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MINIMAL PERMUTATION REPRESENTATIONS
OF FINITE SIMPLE EXCEPTIONAL GROUPS OF TYPES Es, E;, AND E;

A. V. Vasilyev* UDC 512.542.5

A minimal permutation representation of a group is its faithful permutation representation of
least degree. We will find degrees and point stabilizers, as well as ranks, subdegrees, and double
stabilizers, for groups of types Eg, Ev7, and Es. This brings to a close the study of minimal
permutation representations of finite simple Chevalley groups.

This paper continues [1], where minimal permutation representations of finite simple exceptional groups
of types G3 and Fy were described. Our present goal is to obtain a similar description for minimal permu-
tation representations of groups Eg, E7, and Eg. We follow the notation and terminology developed in [1],
in which the reader can find all necessary preliminary information and a complete list of references.

1. GROUP Ee(q)

A. Algebra Es. The rank of Es equals 6. Obviously, E¢ is a subalgebra of Es. If K is a Cartan
subalgebra in Ejg, then Ky is an Euclidean space of dimension 8. Let ey,...,eg be an orthonormal basis
of Ky. Then a system II of simple roots for E¢ (as an algebra of Eg) is defined as follows: p; = e3 — ey,

8
Pr=e4—€5,P3=€5—€, Pa=€ —€r,Ps =€+ €1, P = —3 I €.
i=1

The system of positive roots is

este;, i<y, 1=3,...,6, 7=4,...,T,

et = , |®%] = 36.

—%ié:le‘-e;, =1, gy =e3=€g=1, ‘ille,- =1
2 -1 0 0 0 0
-1 2 -1 0 0 0
-1 2 -1 -1 0
0 -1 2 0 0
0 -1 0 2 -1
0 0 0 -1 2

The matrix A has the form

o O o o

The Dynkin diagram is

PL P2 D3 P5 Ds

IIM
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B. Group F¢(g) and its parabolic subgroups of least index. The order of a field K equals g = p*, where
pis a pnme. If 3 does not divide g — 1, then the group G = Eg(g) coincides with the universal group
G = Eg(q). Otherwise it is isomorphic to the factor group G w.r.t. the center Z, which is a cyclic subgroup
of order 3. Using Lemma 3 of [1], it is easy to verify that

Z = {hpy () - Fpa () - B (1) By (%) | € K™, 2 =1}

From the main result stated in [2] and Proposition 1 of [1], it follows that a subgroup of least index in
G should be parabolic. Proposition 1 of (1] allows us to compute orders of maximal parabolic subgroups in
G. Comparing these orders, we see that there are, up to conjugation, two subgroups of least index in G:
Py = Ppy\(p,} and Ps = Ppy\(p,) (for definitions, see [1]), which are conjugate in Aut G.

Elements z,(t) of G, as well as #i,(t) and h,(t), were defined in Lemma 3 in [1]. Let S be a sub-
group of G generated by the elements z.,,(t),...,2,, (tx). Denote by S a subgroup of G generated by
z, (t1),-. .- ’i"'ft")’

The group Py, like Pg, includes a subgroup H, and hence also Z. Thus

IGl = ¢%(¢™ — 1)(¢° — 1)(¢® — 1)(¢® - 1)(¢°* — 1)(¢* - 1),

[Py = |Pel = ¢*°(¢® - 1)(¢° — 1)(¢° — 1)(¢* - 1)(¢* — 1)(g — 1),
|Gl = iGl/d, {Pi|=1{Ps|=|P1|/d', whered = (3,9 1),
n=|G:P|=|G: Ps|=|G: Pl =(¢° - 1)(¢® +¢* +1)/(g - 1).

First, we describe a structure of the subgroup P in the universal group G, using the Levi decomposition;
see [1, Lemma 5]. Obviously, P, = U, - L1 (U, coincides with U;). For every element r € $+\ &}, we have
r = p; + 81, where s; € QI‘. Therefore, Uy is an elementary Abelian p-group of order ¢'6.

Let Hy = (hp(A)] i = 2,...,6; A € K*) and L} = (2,(t)| r € &1, t € K). The group L} is iso-
morphic to the universal Chevalley group Ds(g), and L, = L, - (h), where h € A\ H,. Let hy =
Rps (N (X¥) B, (A)hpy (A%, (X*)hp, (3?), where X generates K*; ho(s) = By, (1)hy, (147) g, (5%, (1),
where |u| = 4 for (4, — 1) = 4, or ho(p) = hp,(1)Ry, (), Where |u} = 2 for (¢ — 1,4) = 2, and ho(u) =1
for even q. The element ho centralizes I, and (ho) N L} = (ho{x)). Hence, the group L, is isomorphic to
an extension of the central product of groups L) and (hg) over the subgroup (ho(x)) by a cyclic group of
order e = (g — 1,4), that is, L; ~ e~ (Ds(g) x (g — 1)/e) - e. Since the center of G lies in {ho), we obtain
Py~ p'® : (e (Ds(q) x (g — 1)/e') -€), where ' = ed’ and &' = (¢ — 1,3).

C. Representation of G on cosets w.r.t. P;. Our goal is to define double stabilizers of the representation
of G on the cosets w.r.t. Py, that is, groups of the form P, N Pf. Therefore, we need to choose appropriate
elements z in a way that these do not map into W) under the natural homomorphism ¢: N — W. Since
H < Pj, the action of an element n € N on P, is determined by the action of its image w € W on &,
and so below an element n will be identified with its image w. We need to adopt the following notation:
$12=9%: 1%, and $, 5 = $; N 5. The action of Wy, on ¥ is shown in the following:
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dt\oF o} & &\®7
H d’i"a Ql_’z -p1
(10 elements) (10 elements)
5 elements e 5 elements
e\, e\,
/ (10 elements) (10 elements) \

10 elements 10 elements

Diagram 1

An arrow pointing from set X to set Y says that w,,(X) = Y; the absence of an arrow outgoing from

Z indicates that w,,(Z) = Z

We start by determining the structure of a double stabiliser M; =
From Diagram 1, it follows that U, N P""* ~ p!3*. Let L] ; = (z.(t)| r € 12, t € K)
Uiz = (Z.(t)] r € <I’*'\¢I>1 2 t € K} ~ Uy 3. The group Uy 3 is Abelian, as is U;. Therefore, U2 >~ p
The center of Ll,, is generated by the element

= Bpy () hp, (1) g, (%) Rpe (17),

where 4% = 1. Its order is equal to f = (g — 1,5). The elements hy and hy, () centralize L} ,, and
the element z(u)hy, (1) lies in (ho). Hence Ