with respect to L.

Proposition 5. Suppose that dimL > 40. If a prime r is large with respect
to L, then (r, pv|K| · |G/S|) = 1 and ke(r,q)(q) ∈ ω(S). In particular, t(S) >
t(L).

The following six lemmas show that Propositions 3 and 4 hold.

Lemma 4.1. If r ∈ π(L) \ {p} and ϕ(r, L) > n/2, then r does not divide
|G/S|.

Proof. Assume to the contrary that r divides |G/S|.
Let L be a linear or unitary group first. Since dimL = prk(L) = n > 40

there are integers α, β > 2 and γ > 3 with n/2 < 2α, 3 · 2β, 5 · 2γ 6 n. Set
I = {2α, 3 · 2β, 5 · 2γ}. Then the numbers ki(q), where i ∈ I, lie in ω(L)
and, for every prime divisor s of any of these numbers, ϕ(s, L) > n/2. By
hypothesis ϕ(r, L) > n/2, hence Lemma 2.4(iii) implies that r is adjacent to
s if and only if e(r, q) = e(s, q). Therefore, there exist at least two numbers a
and b from {ki(q) | i ∈ I} such that rs 6∈ ω(L) for every prime s dividing ab.
If s ∈ π(a), w ∈ π(b), then {r, s, w} is a coclique in GK(L), so both a and
b lie in ω(S) by Proposition 1(ii). If at least one prime divisor w of one of
these numbers satisfies ϕ(w, S) 6 m/2, then, for every prime divisor s of the
other, we have ϕ(s, S) > m/2 by Lemma 2.4(ii). Thus, the set {ki(q) | i ∈ I}
contains a number k such that rs 6∈ ω(L) and ϕ(s, S) > m/2 for every
prime s dividing k. Lemma 2.4(iii) implies that e(s, u) is the same for every
prime divisor s of k. Therefore, k divides ke(s,u)(u). Since ϕ(s, S) > m/2,
Lemma 2.12 yields that S has a cyclic Hall subgroup of order ke(s,u)(u). The
s-exponent of L equals k{s} for every s dividing k, so (k, ke(s,u)(u)/k) = 1 and
S has a cyclic Hall subgroup H of order k. Let s ∈ π(k). The normalizer
NG(P ) in G of a Sylow s-subgroup P of S contains an element x of order r
by Frattini argument. Therefore, H〈x〉 is a Frobenius group, and so r divides
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|P | − 1. Since the last inference is valid for every prime s ∈ π(k) and H is
cyclic of order k, the prime r divides k − 1 = ki(q) − 1 for some i ∈ I. It
follows from Lemma 1.4 that e(r, q) divides c = 2δ with c 6 n/2. Lemma 2.11
implies that ϕ(r, L) either divides c or equals 2. Both possibilities contradict
the hypothesis ϕ(r, L) > n/2.

Now let L be a symplectic or orthogonal group. Since dimL = 2 prk(L) =
2n > 40, there are integers α, β > 2 and γ > 3 with n < 2α, 3 ·2β, 5 ·2γ 6 2n.
Put I = {2α, 3 · 2β, 5 · 2γ}. Exclude the case when L = O+

2n(q) and 2n ∈ I
for a while. Then numbers ki(q), where i ∈ I, lie in ω(L) and ϕ(s, L) =
i/2 > n/2 for every prime divisor s of any of these numbers. Repeating
the arguments of the preceding paragraph word for word, we derive that
r divides ki(q) − 1 for some i ∈ I. Therefore, e(r, q) divides c = 2δ with
c 6 n by Lemma 1.4. Lemma 2.11 yields that ϕ(r, L) = e(r, q)/2 divides c/2,
contrary to ϕ(r, L) > n/2. Let, finally, L = O+

2n(q) and 2n ∈ I. We consider
the set I ′ = (I ∪ {n}) \ {2n} instead of I. The numbers ki(q), where i ∈ I ′,
lie in ω(L). By adjacency criterion (see [34] or Table 1), rs 6∈ ω(L) for every
primes s with e(s, q) = n. Therefore, there exist at least two numbers a and
b from {ki(q) | i ∈ I ′} such that rs 6∈ ω(L) for every prime s dividing ab. If
s ∈ π(a) and w ∈ π(b), then {r, s, w} is the coclique in GK(L) (again see
Table 1), so both a and b lie in ω(S) by Proposition 1(ii). Repeating the
preceding arguments once more, we conclude that r divides ki(q)− 1 for one
of i ∈ I ′. Again e(r, q) divides c = 2δ with c 6 n, which is impossible because
ϕ(r, L) > n/2.

Lemma 4.2. If r ∈ π(K) ∪ π(G/S) and r 6= v, then vr ∈ ω(G). There
exists s ∈ π(S) \ (π(K) ∪ π(G/S) ∪ {v}) such that vs 6∈ ω(G).

Proof. If v = 2, then the first assertion of the lemma holds by Proposi-
tion 1(iii). Assume that v is odd. It follows from Proposition 1(ii) that the
dimension of S is large enough, so S 6' L2(v) and a Sylow v-subgroup of S
includes a noncyclic abelian subgroup. Therefore, by Lemma 3.2, we have
rv ∈ ω(G) for every r ∈ π(K) \ {v}. Furthermore, it is well-known that
the centralizer in S of any outer automorphism of S contains an element of
order v. Thus, the first assertion of the lemma is completely proved. On the
other hand, Lemma 2.10 yields that there is s ∈ π(L) \ {v} with sv 6∈ ω(L).
Now the latter assertion of the lemma follows from the former one.

Lemma 4.3. If r, s ∈ π(G), r divides |K|, s does not lie in π(K) and divides
the order of some proper parabolic subgroup of S, then rs ∈ ω(G).
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Proof. We may assume that s 6= v by Lemma 4.2, and s 6= 2 by Proposi-
tion 1(iii). Put C = CG(K) for the centralizer of K in G. If C 6⊆ K, then the
preimage of S in G lies in CK, and so the factor group C/(C ∩K) ' CK/K
has a subgroup isomorphic to S, hence rs ∈ ω(G). Therefore, C 6 K.
If S has an elementary abelian subgroup of order s2, then rs ∈ ω(G) by
Lemma 3.2, so we may assume that there is no such subgroup in S, in par-
ticular, it follows (s, u2 − 1) = 1.

Consider a normal r-series of K:

1 = R0 6 K1 < R1 6 K2 6 . . . 6 Rt−1 < Kt 6 Rt = K,

where Ki/Ri−1 = Or′(K/Ri−1) and Ri/Ki = Or(K/Ki).
First we suppose that R = Rt/Kt 6= 1. Put V = R/Φ(R) for the factor

group of R by its Frattini subgroup Φ(R). It follows from Lemma 3.1 that
ω(V o S) ⊆ ω(G), where V o S is the natural semidirect product under the
action of S on V by conjugation. By Lemma 3.7, the group S has a subgroup
H which is good in S with respect to s. Since C 6 K, the action of H on V
by conjugation is faithful. Therefore, by Lemma 3.6, there exists an element
g of order s in H such that the minimal polynomial of g under this action is
equal to xs − 1. Thus, rs ∈ ω(G) in this case.

Let K = Rt = Kt and put K̃ = K/Rt−1. Assume that v does not divide

|K̃|. Once more we take a subgroup H that is good in S with respect to s. By

the Schur–Zassenhaus theorem, the factor group G̃ = G/Rt−1 has a subgroup

H̃ isomorphic to H. Put V = Rt−1/Φ(Rt−1). If CG̃(V ) does not lie in K̃,

then CG̃(V )K̃/K̃ has a subgroup isomorphic to S, hence s divides CG̃(V )

and rs ∈ ω(G). Furthermore, H̃ ∩ K̃ = 1. So H̃ acts on V faithfully and we
derive rs ∈ ω(G) by Lemma 3.6.

Finally, suppose that v divides |K̃|. Let T̃ be a Sylow v-subgroup of K̃

and G̃ = G/Rt−1. Applying, if necessary, the Frattini argument, we may

assume that T̃ E G̃. Let U be a minimal normal in G̃ subgroup of the
center Z(T̃ ) of T̃ and put V = Rt−1/Φ(Rt−1). If an element g of order s

from G̃ centralizes U , then CG̃(U)K̃/K̃ includes a subgroup isomorphic to
S, so v is adjacent to every prime divisor of the order of S, which contradicts
Lemma 4.2. Thus, A = [U, g] 6= 1 and A〈g〉 is a Frobenius group with a cyclic

complement of order s. Since CG̃(V ) is normal in G̃, either U 6 CG̃(V ) or
CG̃(V )∩U = 1. The former is impossible because Kt−1/Rt−2 = Or′(K/Rt−2).
Therefore, A does not lie in V CK̃(V ). Lemma 3.3 yields rs ∈ ω(H).
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Lemma 4.4. If r ∈ π(K)\{v}, then t(r, L) = 2, and (s, |K|·|G/S|·|P |) = 1
for every s ∈ π(L) nonadjacent to r in GK(L) and every proper parabolic
subgroup P of S.

Proof. Observe first that t(r, L) > 2 due to Lemma 2.10. Suppose that
t(r, L) > 2 and ρ is any {r}-coclique of size at least 3. It follows from
Proposition 1(ii) that (s, |K|·|G/S|) = 1 for every s ∈ ρ\{r}. By Lemma 4.3,
all such s do not divide the order of any proper parabolic subgroup of S. It
contradicts to Lemma 3.8.

Thus, t(r, L) = 2. If r = 2, then the lemma holds due to Proposition 1(iii)
and Lemma 4.3. So we assume that r is odd. Let {r, s} be a coclique
in GK(L). Using Table 3, we have n/2 < ϕ(s, L) 6 n. Therefore, s does
not divide |G/S| by Lemma 4.1. Furthermore, applying Table 1, we obtain
a coclique ρ in GK(L) of size 3 with s ∈ ρ. Suppose that s divides |K|.
Then t does not divide |G/S| · |K| for every t ∈ ρ \ {s} by Proposition 1(ii).
Now Lemma 3.8 yields that there exists a prime t from ρ \ {s} dividing the
order of some proper parabolic subgroup of S. If t = v, then ts ∈ ω(G) by
Lemma 4.2, and if t 6= v, then ts ∈ ω(G) by Lemma 4.3, a contradiction
with the choice of t. Therefore, s does not divide |G/S| · |K|. Yet another
application of Lemma 4.3 completes the proof.

Lemma 4.5. The soluble radical K is nilpotent.

Proof. Assume the contrary. Then the Fitting subgroup F = F (K) is

a proper subgroup of K. Put G̃ = G/F , K̃ = K/F , and set H̃ for the

preimage of S in G̃. Let T̃ be a minimal normal subgroup of G̃ lying in K̃,
and put T for its preimage in G. The solubility of K̃ implies that T̃ is an
elementary abelian t-group for a prime t. Let r ∈ π(F ) \ {t}, R be the

Sylow r-subgroup of F , Cr = CG(R) be the centralizer of R in G, and C̃r be

the image of this centralizer in G̃. Since C̃r is a normal subgroup of G̃, the
minimality of T̃ yields that either C̃r ∩ T̃ = 1 or T̃ 6 C̃r. If T̃ 6 C̃r for every
r ∈ π(F ) \ {t}, then T is a normal nilpotent subgroup of K, a contradiction.

Thus, there is a prime r ∈ π(F ) \ {t} with C̃r ∩ T̃ = 1. If K̃ does not include

C̃ = CG̃(T̃ ), then C̃K̃ includes H̃ and t is adjacent to every prime from π(S),

which is impossible due to Lemma 4.4. So C̃ 6 K̃. Lemma 4.4 implies that
there exists s ∈ π(S) \ π(K) with rs 6∈ ω(G). Consider a cyclic subgroup

〈x〉 of order s in H̃. Observe that t 6= s because t ∈ π(K). Therefore,

T̃ = [T̃ , x] × CT̃ (x) and CT̃ (x) 6= T̃ . Hence A = [T̃ , x] : 〈x〉 is a Frobenius
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group with a cyclic complement of order s. Since C̃r ∩ T̃ = 1, the action of
A on R/Φ(R) is faithful. By Lemma 3.3, we obtain rs ∈ ω(G) and so derive
a contradiction. The lemma and Proposition 3 are proved.

Lemma 4.6. If a prime r not equal to p divides the order of G/S, then either
ϕ(r, L) 6 n/3, or L = Lεn(q), n ∈ [2γ+3, 9 · 2γ), and e(r, εq) = ϕ(r, L) = 3 · 2γ
for some integer γ > 3. In particular, r is small with respect to L.

Proof. We start with two simple observations. First, for all primes s ∈
π(L) treated in the further proof, we have s 6= p and e(s, q) > 2, so, by
Lemma 2.13, two such primes s and w with distinct e(s, q) and e(w, q) are
adjacent if and only if ke(s,q)(q) · ke(w,q)(q) ∈ ω(L). Due to this fact, ki(q)
and kj(q) are said to be adjacent (nonadjacent) if their prime divisors are
adjacent (nonadjacent). Second, if ϕ(s, L) > n/2 for s ∈ π(L), then ke(s,q)(q)
is coprime to |K| · |G/S| and ke(s,q)(q) ∈ ω(S), hence, if ϕ(w,L) > n/2 and
e(w, q) 6= e(s, q) for w ∈ π(L), then ke(s,q)(q) · ke(w,q)(q) ∈ ω(L) if and only
if ke(s,q)(q) · ke(w,q)(q) ∈ ω(S). Applying Lemmas 2.4(iii), 2.12 and arguing
as in the proof of Lemma 4.1, we obtain the following: if ki(q) and kj(q) are
distinct and nonadjacent in GK(L), then S includes a cyclic Hall subgroup
of order ki(q) or kj(q).

We will prove the lemma from the contrary. Given r dividing |G/S|,
put ϕ(r, L) = l, and observe that we may assume n/3 < l 6 n/2 due to
Lemma 4.1. The proof is similar to the proof of Lemma 4.1 but more labor-
consuming. Its idea is as follows. Suppose that we find out an integer i such
that S includes a cyclic Hall subgroup of order ki(q) and r is nonadjacent to
any prime divisor of ki(q) in GK(L). Then G contains a Frobenius subgroup
with kernel of order ki(q) and complement of order r (see proof of Lemma 4.1),
so r divides ki(q)− 1. If, according to Lemma 1.4, we take i with ϕ(s, L) 6
n/3 for every prime divisor s of ki(q) − 1, then the desired contradiction is
obtained.

Since the case of symplectic and orthogonal groups is slightly easier than
the case of linear and unitary groups, let us assume that L is a symplectic
or orthogonal group at first.

If s ∈ π(L) is chosen so that e(s, q) is a multiple of 4 and n/2 < ϕ(s, L) 6
n, then r and s are nonadjacent provided ϕ(r, L) + ϕ(s, L) > n. Indeed,
the adjacency criterion for symplectic and orthogonal groups [35, Proposi-
tions 2.4 and 2.5] implies that the adjacency of r and s with ϕ(r, L)+ϕ(s, L) >
n is possible only if e(s, q)/e(r, q) is an odd integer. Therefore, e(r, q) is also
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a multiple of 4, and e(r, q) = 2ϕ(r, L) < n cannot be equal to e(s, q) =
2ϕ(s, L) > n. So ϕ(s, L)/ϕ(r, L) = e(s, q)/e(r, q) > 3, which leads to the
impossible chain of the inequalities: n > ϕ(s, L) > 3ϕ(r, L) > 3n/3 = n.

Since L is symplectic or orthogonal, it follows that dimL = 2n > 40.
So there is an integer γ > 3 with 2n ∈ J = [5 · 2γ, 5 · 2γ+1). We partition
J into six intervals J = J1 ∪ . . . ∪ J6, putting J1 = [5 · 2γ, 11 · 2γ−1), J2 =
[11 · 2γ−1, 3 · 2γ+1), J3 = [3 · 2γ+1, 7 · 2γ), J4 = [7 · 2γ, 2γ+3), J5 = [2γ+3, 9 · 2γ),
and J6 = [9 · 2γ, 5 · 2γ+1).

Suppose that 2n ∈ J1∪J2. Let a = 9·2γ−1, and let s be an arbitrary prime
divisor of ka(q). The number a is divided by 4 and satisfies the inequalities
4n/3 < a < 2n. It follows that 2n/3 < ϕ(s, L) = a/2 < n, so r and s is
nonadjacent due to the inequality a/2+l > 2n/3+n/3 = n and the adjacency
criterion (see the observation above). The group L has a cyclic subgroup of
order ka(q), and so does S. If such subgroup of S is a Hall subgroup, then r
divides ka(q)−1. In this case Lemma 1.4 yields ϕ(r, L) 6 e(r, q) 6 a/6 < n/3,
a contradiction. Thus, we assume that S has not a cyclic Hall subgroup of
order ka(q). Let b = 2γ+2. The number b is also divided by 4 and satisfies
2n/3 < ϕ(s, L) = b/2 < n for every prime divisor s of kb(q). Since ka(q) are
kb(q) distinct and nonadjacent, S includes a cyclic Hall subgroup of order
kb(q). It follows from b/2 + l > n that r and kb(q) are nonadjacent. Hence
r divides kb(q) − 1. By Lemma 1.4, e(r, q) divides 2γ+1. If e(r, q) 6= 2γ+1,
then l = e(r, q)/2 6 2γ−1 = 3 · 2γ−1/3 < n/3, contrary to our assumption.
Therefore, e(r, q) = 2γ+1.

If 2n ∈ J1 then put c = 7 · 2γ−1. Given s ∈ Rc(q), we have ϕ(s, L) = c/2.
Due to the inequalities n < c < 2n and c/2 + l = 7 · 2γ−2 + 2γ = 11 · 2γ−2 > n
the group S has a cyclic Hall subgroup of order kc(q) and r is nonadjacent to
every prime divisor of kc(q). Lemma 1.4 implies that e(r, q) = 2γ+1 divides
3 · 2γ−1, a contradiction.

If 2n ∈ J2, set c = 11 · 2γ−1. Then n < c 6 2n. If c = 2n, let L 6= O+
2n(q)

at first. Then we may suppose that S has a cyclic Hall subgroup of order
kc(q). It follows from c/2 + l = 11 · 2γ−2 + 2γ = 15 · 2γ−2 > n that r is not
adjacent to kc(q), hence r divides kc(q) − 1. By Lemma 1.4, e(r, q) = 2γ+1

divides 5 · 2γ−1, a contradiction. If c = 2n and L = O+
2n(q), then L does not

contain an element of order kc(q), which forces us to complicate a little our
arguments. Consider the interval I = (2l + 1, n) = (2γ+1 + 1, 11 · 2γ−2) and
show that it always contains a prime, which we denote by w. If γ = 3 then
w = 19 ∈ I. If γ > 4, then n > 30 and I contains a prime w due to the
inequality 2l + 1 < 5n/6 and Lemma 1.9. Since (q − 1, q + 1) 6 2 and w is
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odd, there is ε ∈ {+,−} such that (w, εq − 1) = 1. By our assumption, a
cyclic subgroup of order ka(q) is not a Hall subgroup of S. It follows that a
subgroup H of order kw(εq) must be a Hall subgroup of S. Hence r divides
kw(εq)−1 = εq((εq)w−1−1)/(εq−1), so e(r, εq) = e(r, q) = 2l divides w−1,
which is impossible because e(r, q) = 2γ+1 < w − 1 < 11 · 2γ−2 < 2e(r, q).
Thus, the lemma holds in the case 2n ∈ J1 ∪ J2.

Suppose that 2n ∈ J3 ∪ J4 ∪ J5. Put a = 9 · 2γ−1 if 2n = 3 · 2γ+1, and
put a = 3 · 2γ+1 otherwise. As in the previous case, a is a multiple of 4,
4n/3 < a < 2n, and r cannot divide ka(q)− 1 by Lemma 1.4. There exists a
cyclic subgroup of order ka(q) in S. If it is a Hall subgroup, then we derive
a contradiction immediately.

If 2n ∈ J3, set b = 5 · 2γ. Then 2n/3 < b/2 < n, so S includes a
cyclic Hall subgroup of order kb(q). It follows from b/2 + l > n that r is
not adjacent to kb(q), so r divides kb(q) − 1. By Lemma 1.4, e(r, q) divides
2γ+1, and the condition e(r, q)/2 = l > n/3 yields e(r, q) = 2γ+1. Let c =
11·2γ−1. Following the same way, we obtain that r divides kc(q)−1. Applying
Lemma 1.4, we conclude that e(r, q) = 2γ+1 must divide 5 · 2γ−1, which is
impossible.

If 2n ∈ J4, put b = 7 · 2γ and c = 11 · 2γ−1. Then S has cyclic Hall
subgroups of orders kb(q) (except the case: 2n = b and L = O+

2n(q), treated
separately) and kc(q). It follows from b/2 + l > n that r divides kb(q)− 1, so
e(r, q) = 3 · 2γ. Then c/2 + l = 11 · 2γ−2 + 3 · 2γ−1 > 2γ+2 > n, hence e(r, q)
divides 5 · 2γ−1, a contradiction. Let b = 2n and L = O+

b (q). The existence
of a cyclic Hall subgroup of order kc(q) in S yields e(r, q) = 2l = 5 · 2γ−1.
There is a prime w in I = (2l + 1, n) = (5 · 2γ−1 + 1, 7 · 2γ). Indeed, one
can put w = 23 for γ = 3, and apply Lemma 1.9 for γ > 4. Now we choose
ε ∈ {+,−} so that (w, εq − 1) = 1. The group S has a cyclic Hall subgroup
of order kw(εq), so r divides kw(εq) − 1. Therefore, e(r, q) divides w − 1,
which is impossible because e(r, q) < w − 1 < 2e(r, q).

If 2n ∈ J5, put b = 2γ+3 and c = 7 ·2γ. If L 6= O+
b (q), then there are cyclic

Hall subgroups of S having orders kb(q) and kc(q). Then r divides kb(q)−1, so
e(r, q) = 2γ+2, and r and kc(q) are nonadjacent due to c/2 + l > n. However,
2γ+2 does not divide 3 · 2γ, a contradiction. Let L = O+

b (q). The existence
of a cyclic Hall subgroup of order kc(q) provides e(r, q) = 2l = 3 · 2γ. Since
n = b/2 = 2γ+2 > 30, there is a prime w in I = (2l + 1, n) by Lemma 1.9.
Arguing as in the previous case, we obtain that e(r, q) divides w − 1 and so
derive a contradiction.

Suppose, finally, that 2n ∈ J6. Put a = 3·2γ+1 for 2n = 9·2γ, and a = 9·2γ
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otherwise. By the choice of a, we must assume that a cyclic subgroup of
order ka(q) in S is not a Hall subgroup in order to avoid the immediate
contradiction (similarly to the previous cases). Putting b = 2γ+3, we obtain
that S has a cyclic Hall subgroup of order kb(q), and derive e(r, q) = 2γ+2.
Handling a cyclic Hall subgroup of order kc(q), where c = 7 · 2γ, and the
inequality c/2 + l = 11 · 2γ > n, we conclude that e(r, q) divides 3 · 2γ,
a contradiction. Thus, the lemma is proved for symplectic and orthogonal
groups.

Let L = Lεn(q). It follows that l = ϕ(r, L) = e(r, εq). If s ∈ π(L) is
chosen so that e(s, q) is a multiple of 4, then e(s, q) = e(s,−q) = ϕ(s, L).
Unfortunately, unlike the case of symplectic and orthogonal groups, the in-
equalities n/2 < ϕ(s, L) 6 n and l + ϕ(s, L) > n do not guarantee that r
and s are nonadjacent, because ϕ(s, L)/l can be an integer greater than 1
(see [18, Lemma 2.1]).

By the hypothesis dimL = n > 40, so there is an integer γ > 3 with
n ∈ J = [5 · 2γ, 5 · 2γ+1). We consider the same partition J = J1 ∪ . . .∪ J6 as
in the case of symplectic and orthogonal groups.

Suppose that n ∈ J1 ∪ J2. Let a = 9 · 2γ−1 and b = 2γ+2. The numbers
a and b are divided by 4, and the inequalities 2n/3 < b < a < n hold.
Therefore, due to the adjacency criterion [18, Lemma 2.1], r is adjacent to
ka(q) (kb(q) respectively) if and only if l divides a (l divides b). Assume
that l does not divide a. The group S has a cyclic subgroup H of order
ka(q). If H is a Hall subgroup, then r divides ka(q) − 1, so e(r, q) divides
3 · 2γ−2 by Lemma 1.4. Then l 6 3 · 2γ−2 < n/3, a contradiction. If H is
not a Hall subgroup, then a cyclic subgroup of order kb(q) in S must be Hall
due to the nonadjacency of ka(q) and kb(q). If r is adjacent to kb(q) then l
divides b. The inequalities l > n/3 and b < n yield l = b/2 = 2γ+1. Then
l is a multiple of 4, and so e(r, q) = l = 2γ+1. If r is nonadjacent to kb(q),
then r divides kb(q)− 1, and Lemma 1.4 implies that e(r, q) divides 2γ+1. It
follows from the inequality l > n/3 that e(r, q) = 2γ+1. Assume, finally, that
l divides a, then l = 9 · 2γ−2 because n/3 < l 6 n/2. Thus, the following
alternative holds: either l = e(r, q) = 2γ+1 or l = 9 · 2γ−2. Furthermore,
subgroups of orders ka(q) and kb(q) in S cannot be Hall simultaneously,
otherwise 2γ+1 = l = 9 · 2γ−2.

If n ∈ J1, put c = 7·2γ−1. For both of alternative values, l does not divide
c and c+ l > n. Indeed, 7 · 2γ−1 + 9 · 2γ−2 > 7 · 2γ−1 + 2γ+1 = 11 · 2γ−1 > n.
Therefore, r is nonadjacent to kc(q). Furthermore, S includes a cyclic Hall
subgroup of order kc(q), hence r divides kc(q) − 1. It follows that e(r, q)
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divides 3 · 2γ−1, which is impossible.
If n ∈ J2, put c = 11 · 2γ−1. Since l does not divide c and the inequalities

11 · 2γ−1 + 9 · 2γ−2 > 11 · 2γ−1 + 2γ+1 = 15 · 2γ−1 > n hold, r is nonadjacent
to kc(q). Therefore, r divides kc(q) − 1. Due to Lemma 1.4, e(r, q) must
divide 5 · 2γ−1, a contradiction. This completes the proof for n ∈ J1 ∪ J2.

Let n ∈ J3∪J4∪J5. Put a = 3 ·2γ+1 and observe that 2n/3 < a 6 n. If r
divides ka(q)− 1, then e(r, q) divides 2γ+1 6 n/3 by Lemma 1.4. Therefore,
similarly to the previous case, we can avoid the immediate contradiction just
in two cases: either a cyclic subgroup H of order ka(q) is not a Hall subgroup
of S or l = e(r, q) = 3 · 2γ.

Let n ∈ J3 and b = 5 · 2γ. If H is not a Hall subgroup, then a cyclic
subgroup of order kb(q) must be a Hall subgroup of S. Therefore, either l
divides b and so l = b/2 = 5 · 2γ−1 or l divides kb(q)− 1 and so l = e(r, q) =
2γ+1. Thus, one of two subgroups of orders ka(q) and kb(q) is not a Hall
subgroup of S, and l possesses one of the following values: 3 ·2γ, 5 ·2γ−1, 2γ+1.
If l 6= 5 · 2γ−1, put c = 11 · 2γ−1. It follows from 11 · 2γ−1 + 3 · 2γ >
11 · 2γ−1 + 2γ+1 = 14 · 2γ−1 > n that r is nonadjacent to kc(q), so r divides
kc(q) − 1. Then l = e(r, q) divides 5 · 2γ−1, contrary to our assumptions. If
l = 5 · 2γ−1, put c = 9 · 2γ−1. Then c+ l > n. Hence r divides kc(q)− 1 and
l divides 3 · 2γ−2, which is impossible.

Let n ∈ J4 and b = 11 · 2γ−1. If H is not a Hall subgroup, then a cyclic
subgroup of order kb(q) is a Hall subgroup of S and, arguing as in the previous
paragraph, we obtain that either l divides b and l = 11 · 2γ−2, or r divides
kb(q) − 1 and l = e(r, q) = 5 · 2γ−1. Thus, at least one of cyclic subgroups
of orders ka(q) and kb(q) is not Hall in S, and l ∈ {3 · 2γ, 5 · 2γ−1, 11γ−2}. If
l = 3 ·2γ, put c = 5 ·2γ, otherwise put c = 7 ·2γ. The verification analogous to
the one in the previous paragraph leads to a contradiction for every possible
value of l.

Let n ∈ J5 and b = 2γ+3. If H is not a Hall subgroup, then either l
divides b or r divides kb(q)− 1. In both cases, l = e(r, q) = 2γ+2. Thus, one
of two subgroups of orders ka(q) and kb(q) is not a Hall subgroup of S, and
l ∈ {3 · 2γ, 2γ+2}. If l = 2γ+2, then r is nonadjacent to kc(q), where c = 7 · 2γ.
So r divides kc(q)− 1, together with Lemma 1.4 this leads to a contradiction
due to l does not divide 3 · 2γ. Therefore, for n ∈ J5 the number l = e(r, q)
must be equal to 3 · 2γ. In this case l < n/2− 1, so Lemma 2.7(ii) yields the
conclusion of the lemma for n ∈ J5.

Let n ∈ J6, a = 9 · 2γ, b = 2γ+3, and c = 7 · 2γ. By the choice of a, if
a cyclic subgroup of order ka(q) is a Hall subgroup of S, then l = 9 · 2γ−1.
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Similarly, if a cyclic subgroup of order kb(q) is a Hall subgroup of S, then
l = 2γ+2. Since l cannot be equal to 9 · 2γ−1 and 2γ+2 simultaneously, one
of these subgroups is not Hall. Therefore, S has a cyclic Hall subgroup of
order kc(q). It follows from 9 · 2γ−1 + 7 · 2γ > 2γ+2 = 11 · 2γ > n that r is
nonadjacent to kc(q). Then l divides 3 · 2γ by Lemma 1.4, a contradiction.
The lemma and Proposition 4 are proved.

It remains to prove Proposition 5.
Since dimL > 40, it follows from Table 1 that t(L) > 15. Suppose that r

is large with respect to L. By Table 2, we have t(p, L) 6 4 and t(v, S) 6 4.
Lemma 4.2 yields that t(v, L) = t(v,G) 6 t(v, S) 6 4. Hence p 6= r 6= v.
Propositions 3 and 4 provide (r, |K| · |G/S|) = 1. Applying Table 3 and [34,
Table 6], we obtain that r 6∈ δ(L). Therefore, by Lemma 2.2, every prime
w ∈ Re(r,q)(q) is large with respect to L, so (ke(r,q)(q), |K| · |G/S|) = 1. On
the other hand, ke(r,q)(q) ∈ ω(L) = ω(G). Hence ke(r,q)(q) ∈ ω(S). Finally, if
ρ is a coclique of size t(L) in GK(L), then every r ∈ ρ is large with respect
to L. It follows that ρ ⊆ π(S). If ρ is not a coclique in GK(S), then it is
not a coclique in GK(G) = GK(L), which is impossible. Thus, t(S) > t(L).
Proposition 5 is proved.

5. Proof: characteristic 2

Here we prove Theorem 3 provided the characteristic p of L equals 2.
Since we apply Proposition 5, we preserve the condition on the dimension of
L from the previous section.

Proposition 6. Suppose that dimL > 40 and p = 2. Then S cannot be a
group of Lie type over the field of odd characteristic.

Proof. Given a finite group H, consider cocliques ρ of GK(H) such that
4r 6∈ ω(H) for every r ∈ ρ. Choose among them a coclique of greatest size
and denote it by ρ∗(4, H). Put t∗(4, H) = |ρ∗(4, H)|.

Lemma 5.1. Every prime lying in ρ∗(4, L) is large with respect to L, and
t∗(4, L) > 3.

Proof. Apply [39, 40].

Lemma 5.2. t∗(4, S) 6 2.

35



Proof. Again apply [39, 40], keeping in mind that u2 ≡ 1 (mod 8) for odd u.

We are ready to complete the proof of Proposition 6. Consider a coclique
ρ = ρ∗(4, L). By Lemma 5.1, all primes from ρ are large with respect to L.
Therefore, ρ ⊆ π(S) due to Proposition 5. It follows from Lemmas 5.1
and 5.2 that t∗(4, L) > 2 > t∗(4, S). Thus, for at least one r ∈ ρ, we have
4r ∈ ω(S) ⊆ ω(G) = ω(L), a contradiction.

Remark 3. If L = Lεn(q) and q is even, then the conclusion of Theorem 3
has already been obtained under much more weaker hypothesis (see [52, 53]
for linear and [54, 55] for unitary groups). Moreover, if L is a finite simple
linear or unitary group over a field of even order, L 6∈ {U4(2), U5(2)}, and
G is a finite group with ω(G) = ω(L), then L 6 G 6 AutL, and all such
groups G are determined for every given L.

6. Proof: independence and p-independence numbers of S

Here we prove that t(L) = t(S) provided t(L) > 23. Using this equality,
we eliminate the exceptional case of Proposition 4, i.e., we establish that
every prime divisor r of the order of L with ϕ(r, L) > n/3 does not divide
|K| · |G/S|. In conclusion, we show that under some additional assumptions
the p-independence numbers of L and S coincide as well.

Proposition 7. Suppose that t(L) > 23 and for some positive integer a the
number ka(u) has a prime divisor large with respect to S. Then ka(u) has a
prime divisor large with respect to L. In particular, t(L) = t(S) and every
prime r large with respect to L is large with respect to S.

Proof. Suppose to the contrary that none of prime divisors of ka(u) is large
with respect to L.

Lemma 6.1. There exists a set J of positive integers of size d = max{1, t(S)−
t(L)}, satisfying the following:

(i) for any j ∈ J , every r ∈ Rj(u) is large with respect to S and divides
the number |G/S| · |K|;

(ii) if t(S) > t(L) and every coclique ρ of the greatest size in GK(L)
contains a prime s with ϕ(s, S) 6 m/2, then ϕ(r, S) > m/2 for any j ∈ J
and every r ∈ Rj(u).
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Proof. First we prove that there is a set J satisfying (i). Put t = t(S) and
t(L) = l. There exists a set I of positive integers of size t containing a such
that for any i ∈ I every prime from Ri(u) is large with respect to S. Assume

that there are l+1 numbers i ∈ I such that R̃i(u) = Ri(u)\(π(K)∪π(G/S)) 6=
∅ and put ρ for a set consisting of l + 1 primes from different R̃i(u). Then
ρ is a coclique in GK(L) of size l + 1, a contradiction. Thus, if t > l, then
there is a subset J of I with |J | = t − l > 1 and such that for any j ∈ J
every prime from Rj(u) divides |K| · |G/S|. Let t = l (one may observe that
t(L) does not exceed t(S) due to Proposition 5). If for every i ∈ I we have

R̃i(u) = Ri(u) \ (π(K) ∪ π(G/S)) 6= ∅, then a set ρ consisting of l primes

from different R̃i(u) forms a coclique of greatest size in GK(L). Therefore
all primes from ρ are large with respect to L. On the other hand, ρ contains
a prime from Ra(u), which is impossible due to our assumption on primes
dividing ka(u).

Now we show that a set J can be chosen to satisfy (ii) as well. It follows
from Lemma 2.4(ii) that the set I includes a subset I ′ of size at least t − 1
such that for any i ∈ I ′ and every prime w ∈ Ri(u) the inequality ϕ(w, S) >
m/2 holds. If |I ′| = |I| = t, then J ⊆ I = I ′, as required. So we may
assume that |I ′| = t − 1. Suppose that there are l numbers from I ′ with

R̃i(u) = Ri(u) \ (π(K) ∪ π(G/S)) 6= ∅. Then a set ρ consisting of l primes

from different R̃i(u) forms a coclique in GK(L). However, if the conditions
of (ii) hold, then there are at most l − 1 such numbers in I ′. Thus, there
exists a subset J of I ′ such that |J | = t− 1− (l− 1) = t− l > 1, and for any
j ∈ J every prime r from Rj(u) is large with respect to S, divides |G/S| · |K|,
and satisfies ϕ(r, S) > m/2. The lemma is proved.

Lemma 6.2. Let a set J be as in Lemma 6.1. For each j ∈ J and every
r ∈ Rj(u) there is a large with respect to L prime s with rs ∈ ω(L) \ ω(S).

Proof. Fix j ∈ J and r ∈ Rj(u). Let ρ = {s1, . . . , sl} be a coclique
of greatest size in GK(L). By Proposition 5, every prime from ρ does not
divide |G/S| · |K|, and is not equal to v. It follows that the set I = E(ρ, S) =
{e(s, u) | s ∈ ρ} is well defined (see Section 2), has the size l, and j =
e(r, u) 6∈ I. Choose a coclique σ of size t in GK(S) containing r and put
Y = {e(w, u) | w ∈ σ}.

If t = l, then ρ is also a coclique of greatest size in GK(S). Lemma 2.5
yields I ∩ Y = Y \ {j}. Therefore, ρ includes a subset ρ′ of size l − 1 such
that the set {r} ∪ ρ′ is a coclique in GK(S). Since the size of this set equals
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l and r is small with respect to L, this set cannot be a coclique in GK(L).
Hence there is s ∈ ρ with rs ∈ ω(L) \ω(S). Thus we may assume that t > l.

Suppose that ϕ(r, S) > m/2. By Lemma 2.4(ii), the set ρ contains a
subset ρ′ of size l − 1 with ϕ(s, S) > m/2 for any s ∈ ρ′. Since j 6∈ I,
Lemma 2.4(iii) implies that {r} ∪ ρ′ is a coclique in GK(S), and is not
in GK(L). Hence the assertion of the lemma again holds.

Let, finally, ϕ(r, S) 6 m/2. According to Lemma 6.1(ii), a set ρ can be
chosen in a way that ϕ(s, S) > m/2 for any s ∈ ρ. Then, by Lemma 2.7(iv),
there is a coclique σ′ of greatest size in GK(S) with ρ ⊆ σ′. Set X =
{e(w, u) | w ∈ σ′}. Applying Lemma 2.5, we obtain that Y ∩X ⊇ Y \ {j}.
Therefore, ρ includes a subset ρ′ of size l− 1 such that {r} ∪ ρ′ is a coclique
in GK(S), and is not in GK(L). The lemma is proved.

Lemma 6.3. Let a prime r be large with respect to S. If S is linear or
unitary, then ϕ(r, S) > t(L) > n/2 and r > n/2 + 1. If S is symplectic or
orthogonal, then ϕ(r, S) > (2t(L)− 4)/3 > (n− 4)/3 and r > (2n− 5)/3 >
n/2.

Proof. By Lemma 2.7(iii), we have ϕ(r, S) > t(S) > t(L) > n/2, if S is
linear or unitary, and ϕ(r, S) > (2t(S)− 4)/3 > (2t(L)− 4)/3 > (n− 4)/3, if
S is symplectic or orthogonal. Lemma 2.3 yields r > ϕ(r, S) + 1 > n/2 + 1
in the first case, and r > 2ϕ(r, S) + 1 > (2n− 5)/3 in the second one.

Lemma 6.4. Let a set J be as in Lemma 6.1. Then for each j ∈ J and every
prime r from Rj(u) the number (kj(u)){r} divides p(q2− 1) logv u. Moreover,
the inequality ∏

j∈J kj(u)

logv u
6 p(q2 − 1)

holds true.

Proof. Let us fix j ∈ J and a prime r ∈ Rj(u). Put (kj(u)){r} = rγ. Taking
into account that r is large with respect to S and applying Lemma 1.7, one
can observe that r > 3, r 6= v, and rγ is the r-exponent of S.

Suppose that r divides |K|. Since r 6= v, Proposition 3 provides a prime
s ∈ π(S) nonadjacent to r in GK(L) and coprime to the order of any
parabolic subgroup of S. It follows from Lemma 3.8 that r divides the order of
some parabolic subgroup P of S and, by the same lemma, rγ ∈ ω(P ). If R is
the Sylow r-subgroup of K (recall that K is nilpotent by Proposition 3), then
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S acts on R/Φ(R) by conjugation. This action must be faithful because r and
s are nonadjacent. Furthermore, since r is large with respect to S, we have
(r, 6u(u2 − 1)) = 1. Applying Lemma 3.5, we obtain rγ+1 ∈ ω(G) = ω(L).
On the other hand, Proposition 3 yields that t(r, L) = 2, and so r either
equals to p or divides q2 − 1 by Lemmas 2.6 and 2.9.

Lemma 6.3 provides the inequality r > n/2. Suppose r = p. Since
n2/4 > 2n − 1 whenever n > 8, we have p2 > 2n − 1. It follows from
Lemma 2.14(iv) that the p-exponent of L does not exceed p2. Then p2 > pγ+1,
whence kj(u){p} 6 p. Suppose that r divides (q2−1) and put (q2−1){r} = rδ.
Using the inequality r > n/2 and Lemma 1.7, we obtain that the r-exponent
of L does not exceed rδ+1. Therefore, rδ+1 > rγ+1. Thus, for any j ∈ J and
every r ∈ Rj(u) ∩ π(K) the number (kj(u)){r} divides p(q2 − 1).

Suppose now that r does not divide |K|. Then |G/S|{r} = rκ > 1.
Therefore, G includes a subgroup isomorphic to an extension of S by an
automorphism τ of order rκ, where κ > 1. Since r is odd and coprime to
| Inndiag(S)/S|, we may assume that τ is a field automorphism. If u = vβ

and β = rν · l, where (r, l) = 1, then ν > κ > 1. If r does not divide vlj − 1,
then r does not divide vr

ν ·lj−1 = uj−1, which is false. So rγ = (kj(u)){r} =
(uj − 1){r} = (vr

ν ·lj − 1){r} = rν(vlj − 1){r} > rκ by Lemma 1.7. Further, rγ

is the greatest power of r lying in ω(S). Lemma 3.10 yields that rγ is the
r-exponent of G, so it is the r-exponent of G. If r 6= p and k = e(r, q) > 3,
then the inequality r > n/2 implies that (qk−1){r} is the r-exponent of L. By
Lemma 6.2, there is a large with respect to L prime s with rs ∈ ω(L)\ω(S).
It follows from Lemma 2.13 that rγs ∈ ω(L) as well. Since (rs, |K|) = 1, the
group G contains an element x of order rγs. Then the element y = xr

κ
is of

order rγ−κs and belongs to S, which is impossible because γ > κ. Thus, r
divides p(q2 − 1).

If r divides q2 − 1, then again the inequality r > n/2 and Lemma 1.7
implies rγ 6 r(q2 − 1){r}. Suppose r = p. Then the p-exponent of L does
not exceed p2 because p > n/2. Since the product of distinct primes from
Rj(u), dividing |G/S|, divides the number logv u, we obtain that kj(u) divides
p(q2 − 1) logv u. Finally, since for all j ∈ J numbers kj(u) are pairwise
coprime, the product

∏
j∈J kj(u) divides p(q2 − 1) logv u.

Lemma 6.5. Let d be a size of the set J from Lemma 6.1. Then

p(q2 − 1) > q
10t(L)d
3t(S) . (13)
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Proof. Fix j ∈ J and let r be a prime from Rj(u). If S = Lεm(u), then
kj(u) = kϕ(r,S)(εu) and, by Lemma 6.3, the inequality ϕ(r, S) > t(L) > 23
holds. If S is symplectic or orthogonal, then ϕ(r, S) = η(j) and η(j) >
(2t(L)− 4)/3 > 13 by Lemma 6.3. Anyway, Lemma 1.6 yields that

kj(u) > u6 logv u.

This equation and Lemma 6.4 imply

p(q2 − 1) > u6d. (14)

By Lemma 2.14(i)–(ii), the spectrum of L contains a number b such that
b > q10t(L)/9 and all its prime divisors are large with respect to L. It follows
from Proposition 5 that b ∈ ω(S), so b 6 u2t(S) by Lemma 2.14(iii). Thus,

u2t(S) > q10t(L)/9. (15)

Finally, (14) and (15) yield the inequality (13). The lemma is proved.

Now we show that the right side of (13) is greater than q3, which leads
us to a contradiction with the conclusion of Lemma 6.5. Recall that t(L) = l
and t(S) = t.

Assume that l/t > 9/10. Then

10ld

3t
>

10l

3t
>

10

3
· 9

10
= 3.

Let now l/t 6 9/10. Then

10ld

3t
=

10l(t− l)
3t

=
10l

3
·
(

1− l

t

)
>

10l

3
· 1

10
=
l

3
> 3.

Thus, we got a contradiction. It follows that ka(u) has a prime divisor
large with respect to L, so t(S) 6 t(L). An application of Proposition 5
completes the proof of Proposition 7.

Proposition 8. Suppose that t(L) > 23. If a prime r distinct from p divides
the order of G/S, then ϕ(r, L) 6 n/3.
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Proof. It follows from Proposition 4 that it remains to prove the assertion:
if L = Lεn(q), n ∈ [2γ+3, 9 · 2γ) and e(r, εq) = ϕ(r, L) = 3 · 2γ for some γ > 3,
then r does not divide |G/S|.

Assume to the contrary, that r divides |G/S|. Let b = 2γ+3 and l =
e(r, q) = 3 · 2γ. Since b is a multiple of 4, the equality kb(q) = kb(εq) holds.
If s ∈ Rb(q), then s is large with respect to L and, by Proposition 7, it is
also large with respect to S. Therefore, ϕ(s, S) > m/2−1 by Lemma 2.7(ii).
Denote the s-part of kb(q) by f , and a Sylow s-subgroup of S by F . Then
|F | ∈ {f, f 2}. By Frattini argument, the group N = NG(F ) contains an
element x of order r. Since b + l > n and l does not divide b, the primes r
and s are nonadjacent in GK(L). Therefore, F o 〈x〉 is a Frobenius group.
It follows that r divides f 2−1. This is true for every prime divisor s of kb(q),
so the number kb(q)

2−1 is a multiple of r. Further, kb(q)
2−1 = Φb(q)

2−1 =
(Φb(q)− 1)(Φb(q) + 1). Since p 6= 2, it follows that r divides the number

q2
γ+2 − 1

2
· q

2γ+2
+ 3

2
.

Obviously, r does not divide the first product term because e(r, q) = 3 · 2γ.
Assume that r divides the second term and put a = q2

γ
. Then r divides

(a4 + 3, a3 − 1) = (a3 − 1, a + 3) = (a + 3, 28). However, e(r, q) > 24, so r
cannot divide 28, a contradiction. The proposition is proved.

Proposition 9. Let t(L) > 23. Suppose that the characteristic p of the
group L satisfies the conditions:

(i) p does not divide the order of K;
(ii) if S = Lεm(u), then p does not divide the number εu− 1.
Then p divides the order of S and t(p, S) = t(p, L).

Proof. Recall that p 6= 2 by Proposition 6. Assume to the contrary that
either p does not divide |S| or t(p, S) 6= t(p, L). Observe that if p divides
|S| then t(p, S) > t(p, L). Indeed, it follows from Lemma 2.6 that every
prime r nonadjacent to p in GK(L) is large with respect to L, so r does not
divide |G/S| · |K|.

Lemma 6.6. The number |G/S| is divided by p. Every p-element of G/S is
conjugated to a field automorphism of S.
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Proof. Suppose that p does not divide |G/S|. Then p divides |S| and, by
our assumption, t(p, S) > t(p, L). Let ρ be a {p}-coclique of size t(p, S)
in GK(S). Put ρ′ = ρ \ {p} and I = E(p, S) = {e(r, u) | r ∈ ρ′}. Then
for any i ∈ I every prime divisor of ki(u) is large with respect to S by
Lemma 2.8. Proposition 7 yields that for every i ∈ I there is a prime divisor
ri of ki(u) being large with respect to L. The set {p} ∪ {ri | i ∈ I} is a
coclique in GK(S). Furthermore, since none of primes from the coclique
divides |K| · |G/S|, then it is also a {p}-coclique in GK(L) of size t(p, S), a
contradiction.

Since (p, 2| Inndiag(S)/S|) = 1, we may assume that every p-element of
G/S is conjugated to a field automorphism of S.

Lemma 6.7. There exists a positive integer j satisfying the conditions:
(i) for every prime r from Rj(u) the inequality ϕ(r, S) > m/2 holds and

rp 6∈ ω(S);
(ii) for every prime s from Rj(u), being large with respect to L, the number

sp belongs to ω(L).

Proof. First, we suppose that either p does not divide |S| or p is large with
respect to S. Let t = t(L) = t(S), and ρ be a coclique in GK(S) of size t with
p ∈ ρ if p divides |S|. Put I = E(ρ, S). It is clear that there exists a subset
Y of I consisting of at least t− 2 elements and such that for any j ∈ Y and
every r ∈ Rj(u) we have pr 6∈ ω(S) and ϕ(r, S) > m/2. Since t(p, L) 6 4,
there is a subset J of Y consisting of at least t − 5 elements and satisfying
the condition: for any j ∈ J every prime s from Rj(u), being large with
respect to L (for any j ∈ J such primes from Rj(u) exist by Proposition 7),
is adjacent to p in GK(L). The assumption t > 23 implies that J is not
empty.

Suppose now that t(p, S) < t, e(p, u) = a, and ρ is a {p}-coclique in
GK(S) of size t(p, S). Put I = {e(r, u) | r ∈ ρ} \ {a}. Then Lemma 2.8
yields ϕ(r, S) > m/2 for any i ∈ I and every r ∈ Ri(u). By our assumption,
t(p, S) > t(p, L), so there is j ∈ I such that every s from kj(u), being large
with respect to L, is adjacent to p in GK(L).

Lemma 6.8. Suppose that p divides β, where u = vβ, and u0 = u1/p. Then
for the number j, defined in Lemma 6.7, the inequality kjp(u0) 6 (q2 −
1) logv u holds.
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Proof. Since G/S contains a field automorphism of order p, the number
u0 is an integer. It follows from Lemma 1.2 that kjp(u0) divides kj(u). Fix
some prime divisor r of kjp(u0). Suppose that r does not divide |G/S| · |K|.
Then r is large with respect to L, hence rp ∈ ω(L). Since rp 6∈ ω(S), the
prime r must divide the order of the centralizer H = CS(f) in S of a field
automorphism f of order p. The group H is a classical group of the same type
and same dimension as S, but defined over the field of order u0. Therefore,
using ϕ(r, S) > m/2, it is easy to check that kjp(u0) is coprime to the order
of H. Indeed, if S = Lεm(u), then ϕ(r,H) = νε(jp) = pνε(j) = pϕ(r, S) >
pm/2 > m, and if S is symplectic or orthogonal, then ϕ(r,H) = η(jp) =
pη(j) > pm/2 > m.

Thus, every prime divisor r of kjp(u0) divides |G/S| · |K|. Furthermore,
p does not divide kj(u). Applying Lemma 6.4, we obtain that (kjp(u0)){r}
divides ((q2− 1) logv u){r} for every prime divisor r of kjp(u0). The lemma is
proved.

Let us complete the proof of Proposition 9. Applying the inequality
t(S) > 23, Lemma 6.3, and arguing as in the beginning of the proof of
Lemma 6.5, we obtain that η(j) > 11 for j defined in Lemma 6.7. It fol-
lows from Lemma 1.6 that kjp(u0) > u4 logv u. Lemma 6.8 yields q2 − 1 >
kjp(u0)/ logv u > u4. On the other hand, if we apply the equality t(L) = t(S)
to the inequality (15), based on Lemma 2.14 and derived in the proof of
Lemma 6.5, we obtain the inequality u > q5/9. Thus, the impossible chain of
inequalities q2− 1 > u4 > (q5/9)4 > q2 arises and leads us to a contradiction.
The proposition is proved.

7. Proof: pigeons and holes

In this section we complete the proof of Theorem 3. We write t = t(L)
and recall that t(L) = t(S) by Proposition 7.

Lemma 7.1. Let t(L) > 23. If s ∈ π(L) is chosen so that ϕ(s, L) > n/3,
then t(s, L) = t(s, S).

Proof. If t(s, L) = t(L), then the desired result follows from Proposition 5.
We may assume, therefore, that s is small with respect to L. Let ρ be an
{s}-coclique of size t(s, L) in GK(L). Since s is small with respect to L, all
other numbers in ρ are large with respect to L by Lemma 2.8, and hence
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they do not divide |G/S| · |K|. As ϕ(s, L) > n/3, Proposition 8 implies that
s does not divide |G/S| · |K| either. Thus ρ is a coclique in GK(S), whence
t(s, S) > t(s, L).

Let ρ = {s, s1, . . . , sk−1} be a coclique of size k = t(s, S) in GK(S).
By Lemma 2.8, the numbers s1, . . . , sk−1 are large with respect to S. By
Proposition 7, for every i ∈ {1, . . . , k − 1}, there is a prime divisor wi of
ke(si,u) that is large with respect to L. Write ρ′ = {s, w1, . . . , wk−1}. Then ρ′

is a coclique in GK(S). Since no number in ρ′ divides |G/S| · |K|, it follows
that ρ′ is a coclique in GK(L) of size k, whence t(s, S) 6 t(s, L). Thus
t(s, L) = t(s, S), and the proof is complete.

Let r ∈ π(L) \ {p}, and suppose that r is small with respect to L. Recall
that, by Lemma 2.8, the set E(ρ′, L) = {e(r, q) | r ∈ ρ′}, where ρ is an
{r}-coclique of greatest size and ρ′ = ρ \ {r}, is independent of the choice of
ρ, and it is denoted by J(r, L).

Lemma 7.2. Let L be a classical simple group over a field of order q and
characteristic p, and suppose that prk(L) = n > 19. If a prime divisor r of
|L| other than p is chosen so that ϕ(r, L) > n/3 or t(r, L) > 2t(L)/3, then
e(r, q) > 2 and e(r, q) 6= 6. In particular, if r is small then J(r, L) depends
only on the number e(r, q) and type of L.

Proof. Let t = t(L). If ϕ(r, L) > n/3 then ϕ(r, L) > 7, and therefore
e(r, q) > 7 or e(r, q) = 5. If t(r, L) > 2t/3 then t(r, L) > 8, and hence
e(r, q) > 2 by Lemma 2.9. Also it is easy to check that for n > 19 and q 6= 2
we have t(r6(q), L) < 2t/3 (recall that k6(2) = 1). Now the result follows
from Lemmas 2.8 and 1.1.

Define
M(L) = {i | ϕ(ri(q), L) > n/3, t(ri(q), L) < t}

and
N(L) = {i | 2t/3 < t(ri(q), L) < t}.

Also define a function ζL : M(L) ∪N(L) 7→ N by setting

ζL(i) = t(ri(q), L).

By Lemma 7.2, the sets M(L) and N(L) and function ζL are well-defined.
We write T (L) to denote ζL(M(L) ∩ N(L)). In four further lemmas, we
describe the sets M(L), N(L), and T (L), as well as the function ζL, for all
types of classical groups L.
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Lemma 7.3. Let L = Lεn(q), where n > 45. If n 6≡ 5 (mod 6), then N(L) =
M(L). If n ≡ 5 (mod 6), then N(L) = M(L) \ {νε((n+ 1)/3)}. If i ∈M(L),
then ζL(i) = νε(i). In particular, ζL is injective and t − j ∈ T (L) for every
1 6 j 6 7.

Proof. Note that the condition t(r, L) < t is equivalent to the inequality
ϕ(r, L) < n/2. Suppose that i ∈ M(L) ∪N(L), and consider the set J(i) =
J(ri(q), L). The adjacency criterion yields J(i) = J1(i)\J2(i), where J1(i) =
{j | n − νε(i) < νε(j) 6 n} and J2(i) = {j | νε(j) is a multiple of νε(i)}.
Since νε is bijective, we have |J1(i)| = νε(i). Thus

ζL(i) = 1 + |J(i)| = 1 + |J1(i)| − |J1(i) ∩ J2(i)| = 1 + νε(i)− |J1(i) ∩ J2(i)|.

Let i ∈ M(L). Then n/3 < νε(i) < n/2. Therefore J1(i) ∩ J2(i) = {j},
where νε(j) = 2νε(i), and hence ζL(i) = νε(i). If n is even, then 2t/3 = n/3,
and so ζL(i) > 2t/3. If n is odd and i 6= (n+ 1)/3, then ζL(i) > (n+ 2)/3 >
2t/3. If n is odd and i = (n + 1)/3, then ζL(i) = 2t/3 and i 6∈ N(L). Thus
M(L) ⊆ N(L) if n 6≡ 5 (mod 6), and M(L) \N(L) = {(n+ 1)/3} otherwise.

Let i ∈ N(L). Suppose that νε(i) 6 n/3. If νε(i) 6 (n − 3)/3, then
ζL(i) 6 1+νε(i) 6 n/3 6 2t/3, which is a contradiction. If νε(i) > (n−2)/3,
then 3νε(i) ∈ J1(i) ∩ J2(i), therefore, |J(i)| 6 νε(i) 6 n/3 6 2t/3, and again
we have a contradiction. Thus i ∈M(L), and hence N(L) ⊆M(L).

We conclude that T (L) = {x ∈ Z | n/3 < x < n/2} if n is even, and
T (L) contains {x ∈ Z | (n + 1)/3 < x < n/2} if n is odd. It follows easily
that t − 1 < n/2. If n is even, the inequality t − 7 > n/3 is equivalent to
n > 42. If n is odd, the inequality t− 7 > (n+ 1)/3 is equivalent to n > 43.
Thus t− 7 ∈ T (L) when n > 44.

Lemma 7.4. Let L ∈ {S2n(q), O2n+1(q)}, where n > 29. Then M(L) =
N(L). If i ∈M(L), then

ζL(i) =

{
[3η(i)+2

2
] if n is even,

[3η(i)+3
2

] if n is odd.

Moreover,

T (L)∩{x | t−6 6 x 6 t−1} =


{t− 2, t− 3, t− 5, t− 6} if n ≡ 0, 3 (mod 4),

{t− 1, t− 3, t− 4, t− 6} if n ≡ 2 (mod 4),

{t− 1, t− 2, t− 4, t− 5} if n ≡ 1 (mod 4).
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Proof. Using Table 1, it is easy to see that [(n + 1)/2] 6 2t/3 6 [(n +
1)/2] + 2/3.

Suppose that i ∈ M(L) ∪ N(L), and consider the set J(i) = J(ri(q), L).
The adjacency criterion yields J(i) = J1(i) \ J2(i), where J1(i) = {j | n −
η(i) < η(j) 6 n} and J2(i) = {j | j = li for an odd l}. Therefore ζL(i) =
1+|J1(i)|−|J1(i)∩J2(i)|. By Lemma 1.8, the size of J1(i) is equal to [3η(i)/2]
if n is even, and [(3η(i) + 1)/2] if n is odd.

Let i ∈M(L). Then η(i) > (n+1)/3. If j = li with l > 3 odd, then η(j) =
lη(i) > ln/3 > n. Therefore J1(i)∩J2(i) = ∅, and so ζL(i) = 1 + [3η(i)/2] =
[(3η(i)+2)/2] when n is even, and ζL(i) = 1+[(3η(i)+1)/2] = [(3η(i)+3)/2]
when n is odd. Since η(i) > (n+ 1)/3, we have 3η(i)/2 > (n+ 1)/2, and so
ζL(i) > 1 + [(n+ 1)/2] > 2t/3. Thus M(L) ⊆ N(L).

Let i ∈ N(L). By the above formula, ζL(i) 6 1 + |J1(i)| 6 [(3η(i) + 3)/2].
On the other hand, ζL(i) > [(n+ 1)/2]. Therefore 3η(i) + 3 > n+ 1, whence
η(i) > (n − 2)/3. Suppose that i 6∈ M(L), that is η(i) 6 n/3. Then
η(3i) = 3η(i) 6 n and η(3i) + η(i) = 4η(i) > 4(n − 2)/3 > n. It follows
that 3i ∈ J1(i) ∩ J2(i) and ζL(i) 6 [(3η(i) + 1)/2] 6 [(n + 1)/2] 6 2t/3, a
contradiction. Thus N(L) ⊆M(L).

Let a be the largest element of η(M(L)). Then a > (n − 2)/2 when
n 6≡ 3 (mod 4), and a = (n−3)/2 when n ≡ 3 (mod 4). The condition n > 29
yields (n− 3)/2− 3 > n/3, and hence a, a− 1, a− 2, a− 3 are in η(M(L)).
Let η(i) = a and η(j) = a− 1. Write b and c for ζL(i) and ζL(j) respectively.
As [3(x − 2)/2] = [3x/2] − 3, we obtain that the four largest elements of
T (L) are b, c, b − 3, and c − 3, and T (L) ∩ {x | t − 6 6 x 6 t − 1} =
{b, c, b− 3, c− 3} ∩ {x | t− 6 6 x 6 t− 1}.

Suppose that n ≡ 0 (mod 4). Then t = (3n + 4)/4 and a = n/2 − 1.
If η(i) = n/2 − 1, then ζL(i) = [(3n − 2)/4] = (3n − 4)/4 = t − 2. If
η(i) = n/2− 2, then ζL(i) = [(3n− 8)/4] = t− 3.

Suppose that n ≡ 2 (mod 4). Then t = (3n + 2)/4 and a = n/2 − 1. If
η(i) = n/2 − 1, then ζL(i) = [(3n − 2)/4] = t − 1. If η(i) = n/2 − 2, then
ζL(i) = [(3n− 8)/4] = t− 3.

Suppose that n ≡ 1 (mod 4). Then t = (3n + 5)/4 and a = (n− 1)/2. If
η(i) = (n− 1)/2, then ζL(i) = [(3n+ 3)/4] = t− 1. If η(i) = (n− 3)/2, then
ζL(i) = [(3n− 3)/4] = t− 2.

Suppose that n ≡ 3 (mod 4). Then t = (3n + 3)/4 and a = (n− 3)/2. If
η(i) = (n− 3)/2, then ζL(i) = [(3n− 3)/4] = t− 2. If η(i) = (n− 5)/2, then
ζL(i) = [(3n− 9)/4] = t− 3.
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Lemma 7.5. Let L = O+
2n(q), where n > 30. Then

N(L) =


M(L) if n 6≡ 6, 9 (mod 12),

M(L) ∪ {2n/3} if n ≡ 6 (mod 12),

M(L) ∪ {2n/3, n/3} if n ≡ 9 (mod 12).

If i ∈M(L), then

ζL(i) =


[3η(i)+1

2
] if n is even,

[3η(i)+2
2

] if n is odd and i is even,

[3η(i)+3
2

] if n is odd and i is odd.

If n ≡ 6, 9 (mod 12) and η(i) = n/3, then ζL(i) = [(n+1)/2] = (2t+1)/3.
If n is odd, then ζL is injective on M(L) ∩N(L), t− j ∈ T (L) for every

1 6 j 6 6, and ζ−1L (t− j) ≡ 4 (mod 8) for some 1 6 j 6 6.
If n is even, then

T (L)∩{x | t−6 6 x 6 t−1} =

{
{t− 1, t− 3, t− 4, t− 6} if n ≡ 0 (mod 4),

{t− 1, t− 2, t− 4, t− 5} if n ≡ 2 (mod 4).

Proof. It is easy to verify that [(n+ 1)/2]− 1/3 6 2t/3 6 [(n+ 1)/2].
Suppose that i ∈ M(L) ∪ N(L), and consider the set J(i) = J(ri(q), L).

The adjacency criterion yields

J(i) = J3(i) ∪ J1(i) \ J2(i),

where J1(i) = {j | n − η(i) < η(j) 6 n, j 6= 2n}, J2(i) = {j | j =
li for an odd l}, and J3(i) = {2(n− η(i))} when i is odd, J3(i) = {n− η(i)}
when i is even and n− η(i) is odd, and J3(i) = ∅ when both i and n− η(i)
are even. Note that J1(i)∩J3(i) = ∅. Therefore ζL(i) = 1+ |J3(i)|+ |J1(i)|−
|J1(i) ∩ J2(i)|. By Lemma 1.8, the size of J1(i) is equal to [3η(i)/2] − 1 or
[(3η(i) + 1)/2]− 1, depending on whether n is even or odd.

Thus if n is even and η(i) is odd, then

ζL(i) = 1 + [3η(i)/2]− |J1(i) ∩ J2(i)| = (3η(i) + 1)/2− |J1(i) ∩ J2(i)|.

If both n and η(i) are even, then

ζL(i) = [3η(i)/2]− |J1(i) ∩ J2(i)| = 3η(i)/2− |J1(i) ∩ J2(i)|.
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If both n and i are odd, then

ζL(i) = 1 + (3η(i) + 1)/2− |J1(i) ∩ J2(i)| = (3η(i) + 3)/2− |J1(i) ∩ J2(i)|.

If n is odd and η(i) is even, then

ζL(i) = 1 + 3η(i)/2− |J1(i) ∩ J2(i)| = (3η(i) + 2)/2− |J1(i) ∩ J2(i)|.

Finally, if n is odd, i is even and η(i) is odd, then

ζL(i) = (3η(i) + 1)/2− |J1(i) ∩ J2(i)|.

Let i ∈M(L). Then J1(i)∩ J2(i) = ∅, and hence the formulas for ζL are
proved. The condition η(i) > n/3 implies that (3η(i) + 1)/2 > (n + 1)/2,
therefore,

ζL(i) > [(3η(i) + 1)/2] > [(n+ 1)/2] > 2t/3.

Suppose that all non-strict inequalities in the above chain are equalities.
Then (n+ 1)/2 is integer and 3η(i) = n+ 1, and so n is odd and η(i) is even.
But then the first inequality is strict, a contradiction. Thus M(L) ⊆ N(L).

Let i ∈ N(L). Then [(n + 1)/2] − 1/3 6 2t/3 < ζL(i) 6 [(3η(i) + 3)/2],
and hence n 6 3η(i) + 3. Suppose that n − 3 6 3η(i) 6 n − 1. Then
3i ∈ J1(i) ∩ J2(i). If 3η(i) = n − 3 or 3η(i) = n − 1, then n and η(i)
have different parity, whence ζL(i) 6 [3η(i)/2] 6 [(n − 1)/2] < 2t/3, a
contradiction. If 3η(i) = n− 2, then n and η(i) have the same parity, and so
ζL(i) 6 [(3η(i) + 1)/2] = [(n − 1)/2] < 2t/3, which is not the case. Finally,
assume that η(i) = n/3. If n is odd, then J1(i) ∩ J2(i) = {3i}. If n is
even, then J1(i) ∩ J2(i) = ∅. Furthermore, n − η(i) is even. It follows that
ζL(i) = [(3η(i) + 1)/2] = [(n + 1)/2]. If n ≡ 0, 3 (mod 4), then [(n + 1)/2] =
2t/3, a contradiction. If n ≡ 1, 2 (mod 4), then [(n + 1)/2] > 2t/3. Thus if
n ≡ 6, 9 (mod 12) and η(i) = n/3, then i ∈ N(L) \M(L).

Let a be the largest element of η(M(L)). Then a > [n/2] − 1. Since
n > 30, we have a− 3 > n/3.

Let n be even, and b = ζL(i), with η(i) = a, and c = ζL(j), with η(j) =
a − 1. If n ≡ 0 (mod 4), then t = 3n/4, b = [(3n − 4)/4] = t − 1, and
c = [(3n − 10)/4] = t − 3. If n ≡ 2 (mod 4), then t = (3n − 2)/4, b =
[(3n− 4)/4] = t− 1, and c = [(3n− 10)/4] = t− 2. Reasoning as in the proof
of Lemma 7.4, we obtain that T (L)∩{x | t−6 6 x 6 t−1} = {b, c, b−3, c−3}.

Let n be odd. We will show that ζL is injective. Suppose that i and j
have the same parity and [3η(i)/2] = [3η(j)/2]. Then 3η(j) − 1 6 3η(i) 6
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3η(j) + 1, whence η(i) = η(j). By parity condition, it follows that i = j.
Now suppose that i is even and j is odd, and [3η(i)/2] = [3η(j)/2] + 1. Then
[3i/4] = (3j + 1)/2, and so either 3i/2 = 3j + 1 or 3i/2 = 3j + 2. Both
equalities are clearly impossible.

If n ≡ 1 (mod 4), then t = (3n + 1)/4, a = (n − 3)/2 is odd, and a, 2a ∈
M(L). Therefore T (L) contains the following numbers: ζL(a) = (3a+3)/2 =
3(n−1)/4 = t−1, ζL(2a) = t−2, ζL(2(a−1)) = (3a+1)/2 = t−3, ζL(a−2) =
t− 4, ζL(2(a− 2)) = t− 5, and ζL(2(a− 3)) = t− 6. If n ≡ 3 (mod 4), then
t = (3n+ 3)/4 and a = (n−1)/2 is odd with a 6∈M(L). It follows that T (L)
contains the following numbers: ζL(2a) = (3a + 1)/2 = (3n − 1)/4 = t − 1,
ζL(2(a−1)) = (3(a−1)+2)/2 = t−2, ζL(a−2) = t−3, ζL(2(a−2)) = t−4, and
ζL(2(a−3)) = t−5. Furthermore, a−4 > n/3, and hence ζL(a−4) = t−6 and
ζL(2(a−4)) = t−7 also lie in T (L). Thus the set X = {x | t−6 6 x 6 t−1}
is a subset of T (L). Moreover, one of the numbers 2(a − 1) and 2(a − 3) is
congruent to 4 modulo 8 and ζL(2(a− 1)), ζL(2(a− 3)) ∈ X.

Lemma 7.6. Let L = O−2n(q), where n > 30. Then

N(L) =


M(L) if n 6≡ 0, 6, 9 (mod 12),

M(L) ∪ {2n/3} if n ≡ 0 (mod 6),

M(L) ∪ {2n/3, n/3} if n ≡ 9 (mod 12).

If i ∈M(L), then

ζL(i) =


[3η(i)+4

2
] if n is odd,

[3η(i)+2
2

] if both n and i are odd,

[3η(i)+3
2

] if n is odd and i is even.

If η(i) = n/3, then

ζL(i) =


(n+ 2)/2 = (2t+ 1)/3 if n ≡ 0 (mod 12)

(n+ 2)/2 = (2t+ 2)/3 if n ≡ 6 (mod 12)

(n+ 1)/2 = (2t+ 1)/3 if n ≡ 9 (mod 12)

.

If n is odd, then ζL is injective on M(L) ∩N(L), t− j ∈ T (L) for every
1 6 j 6 6, and ζ−1L (t− j) ≡ 4 (mod 8) for some 1 6 j 6 6.

If n ≡ 0 (mod 4), then

T (L) ∩ {x | t− 7 6 x 6 t− 1} = {t− 1, t− 2, t− 4, t− 5, t− 7}.
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If n ≡ 2 (mod 4) and n > 38, then

T (L) ∩ {x | t− 8 6 x 6 t− 1} = {t− 2, t− 3, t− 5, t− 6, t− 8}.

If n = 34, then T (L) = {t − 2, t − 3, t − 5, t − 6}, and if n = 30, then
T (L) = {t− 2, t− 3, t− 5}.

Proof. It is easy to verify that n/2 + 1/6 6 2t/3 6 n/2 + 2/3.
Suppose that i ∈ M(L) ∪ N(L), and consider the set J(i) = J(ri(q), L).

The adjacency criterion yields

J(i) = J3(i) ∪ J1(i) \ J2(i),

where J1(i) = {j | n − η(i) < η(j) 6 n, j 6= n}, J2(i) = {j | j =
li for an odd l}, and J3(i) = {2(n − η(i))} if i is even, J3(i) = {n − η(i)} if
both i and n− η(i) are odd, and J3(i) = ∅ if i is odd, n− η(i) is even. Note
that J1(i)∩J3(i) = ∅. Therefore ζL(i) = 1 + |J3(i)|+ |J1(i)| − |J1(i)∩J2(i)|.
If n is even, then η(n) = n/2 6 n− η(i), and so the size of J1(i) is equal to
[3η(i)/2]. If n is odd, then the size of J1(i) is equal to [(3η(i) + 1)/2]− 1.

Thus if n is even and η(i) is odd, then

ζL(i) = 1 + 1 + (3η(i)− 1)/2− |J1(i)∩ J2(i)| = (3η(i) + 3)/2− |J1(i)∩ J2(i)|.

If both n and η(i) are even, then

ζL(i) = 1 + 1 + 3η(i)/2− |J1(i) ∩ J2(i)| = (3η(i) + 4)/2− |J1(i) ∩ J2(i)|.

If n is odd and η(i) is even, then

ζL(i) = 1 + 3η(i)/2− |J1(i) ∩ J2(i)| = (3η(i) + 2)/2− |J1(i) ∩ J2(i)|.

If both n and i are odd, then

ζL(i) = (3η(i) + 1)/2− |J1(i) ∩ J2(i)|.

Finally, if n is odd, i is even, and η(i) is odd, then

ζL(i) = 1 + (3η(i) + 1)/2− |J1(i) ∩ J2(i)| = (3η(i) + 3)/2− |J1(i) ∩ J2(i)|.

Let i ∈ M(L). Then J1(i) ∩ J2(i) = ∅, and so the formulas for ζL are
proved. Since η(i) > n/3, it follows that (3η(i) + 3)/2 > (n+ 3)/2, whence

ζL(i) > [(3η(i) + 3)/2] > [(n+ 3)/2] > 2t/3.
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Thus M(L) ⊆ N(L).
Let i ∈ N(L). Then n/2 + 1/6 6 2t/3 < ζL(i) 6 (3η(i) + 4)/2, and hence

n 6 3η(i)+3. Suppose that n−3 6 3η(i) 6 n−1. Then 3i ∈ J1(i)∩J2(i). If
n and η(i) have the same parity, then ζL(i) 6 (3η(i) + 2)/2 6 n/2 < 2t/3, a
contradiction. If n and η(i) have different parity, then ζL(i) 6 (3η(i)+1)/2 6
n/2 < 2t/3, which is not the case. Suppose that η(i) = n/3. If n is even,
then J1(i) ∩ J2(i) = {2n}, and so ζL(i) = (3η(i) + 2)/2 = (n + 2)/2 > 2t/3.
It follows that 2n/3 ∈ N(L) \M(L) when n ≡ 0 (mod 6). Assume that n is
odd. Then J1(i) ∩ J2(i) = {2n} when i = 2n/3 and J1(i) ∩ J2(i) = ∅ when
i = n/3. Therefore ζL(i) = (3η(i) + 1)/2 = (n+ 1)/2. If n ≡ 3 (mod 4), then
(n + 1)/2 = 2t/3, a contradiction. If n ≡ 1 (mod 4), then (n + 1)/2 > 2t/3.
Thus if n ≡ 9 (mod 12), then n/3, 2n/3 ∈ N(L) \M(L).

Let a be the largest element of η(M(L)). Then a > [n/2] − 1 when
n 6≡ 2 (mod 4) and a = n/2 − 2 when n ≡ 2 (mod 4). Therefore if n > 30,
then a−3 > n/3, and if, in addition, n is even and n 6= 34, then a−4 > n/3.

If n ≡ 0 (mod 4), then t = (3n + 4)/4 and a = n/2 − 1, whence ζL(a) =
(3a + 3)/2 = 3n/4 = t − 1 and ζL(2(a − 1)) = (3a + 1)/2 = t − 2. If
n ≡ 2 (mod 4), then t = (3n + 2)/4 and a = n/2 − 2, and hence ζL(a) =
(3a+ 3)/2 = (3n− 6)/4 = t− 2 and ζL(2(a− 1)) = (3a+ 1)/2 = t− 3. The
completion of the proof is similar to that of Lemma 7.5.

Lemma 7.7. If either S = O+
2m(u) with m ≡ 6, 9 (mod 12) or S = O−2m(u)

with m ≡ 0, 9 (mod 12), then T (L) ⊆ T (S) ∪ {(2t + 1)/3}. If S = O−2m(u)
with m ≡ 6 (mod 12), then T (L) ⊆ T (S) ∪ {(2t + 2)/3}. In other cases,
T (L) ⊆ T (S). In particular, if x ∈ T (L) and x > (2t+ 2)/3, then x ∈ T (S).

Proof. Choose x ∈ T (L) \ T (S). Let s ∈ π(L) and t(s, L) = x. As
e(s, q) ∈ M(L) ∩ N(L), by Lemma 7.1, we have t(s, S) = x, and hence
e(s, u) ∈ N(S). If e(s, u) ∈ M(S), then x ∈ T (S). If e(s, u) 6∈ M(S), then
applying Lemmas 7.5 and 7.6, we see that the assertion is true in this case
too.

Let L be the class of all classical groups L with t(L) > 23. In what follows,
L is always a group lying in this class. Note that the equality t(L) = t(S)
implies that the nonabelian composition factor S of G also lies in L. We
divide L on several subclasses, according to the behavior of the function ζL.
We write X = X1 ∪ X2, where

X1 = {L ∈ X | L = Lεn(q)};
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X2 = {L ∈ X | L = Oε
2n(q), n ≡ 1 (mod 2)}.

Note that X joins all groups L from L such that ζL is injective.
Furthermore, put Y = L \ X = Y1 ∪ Y2 ∪ Y3, where

Y1 = {L ∈ Y | L = S2n(q), O2n+1(q) and n ≡ 0, 3 (mod 4), or

L = O−2n(q) and n ≡ 2 (mod 4)};

Y2 = {L ∈ Y | L = S2n(q), O2n+1(q) and n ≡ 2 (mod 4), or

L = O+
2n(q) and n ≡ 0 (mod 4)};

Y3 = {L ∈ Y | L = S2n(q), O2n+1(q) and n ≡ 1 (mod 4), or

L = O+
2n(q) and n ≡ 2 (mod 4), or L = O−2n(q) and n ≡ 0 (mod 4)}.

Observe that L belongs to Yi if and only if t(L)− i 6∈ T (L).
It is easy to see that we have the partitions:

L = X t Y = X1 t X2 t Y1 t Y2 t Y3.

Lemma 7.8. If t > 23, then for every natural a 6 6, we have t − a >
(2t+ 2)/3.

Proof. The inequality t− a < (2t+ 2)/3 is equivalent to a < (t− 2)/3.

Lemma 7.9. If i = 1, 2, 3 and S ∈ Yi, then L ∈ Yi. In particular, if L ∈ X ,
then S ∈ X .

Proof. Assume that the conclusion is false. Choose i ∈ {1, 2, 3} and write
x = t − i. By assumption, L 6∈ Yi, therefore, x ∈ T (L) by Lemmas 7.3–7.6.
On the other hand, x = t− i > (2t+ 2)/3 by Lemma 7.8, and so Lemmas 7.5
and 7.6 yield x 6∈ T (S)∪{(2t+1)/3, (2t+2)/3}. This contradicts Lemma 7.7.

Our next goal is to show that p does not divide |K| and, in the case
S = Lεm(u), that it does not divide εu− 1 either. For this purpose, we need
the following result.
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Lemma 7.10. Let j ∈ N(L)∩M(L). There is a natural number i such that
ri(q) is large with respect to L, ϕ(ri(q), L) < 2n/3, ri(q)rj(q) lies in ω(L),
and pri(q)rj(q) does not. If, in addition, L = Lεn(q) and νε(j) < (n−1)/2, or
L = S2n(q), O2n+1(q) and n−η(j) is odd, or L = Oε

2n(q) and η(j) < (n−1)/2,
then there are two distinct i and i′ satisfying these conditions, and such that
ri(q)ri′(q) 6∈ ω(L).

Proof. Our proof repeatedly uses Lemma 2.13, and we apply this lemma
without further mention.

If L = Lεn(q), then i = νε(n−νε(j)) is the desired number. If, in addition,
νε(j) < (n− 1)/2, then i′ = νε(n− 1− νε(j)) also has the desired properties.

Let L = S2n(q), O2n+1(q) and write a = n − η(j). Then i = 2a is the
desired number. If a is odd, then i′ = a also has the desired properties, since
η(i′) = η(i) = a.

Let L = Oε
2n(q) and η(j) < n/2−1. Writing a = n−1−η(j), we see that

i = 2a has the desired properties, and if a is odd, then so does i′ = a. If a is
even, then a + 1 = n − η(j) is odd. If j = η(j) and L = O+

2n, or j = 2η(j)
and L = O−2n, then i′ = a + 1 is the desired number. And if j = 2η(j) and
L = O+

2n, or j = η(j) and L = O−2n, then so is i′ = 2(a+1). Now suppose that
η(j) = n/2− 1. If n ≡ 0 (mod 4), then a = n/2 is even, and we may choose
the required numbers i and i′ in a similar manner. If n ≡ 2 (mod 4), then
L = O+

2n (otherwise rj(q) is large with respect to L), and hence i = n/2 and
i′ = n+1 are the desired numbers. Finally, let η(j) = (n−1)/2. Since rj(q) is
small, the only possibility is that n ≡ 3 (mod 4) and, moreover, L = O+

2n(q),
j = 2η(j) = n − 1 or L = O−2n(q), j = η(j) = (n − 1)/2. In both cases
i = n+ 1 = 2(n− η(j)) has the desired properties.

Lemma 7.11. The order of K is not divisible by p.

Proof. We derive a contradiction by assuming that p divides the order of
the soluble radical K, which is nilpotent by Proposition 3. Let P be a Sylow
p-subgroup of K, and let V be the factor group P/Φ(P ). The group S acts
on V via conjugation. If this action is not faithful, then p is adjacent to all
primes that are large with respect to L, which is not the case. Thus S acts
faithfully on V .

By Proposition 3 and Lemma 2.6, we may assume that L ∈ {S2n(q),
O2n+1(q) | n ≡ 0 (mod 2)}. Suppose first that n ≡ 0 (mod 4), and choose
s ∈ π(L) so that ϕ(s, L) = η(e(s, q)) = (n − 2)/2. By Lemma 7.4, it
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follows that t(s, L) = [(3η(e(s, q)) + 2)/2] = (3n − 4)/4 = t − 2. If n ≡
2 (mod 4), then we choose s so that ϕ(s, L) = η(e(s, q)) = (n − 4)/2, and
hence t(s, L) = [(3e(s, q) + 2)/2] = (3n − 10)/4 = t − 3. In both cases, we
have e(s, q) ∈ M(L) ∩ N(L). By Lemma 7.10, there is a such that ra(q) is
large with respect to L, ϕ(ra(q), L) < 2n/3, ra(q)s lies in ω(L), and pra(q)s
does not, and we write r = ra(q) and i = e(r, u).

Lemma 7.1 yields x = t(s, S) = t(s, L) ∈ {t− 2, t− 3}, and in particular,
x ∈ T (S). Therefore j = e(s, u) ∈ M(S) ∩N(S) and m/3 < ϕ(s, S) < m/2.
Since r is large with respect to L, it is also large with respect to S. As
rs ∈ ω(L) and rs does not divide |K| · |G/S|, it follows that rs ∈ ω(S).

Suppose first that ϕ(s, S)+ϕ(r, S) > m. If S is symplectic or orthogonal,
then adjacency of r and s in GK(S) implies that i/j is an odd integer.
Since r is large with respect to S and s is small, we have i 6= j. Therefore
i > 3j, whence η(i) > 3η(j) > 3m/3 = m, which is a contradiction. Let
S = Lεm(u). Then adjacency of r and s in GK(S) together with the inequality
ϕ(s, S) + ϕ(r, S) > m yields νε(i) = 2νε(j). In particular, νε(i) is even. As s
is small with respect to S, we have νε(j) 6= m/2. If νε(j) = (m− 1)/2, then
t(s, S) = t−1 6∈ {t−2, t−3}, which contradicts the choice of s. Thus νε(i) =
2νε(j) < m − 1. By [37, Lemma 5] and [20, Lemma 5], there is a subgroup
of S that is a Frobenius group with kernel being a v-group and complement
being a cyclic group of order |(εu)νε(i)− 1|/d, where π(d) ⊆ π(u2− 1), and in
particular, of order divisible by rs. Applying Lemma 3.4 to this subgroup of
S acting on V = P/Φ(P ), we conclude that prs ∈ ω(G), which contradicts
the choice of r and s. Thus ϕ(r, S) 6 m− ϕ(s, S) < 2m/3.

Now observe that we chose s so that n−η(e(s, q)) is odd. By Lemma 7.10,
there are at least two large with respect to L and nonadjacent numbers r and
w such that sr and sw lie in ω(L), and psr and psw do not. For definiteness,
we assume that ϕ(r, S) 6 ϕ(w, S). It follows by the result of the previous
paragraph that ϕ(r, S) 6 ϕ(w, S) 6 m− ϕ(s, S).

Writing k = ϕ(s, S), we have m/3 < k < m/2. By [50, Propositions 4.1.3,
4.1.4, 4.1.6], S contains a central product of subgroups A and B having
nonabelian composition factors A and B, respectively, such that A and B are
also simple classical groups over the same field of order u. The groups A and
B can be chosen as follows. If S = Lεm(u), then A ' Lεk(u) and B ' Lεm−k(u).
If S = S2m(u), then A ' S2k(u) and B ' S2(m−k)(u). If S = O2m+1(u) and
j = k, then A ' O+

2k(u) and B ' O2(m−k)+1(u). If S = O2m+1(u) and
j = 2k, then A ' O−2k(u) and B ' O2(m−k)+1(u). If S = Oε

2m(u) and j = k,
then A ' O+

2k(u) and B ' Oε
2(m−k)(u). If S = Oε

2m(u) and j = 2k, then
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A ' O−2k(u) and B ' O−ε2(m−k)(u).

By our choice, it follows that s ∈ π(A). We claim that r, w ∈ π(B). If
S 6= Oε

2m(u), then since ϕ(r, S) 6 ϕ(w, S) 6 m−k, we have r, w ∈ π(B). Let
S = O+

2m(u) and j = k. If ϕ(w, S) < m− k, then r, w ∈ π(B). Suppose that
ϕ(w, S) = m − k. As sw ∈ ω(S), the adjacency criterion yields e(w, u) =
ϕ(w, S), and therefore, w ∈ π(B). If ϕ(r, S) = ϕ(w, S) = m − k, then by
similar reasoning, e(r, u) = ϕ(r, S) = e(w, u), which is not the case because
rw 6∈ ω(L). Thus ϕ(r, S) < ϕ(w, S) and r ∈ π(B). The other cases can be
handled in a similar manner.

The numbers s, r, and w are coprime to u2 − 1, and hence to the orders
of the centers of A and B either. Therefore, s divides |A|, while r and w
divide |B| and are large with respect to B. As r and w are not adjacent in
GK(L), they are not adjacent in GK(B) either, and by Lemma 3.8, at least
one of them must divide the order of some proper parabolic subgroup F of B.
For definiteness, we assume that this number is r (there is no loss in making
this assumption, since we will not use the condition ϕ(r, S) 6 ϕ(w, S) or the
number w itself). Let y be an element of order r lying in the preimage of F
in B, and let x be an element of order s lying in A. We again consider the
action of S on V via conjugation. By the choice of x, it clearly lies in some
proper parabolic subgroup of S. By Lemmas 3.6 and 3.7, the degree of the
minimal polynomial of x on V is equal to s, and therefore, its centralizer U
in V is nontrivial. Since B acting on V normalizes U , we may consider its
action on U . If the kernel J of this action does not lie in Z(B), then its image
in the factor group B/Z(B) includes B, so, in particular, y centralizes U . If
J 6 Z(B), then B acts faithfully on U , and again by Lemmas 3.6 and 3.7,
the centralizer CU(y) is not trivial. In both cases, there is z ∈ U such that
zy = z. Therefore, the element g = zxy of the natural semidirect product
V o S has order psr. By Lemma 3.1, the group G̃ = G/Op′(K)Φ(P ) has an
element of the same order, and therefore so does G. On the other hand, by
our choice of s and r, there is no element of order psr in L, a contradiction.

Lemma 7.12. If S = Lεm(u), then p does not divide εu− 1.

Proof. By Lemmas 7.3–7.6, we can choose a prime s ∈ π(L) with e(s, q) ∈
M(L)∩N(L) so that (2t+2)/3 < t(s, L) < t−1, and if L ∈ {S2n(q), O2n+1(q)},
then also n − ϕ(s, L) is odd. By Lemma 7.10, there are at least two large
with respect to L and nonadjacent numbers r and w such that sr, sw ∈ ω(L),
but psr, psw 6∈ ω(L).
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As in the proof of the previous lemma, if ϕ(r, S) + ϕ(s, S) > m, then
ϕ(r, S) = 2ϕ(s, S). As t(s, S) = t(s, L) < t− 1, it follows that i = ϕ(r, S) <
m−1. By [39, Corollary 3], the set ω(S) contains a number [(εu)i−1, εu−1],
which is divisible by prs, and this contradicts the choice of r and s. Therefore
we may assume that ϕ(r, S) 6 ϕ(w, S) 6 m−ϕ(s, S). Since rw 6∈ ω(S) and S
is linear or unitary, we have ϕ(r, S) < ϕ(w, S), and hence ϕ(r, S)+ϕ(s, S) <
m. Writing i = ϕ(r, S) and j = ϕ(s, S), by [39, Corollary 3] we conclude
that S has an element of order [(εu)i− 1, (εu)j − 1, εu− 1], which is divisible
by prs. This contradiction completes the proof.

Proposition 10. The number p divides |S|, and l = t(p, S) = t(p, L) ∈
{2, 3, 4}. Furthermore, k = e(p, u) lies in the set K(l, S) defined in Table 4.

Proof. Lemmas 7.11, 7.12 and Proposition 9 imply that p divides |S| and
l = t(p, S) = t(p, L). Lemma 2.6 yields l ∈ {2, 3, 4}. The final assertion
follows by Lemma 2.9 and Table 3.

Table 4: The set K(l, S)

S l = 2 l = 3 l = 4

Lm(u) {2} {3} {4}
Um(u) {1} {6} {4}
Sp2m(u) {1, 2} {4}, if m ≡ 2, 3 (mod 4) {4}, if m ≡ 0, 1, 5, 8, 9 (mod 12)
O2m+1(u) {3, 6}, if m ≡ 10 (mod 12)

{3, 4, 6}, if m ≡ 4 (mod 12)

O+
2m(u) {1, 2} {4}, if m 6≡ 1 (mod 4) {3, 6}, if m ≡ 4 (mod 6)

{4}, if m ≡ 1, 9 (mod 12)
{6}, if m ≡ 11 (mod 12)
{4, 6}, if m ≡ 5 (mod 12)

O−2m(u) {1, 2} {4}, if m ≡ 3 (mod 4) {4}, if m 6≡ 3, 5, 7, 11 (mod 12)
{3}, if m ≡ 11 (mod 12)
{3, 4}, if m ≡ 5 (mod 12)

Let j and k be natural numbers and j > k. Observe that j/k is an odd
integer if and only if j ≡ k (mod 2k).
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Lemma 7.13. Let k = e(p, u). Suppose that s, r ∈ π(L) \ {p} are different
primes such that (sr, u(u2− 1) · |K| · |G/S|) = 1, sr ∈ ω(L), and psr 6∈ ω(L),
and suppose that j = e(s, u) and i = e(r, u). If S = Lεn(u), then neither νε(j)
nor νε(i) is divisible by νε(k). If S is symplectic or orthogonal, then neither
i nor j is congruent to k modulo 2k. In particular, if a ∈M(L) ∩N(L) and
j = e(ra(q), u), then νε(j) is not divisible by νε(k) when S = Lεn(u), and j is
not congruent to k modulo 2k when S is symplectic or orthogonal.

Proof. First, suppose that S = Lεm(u). To avoid unwieldy notation, we
assume that S is a linear group, that is νε is the identity function. The proof
for unitary groups is analogous, we have only to use the function ν instead.
Recall that by Lemma 7.12, the number p does not divide u− 1, that is we
have k 6= 1. It follows from the equality (sr, u(u2 − 1) · |K| · |G/S|) = 1 that
S has a semisimple element of order sr. Now Lemma 2.13 implies that S has
an element of order [uj − 1, ui − 1]/d, where d is some divisor of u− 1. If k
divides either of j and i, then prs divides [uj−1, ui−1]/d, which contradicts
the fact that prs 6∈ ω(L).

Now let S be a symplectic or orthogonal group. Recall that p 6= 2. The
equality (sr, u(u2 − 1) · |K| · |G/S|) = 1 implies that S has a semisimple
element of order sr. By Lemma 2.13, S has an element of order [uη(j) +
(−1)j, uη(i) + (−1)i]/d, where d divides 4. Assume that one of the numbers
j and i, say j, is congruent to k modulo 2k. Then uη(k) + (−1)k divides
uη(j) + (−1)j, and hence prs divides [uη(j) + (−1)j, uη(i) + (−1)i]/d, contrary
to the hypothesis.

Let a ∈M(L)∩N(L) and let j = e(ra(q), u). By Lemma 7.10, there is a
number b such that rb(q) is large with respect to L, ra(q)rb(q) lies in ω(L),
and pra(q)rb(q) does not. Writing s = ra(q), r = rb(q) and observing that
(sr, u(u2− 1) · |K| · |G/S|) = 1, we see that the assertion of the lemma holds
for j = e(ra(q), u) = e(s, u).

Lemma 7.14. If L ∈ X , then the conclusion of Theorem 3 holds.

Proof. Let L ∈ X . Then Lemma 7.9 implies that S also lies in X . Suppose
that S = Lεm(u). Since L ∈ X , we have t(p, L) = 3, and hence k = e(p, u) =
νε(3) (see Table 4). One of the numbers t− 1, t− 2, t− 3 is a multiple of 3,
and we denote this number by c. By Lemma 7.8, we have (2t+ 2)/3 < c < t,
and so c ∈ T (L). Therefore, there is a ∈ M(L) ∩N(L) such that ζL(a) = c.
Then c = t(ra(q), L) = t(ra(q), S) due to Lemma 7.1. By Lemma 7.3, the
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function ζS is injective and ζS(νε(c)) = c, and hence j = e(ra(q), u) = νε(c).
Since νε = ν−1ε , we see that νε(j) = c is divisible by νε(k) = 3, which is a
contradiction by Lemma 7.13.

Let S be an orthogonal group lying in X . Then k = e(p, u) = 4. By
Lemmas 7.5 and 7.6, the set C = {t−x | x = 1, 2, . . . , 6} contains c such that
t(rj(u), S) = c and j ≡ 4 (mod 8). Since C ⊆ T (L), it follows that c ∈ T (L).
Thus there is a ∈ M(L) ∩ N(L) such that ζL(a) = c. Then t(ra(q), S) = c,
and hence e(ra(q), u) = j, which is not the case by Lemma 7.13.

Lemma 7.15. If S ∈ X1, then the conclusion of Theorem 3 holds.

Proof. Let k = e(p, u). Suppose that there is c ∈ T (L) such that νε(k)
divides c. As in the previous lemma, there is a ∈ M(L) ∩ N(L) such
that t(ra(q), S) = c, and by Lemma 7.3, it follows that j = e(ra(q), u) =
νε(c). Hence νε(j) = c is divisible by νε(k), which is a contradiction due
to Lemma 7.13. Thus it suffices to show that there is j ∈ T (L) that is a
multiple of νε(k).

By the previous result, we may assume that L ∈ Y . In this case, an
additional difficulty is that the members of T (L) are not consecutive integers.
Nevertheless, for each group L we will prove that T (L) contains a number
with the desired property.

Let L ∈ {S2n(q), O2n+1(q)} and n be even. Then t(p, L) = 2. Since
S = Lεm(u), and therefore, the characteristic p of L does not divide εu − 1
by Lemma 7.12, it follows that k = e(p, u) = νε(2), and hence νε(k) = 2.
If n ≡ 0 (mod 4), then t − 2, t − 3 ∈ T (L), and if n ≡ 2 (mod 4), then
t − 3, t − 4 ∈ T (L). In each case, T (L) contains two consequent numbers,
and one of them is a multiple of 2, as required.

Let L = O−2n(q) and n be even. Then t(p, L) = 4, whence k = e(p, u) =
νε(4) = 4. Now the proof is somewhat similar to the proof in the previous
paragraph if we take into account the following observation: T (L) contains
the numbers t−2, t−4, t−5, t−7 when n ≡ 0 (mod 4) and t−2, t−4, t−5, t−7
when n ≡ 2 (mod 4) and n > 34, and the set of the residues of these numbers
module 4 is all of {0, 1, 2, 3}; furthermore, if n = 30, then t−3 = 23−3 = 20 is
a multiple of 4 and lies in t(L), and if n = 34, then so does t−2 = 26−2 = 24.

The remaining cases are L = S2n(q), O2n+1(q) with n odd and L = O+
2n(q)

with n even, where we have t(p, L) = 3, whence k = e(p, u) = νε(3) and
νε(k) = 3. If L = S2n(q), O2n+1(q) and n ≡ 1 (mod 4), then t ≡ 2 (mod 3).
Thus t− 2 lies in T (L) and is a multiple of 3. If either L = S2n(q), O2n+1(q)
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with n ≡ 3 (mod 4) or L = O+
2n(q) with n ≡ 0 (mod 4), then t ≡ 0 (mod 3),

and t−3 lies in T (L) and is a multiple of 3. If L = O+
2n(q) and n ≡ 2 (mod 4),

then t ≡ 1 (mod 3), and t− 1 is the desired number.

Now we may assume that L ∈ Y and S ∈ Y ∪X2, and in particular, both
L and S are symplectic or orthogonal groups. Moreover, by Lemma 7.9,
each i ∈ {1, 2, 3} satisfies the following condition: if L ∈ Yi, then S ∈
Yi ∪ X2. Also observe that [(3x + 2)/2] is an injective function, and hence
η(i) is uniquely determined by ζL(i). Furthermore, if i ≡ 0 (mod 4), then i is
uniquely determined by η(i), and so by ζL(i) as well.

Lemma 7.16. If t(p, L) = 3, then the conclusion of Theorem 3 holds.

Proof. Let t(p, L) = 3. Then either L = S2n(q), O2n+1(q) with n odd or
L = O+

2n(q) with n even. Furthermore, since S is symplectic or orthogonal,
we have k = e(p, u) = 4. Also note that if S = S2m(u), O2m+1(u), then
m ≡ 2, 3 (mod 4); if S = O+

2m(u), then m 6≡ 1 (mod 4); and if S = O−2m(u),
then m ≡ 3 (mod 4) (see Table 4).

Let L = S2n(q), O2n+1(q) and n ≡ 1 (mod 4). Suppose that S = S2m(u)
or S = O2m+1(u). Since t(L) = t(S), it follows that m ∈ {n, n+ 1}. Now the
congruence m ≡ 2, 3 (mod 4) yields m = n+1. But then S ∈ Y2, which is not
the case because L ∈ Y3. If S = O+

2m(u), then for every m, we have that t(S)
is not congruent to 2 modulo 3. On the other hand, t(L) ≡ 2 (mod 3), and
hence S 6= O+

2m(u). Similarly, S 6= O−2m(u), since otherwise m ≡ 3 (mod 4)
and t(S) ≡ 0 (mod 3).

Let L = S2n(q), O2n+1(q) and n ≡ 3 (mod 4). Suppose that S = S2m(u)
or S = O2m+1(u). The equality t(L) = t(S) yields m = n. Both n − 3
and n − 7 are divisible by 4, therefore, one of them is congruent to 4
modulo 8. Denote this number by a. Since t(rn−3(q), L) = t − 2 and
t(rn−7(q), L) = t − 5, we have x = t(ra(q), L) > 2t/3, whence x ∈ T (L).
Thus t(ra(q), S) = x. As ζS is invertible on the set of multiples of 4 and
S has the same type as L, it follows that e(ra(q), u) is equal to a, and so
it is congruent to 4 modulo 8. Applying Lemma 7.13, we derive a contra-
diction. Thus S is an orthogonal group of even dimension. If m = n, then
S = Oε

2n(u). By Lemmas 7.4–7.6, both t(rn−3(q), L) and t(rn−3(u), S) are
equal to t− 2, so t− 2 = t(rn−3(u), S) = t(rn−3(q), L) = t(rn−3(q), S). Sim-
ilarly, t − 5 = t(rn−7(u), S) = t(rn−7(q), L) = t(rn−7(q), S). Repeating the
previous argument we derive a contradiction by Lemma 7.13. If m 6= n,
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then the equality t(L) = t(S) implies that the only remaining possibility is
S = O+

2n+2(u). Then S ∈ Y2, which is not the case because L ∈ Y1.
Let L = O+

2n(q) and n ≡ 2 (mod 4). If S ∈ {S2m(u), O2m+1(u)}, then
t(L) = t(S) yieldsm = n−2, whencem ≡ 0 (mod 4), which is a contradiction.
If S = O−2m(u), then m ∈ {n−2, n−1}, and this is also a contradiction since
m must be congruent to 3 modulo 4. If S = O+

2m(u), then m ∈ {n − 1, n}.
Since m cannot be congruent to 1 modulo 4, it follows that m 6= n − 1.
Thus S has the same type and the same Lie rank n as L. Both n − 2
and n − 6 are multiples of 4, so one of them is congruent to 4 modulo 8,
and we denote this number by a. As t(L) > 23, we have n > 31 and
η(n − 2) > η(n − 6) = n/2 − 3 > n/3. Therefore a ∈ M(L) ∩ N(L), and
applying Lemma 7.13, we derive a contradiction.

Let L = O+
2n(q) and n ≡ 0 (mod 4). The equality t(L) = t(S) leaves

us with two possibilities: either m = n − 1 ≡ 3 (mod 4) or m = n and
S = O+

2n(u). If S is a symplectic group or an orthogonal group of odd
dimension, then S ∈ Y1, while L ∈ Y2. Suppose that S = O+

2n(u), that is
S has the same type and the same Lie rank n as L. Since n − 4, n − 8
are multiples of 4, we can choose a number a of them with a ≡ 4 (mod 8).
Furthermore, η(n − 4) > η(n − 8) = n/2 − 4 > n/3 because t(L) > 23 and
so n > 31. Thus a ∈ M(L) ∩ N(L), and applying Lemma 7.13, we derive a
contradiction.

The remaining case for L = O+
2n(q) with n ≡ 0 (mod 4), is S = Oε

2(n−1)(u),

and this case requires the most effort. Let s = rn−4(q) and a = n−1−η(n−
4) = (n+ 2)/2. Similarly to the proof of Lemma 7.10 we conclude that r1 =
ra(q) and r2 = r2a(q) have the following properties: for i = 1, 2, the number ri
is large with respect to L, sri ∈ ω(L), and psri 6∈ ω(L). Since n ≡ 0 (mod 4),
we conclude that r3 = rn+4(q) = r2(a+1)(q) has the same properties. Now
r1, r2, r3 constitute a coclique in GK(L) because for any i, j ∈ {1, 2, 3} we
have ϕ(ri, L) > n/2 and e(ri, q) 6= e(rj, q) whenever i 6= j. Therefore these
numbers are large with respect to S and constitute a coclique in GK(S).
Since ζS is injective and t(s, S) = t(s, L) = t−3, the value of e(s, u) depends
only on e(s, q). If S = O+

2(n−1)(u), then j = e(s, u) = (n − 6)/2, and if

S = O−2(n−1)(u), then j = e(s, u) = n − 6. In both cases, η(e(s, u)) = η(j)

is odd. Let r ∈ {r1, r2, r3} and write i = e(r, u). As rs ∈ ω(S), we have
η(i) 6 m − η(j). If η(i) = m − η(j), then since m is odd, it follows that
i is even. The condition rs ∈ ω(S) implies that S has an element of order
[uη(j) + (−1)j, uη(i) + (−1)i]/2, which is not the case because i and j have
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opposite parity when S = O+
2m(u), and the same parity when S = O−2m(u).

Thus η(i) < m − η(j). If η(i) < m − η(j) − 2, then S has an element of
order [uη(j) + (−1)j, uη(i) + (−1)i, u2 + 1, u + (−1)i+1], which is divisible by
prs, contrary to the fact that prs 6∈ ω(L). Let η(i) = m− η(j)− 2. Then i is
even, and hence S has an element of order [uη(j) +(−1)j, uη(i) +(−1)i, u2 +1],
which is divisible by prs. Finally, let η(i) = m − η(j) − 1. But then e(r, u)
has only two different possible values, and this is a contradiction since the
numbers e(ri, u) with i = 1, 2, 3 must be distinct.

Lemma 7.17. If t(p, L) = 2, then the conclusion of Theorem 3 holds.

Proof. If t(p, L) = 2, then L = S2n(q), O2n+1(q) and n is even. Since S is
symplectic or orthogonal, we have k = e(p, u) ∈ {1, 2}.

Suppose n ≡ 2 (mod 4). Then L ∈ Y2. The equality t(L) = t(S) implies
that S = S2n(u), O2n+1(u). Let j = n/2 − 2 and s = rj(q). Observe that
η(j) = j is odd. As in the proof of Lemma 7.10, we write a = n − η(j) =
n/2 + 2. Then r1 = ra(q) and r2 = r2a(q) have the following properties: for
i = 1, 2, the number ri is large with respect to L, sri ∈ ω(L), and psri 6∈ ω(L).
Furthermore, r1 and r2 are not adjacent inGK(L). Since t(s, S) = t(s, L) and
S has the same type and the same Lie rank as L, it follows that η(e(s, u)) =
η(e(s, q)) = j. Let r ∈ {r1, r2} and write i = e(r, u). As rs ∈ ω(S), we
have η(i) 6 n− η(j). If η(i) < n− η(j), then S contains elements of orders
[uη(j) + (−1)j, uη(i) + (−1)i, u− 1] and [uη(j) + (−1)j, uη(i) + (−1)i, u+ 1], one
of which must be divisible by prs because p divides either u − 1 or u + 1.
But then prs ∈ ω(S) \ ω(L), a contradiction. Thus η(i) = n − η(j) = a.
Since a is odd, there are two possible values for e(r, u), and these are a and
2a. As e(r1, u) 6= e(r2, u), we have {e(r1, u), e(r2, u)} = {a, 2a}. If k = 1,
then a ≡ k (mod 2k), and if k = 2, then 2a ≡ k (mod 2k). We denote by
r the number in the set {r1, r2} for which i = e(r, u) ≡ k (mod 2k). Now s
and r satisfy the hypothesis of Lemma 7.13, which is a contradiction because
i ≡ k (mod 2k).

Now suppose that n ≡ 0 (mod 4). The conditions t(L) = t(S) and L ∈ Y1

leave us with two further possibilities: either S = S2n(u), O2n+1(u) or S =
Oε

2m(u) with m = n+1. In the first case, we use the argument of the previous
paragraph with j = n/2− 1 and a = n− η(j) = n/2 + 1. Now assume that
S = Oε

2(n+1)(u) and write b = n/2 − 1, s = rb(q), a = n − b = n/2 + 1,

r1 = ra(q), and r2 = r2a(q). Since η(b) = b is odd, it follows that r1 and
r2 satisfy the conclusion of Lemma 7.10, that is r1 and r2 are not adjacent
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in GK(L), they are large with respect to L, and for i = 1, 2 the number
ris belongs to ω(L), but pris does not. Let r ∈ {r1, r2}, i = e(r, u), and
j = e(s, u). Then the equality t(s, S) = t(s, L) = t − 2 yields j = m − 3
when S = O+

2m(u), and j = (m − 3)/2 when S = O−2m(u). As rs ∈ ω(S),
it follows that η(i) 6 m − η(j). If η(i) < m − η(j), then ω(S) contains
[uη(j) + (−1)j, uη(i) + (−1)i, u+ (−1)i−1] which is divisible by the odd part of
u2 − 1, and so by prs, which is a contradiction. Thus since m ≡ 1 (mod 4),
the number η(i) = m − η(j) = m − (m − 3)/2 = (m + 3)/2 is even, and
therefore there is only one possible value for e(r, u), namely, m+3. But then
e(r1, u) = e(r2, u), a contradiction.

Lemma 7.18. If t(p, L) = 4, then the conclusion of Theorem 3 holds.

Proof. Note that the equality t(p, L) = 4 holds if and only if L = O−2n(q)
and n is even.

Suppose that n ≡ 0 (mod 4). If S = S2m(u) or S = O2m+1(u), then
t(L) = t(S) yields m = n. But then S ∈ Y1 and L ∈ Y3, a contradiction. If
S = O−2m(u), then m ∈ {n, n+ 1}. Suppose that m = n. Then k = e(p, u) =
4. Since a = n−4 and b = n−8 lie in M(L)∩N(L) and are multiples of 4, it
follows that one of the numbers e(ra(q), u) = e(ra(q), q) = a and e(rb(q), u) =
e(rb(q), q) = b is congruent to 4 modulo 8. But this contradicts Lemma 7.13.
If S = O+

2m(u), then m ∈ {n+1, n+2}. Let m = n+2. Then m ≡ 2 (mod 4),
and, on the other hand, it follows from Table 4 that m ≡ 4 (mod 6). Thus
m ≡ 10 (mod 12), and hence m = 12c + 10, n = 12c + 8 for some integer c.
Writing X = {a | n/2 6 η(a) < 2n/3} and noting that n/2 = 6c+ 4 is even,
we conclude that |X| = [3((8c+ 6)− (6c+ 4))/2] = 3c + 3 by Lemma 1.8.
There is a coclique ρ of size |X| in GK(L) such that e(r, q) ∈ X for every
r ∈ ρ. Let r ∈ ρ. The prime r is large with respect to L, and so r is large
with respect to L too, whence ϕ(r, S) > m/2 (see Table 1). Furthermore,
there is b ∈M(L) = N(L) such that rrb(q) ∈ ω(L). Since e(rb(q), u) ∈ N(S)
and N(S) = M(S), we have ϕ(r, S) 6 m−ϕ(rb(q), S) < 2m/3. Thus writing
Y = {a | m/2 6 η(a) < 2m/3}, we see that e(r, u) ∈ Y for every r ∈ ρ.
By Lemma 1.8, the size of Y is equal to [(3((8c+ 7)− (6c+ 5)) + 1)/2] =
3c + 3 = |X|, and therefore {e(r, u) | r ∈ ρ} = Y . It follows that ρ contains
r and r′ such that e(r, u) = m/2 and e(r′, u) = m. But then rr′ ∈ ω(S), a
contradiction.

It remains to consider the situation where S = Oε
2m(u), m = n + 1,

and either k = e(p, u) = 4 or m ≡ 5 (mod 12) and (ε, k) ∈ {(+, 6), (−, 3)}.
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First, assume that m ≡ 5 (mod 12) and k 6= 4. Observe that the congruence
and the condition t > 23 imply that m = n + 1 > 45. In particular, we
have (n + 12)/2 > n/3, and so n − 4, n − 8, n − 12 ∈ M(L) ∩ N(L) with
t(rn−4(q), L) = t − 2, t(rn−8(q), L) = t − 5, and t(rn−12(q), L) = t − 8.
If S = O+

2m(u), then it follows that the numbers e(rn−4(q), u) = m − 3,
e(rn−8(q), u) = m− 7, and e(rn−4(q), u) = m− 11 are congruent to 2 modulo
4. Moreover, they have different residues modulo 3, and hence one of them is
congruent to 6 modulo 12. We denote this number by j and take a to be such
that e(ra(q), u) = j. Applying Lemma 7.13 to a ∈M(L)∩N(L), we conclude
that j 6≡ 6 (mod 12), a contradiction. If S = O−2m(u), then the numbers
e(rn−4(q), u) = (m − 3)/2, e(rn−8(q), u) = (m − 7)/2, and e(rn−4(q), u) =
(m − 11)/2 are odd and one of them is a multiple of 3. Since k = 3, we
again derive a contradiction by Lemma 7.13. Thus we may assume that k =
e(p, u) = 4. Let s1 = r(n−2)/2(q), s2 = rn−2(q), r1 = rn+2(q), r2 = r(n+2)/2,
and w = rn(q). It follows that (n− 2)/2, n− 2 ∈ M(L) ∩N(L), the primes
r1, r2, w are large with respect to L and for l = 1, 2, we have slrl, slw ∈
ω(L), but pslrl, pslw 6∈ ω(L). Furthermore, t(s1, L) = t(s2, L) = t − 1 =
t(s1, S) = t(s2, S). Therefore, j = e(s1, u) = e(s2, u) is equal to (m − 3)/2
when S = O+

2m(u) and to m − 3 when S = O−2m(u). Let r ∈ {r1, r2, w}
and i = e(r, u). As for l = 1, 2, we have slrl, slw ∈ ω(S), it follows that
η(i) 6 m− η(m− 3) = m− η((m− 3)/2) = (m+ 3)/2. If η(i) = (m+ 3)/2,
then η(i) is even, and so i = m+ 3. But then i+ 2η(j) = 2η(i) + 2η(j) = 2m
and either j = η(j) and S = O+

2m(u) or j = 2η(j) and S = O−2m(u), and by
adjacency criterion, r and sl are not adjacent in S for l = 1, 2, which is not
the case. Thus η(i) < (m + 3)/2. If η(i) = (m − 1)/2, then O+

2m(u) has an
element of order a = [uη(i) + 1, uj − 1, u2 + 1] and O−2m(u) has an element of
order b = [uη(i)+1, uj+1, u2+1]. This is a contradiction because prsl divides
both a and b for l = 1, 2. If η(i) < (m − 1)/2, then it is easy to construct
an element of required order. So η(i) = (m + 1)/2 and there are only two
possible values for e(r, u). This is impossible because {r1, r2, w} is a coclique
in GK(L).

Now suppose that n ≡ 2 (mod 4). The group S cannot be isomorphic to
O+

2m(u) since otherwise t(L) is congruent to 2 modulo 3 and t(S) does not.
Let S ∈ {S2m(u), O2m+1(u)}. Then t(L) = t(S) yields m ∈ {n, n − 1}. If
m = n, then S ∈ Y2, and if m = n − 1, then S ∈ Y3, which contradicts to
the fact that L ∈ Y1. Thus S = O−2m(u), and it follows from t(L) = t(S) that
m = n. Then m ≡ 2 (mod 4), and so k = e(p, u) = 4. Assume that t > 23,
that is m = n > 30. Then η(n− 6) > η(n− 10) = n/2− 5 > n/3, and hence

63



n− 6, n− 10 ∈M(L)∩N(L) with one of them being a multiple of 4 but not
of 8. Now Lemma 7.13 gives the desired contradiction.

Finally, assume that L = O−60(q) and S = O−60(u). Let s1 = r11(q), s2 =
r22(q), r1 = r38(q), r2 = r19(q), and w = r18(q). Then 11, 22 ∈M(L)∩N(L),
{r1, r2, w} is a coclique in GK(L) and it consists of numbers large with
respect to L, and for l = 1, 2, we have slrl, slw ∈ ω(L), but pslrl, pslw 6∈
ω(L). Writing j1 = e(s1, u), j2 = e(s2, u) and using Lemma 7.1, we obtain
η(j1) = η(j2) = 11. Choose r ∈ {r1, r2, w} and take i = e(r, u). Since for
l = 1, 2, we have slrl, slw ∈ ω(S), it follows that η(i) 6 19. It is easy to
see that if η(i) 6 16, then ω(S) contains a number divisible by prsl for each
l = 1, 2, which is impossible. So we assume that η(i) > 17. If η(i) = 18,
then i = 36 ≡ 4 (mod 8), and applying Lemma 7.13 either to the pair (sl, rl)
or to the pair (sl, w) for some l ∈ {1, 2}, we have the desired contradiction.
Let η(i) ∈ {17, 19} and j ∈ {j1, j2}. If j = 11, then since S has no elements
of order [u11− 1, u19− 1]/d with d ∈ {1, 2, 4} and does have element of order
[u2 + 1, u11 − 1, u17 − 1], it follows that i ∈ {34, 38}. Similarly, if j = 22
then i ∈ {17, 19}. If j1 = j2, then i = e(r, u) can take at most two different
values, but there must be at least three of them as {r1, r2, w} is a coclique
in GK(L). And if j1 6= j2, then e(w, u) ∈ {17, 19} ∩ {34, 38} = ∅, and this
contradiction completes the proof.

If L = Lεn(q) with n > 45, L ∈ {S2n(q), O2n+1(q)} with n > 29, L =
O−2n(q) with n > 30, or L = O+

2n(q) with n > 31, then t(L) > 23. We
eliminated all possibilities for the group S under the assumption that t(L) >
23, and so the proof of Theorem 3 is complete.

Remark 4. Although the final part of the proof is technically complicated,
its idea is transparent and based on an application of the well-known pigeon-
hole principle. Here pigeons are from M(L)∩N(L) and holes are from N(S).
The number of pigeons and number of holes are almost the same and, what
is sufficient, the difference between them is a small constant which does not
depend on n = prk(L). However, there are prohibited holes, and the number
of those holes increases when so does n. It provides a contradiction that
becomes evident with the growth of n.

8. Proof of Theorems 1 and 2

As written in Introduction, Theorems 1 and 2 follow from Theorem 3 and
a series of previously obtained results. The next assertion summarizes the
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main results of [17, 18].

Lemma 8.1. Let L be a finite simple classical group over a field of charac-
teristic p, and L 6∈ {L2(9), L3(3), U3(3), U3(5), U5(2), S4(3)}. Suppose that G
is a finite group with ω(G) = ω(L), and S is a unique nonabelian composition
factor of G. Then one of the following holds:

(1) S ' L;
(2) L = S4(q), where q > 3, and S ' L2(q

2);
(3) L ∈ {S6(q), O7(q), O

+
8 (q)} and S ∈ {L2(q

3), G2(q), S6(q), O7(q)};
(4) n > 4, L ∈ {S2n(q), O2n+1(q)} and S ∈ {O2n+1(q), O

−
2n(q)};

(5) n > 6 is even, L = O+
2n(q) and S ∈ {S2n−2(q), O2n−1(q)};

(6) S is a group of Lie type over a field of characteristic distinct to p.

This assertion and Theorem 3 yield Theorem 2 immediately.

A cover of a finite group G is a finite group having G as a factor group.
A cover is proper if the corresponding factor group is proper. If ω(G) 6=
ω(H) for every proper cover H of G, then G is said to be recognizable by
spectrum among covers. It follows from [19, Lemma 9] that a finite group
G is recognizable by spectrum among covers if and only if ω(G) 6= ω(H) for
every splitting extension H = V o G, where V is an absolutely irreducible
finite-dimensional G-module over a finite field of characteristic r. For every
simple linear and unitary group L = Lεn(q) with n 6= 4 and every L-module
V , if the characteristic r of V coincides with the characteristic p of L, then
it is proved that ω(L) 6= ω(V o L) [19]. If V is defined over the field of
characteristic distinct to p and L = Ln(q), then any extension V oL contains
an element whose order does not belong to ω(L) [19, Lemma 11]. For other
classical groups the following general result was recently obtained.

Lemma 8.2 ([20]). Let L be one of the simple groups Un(q), where n > 4,
S2n(q), where n > 3, O2n+1(q), where n > 3, and O±2n(q), where n > 4.
Suppose that V is a finite-dimensional L-module over a field of characteristic
r prime to q. Then either ω(V o L) 6= ω(L) or L = U5(2) and r = 3.
If L = U5(2), then there is a 10-dimensional L-module V over a field of
characteristic 3 such that ω(V o L) = ω(L).

If L = Lεn(q), n > 45, and G is a finite group isospectral to L, then
Theorem 3 and Lemma 8.1 provide L 6 G/K 6 AutL, where K is the
soluble radical of G. An application of the aforementioned results on covers
of linear and unitary groups completes the proof of Theorem 1.
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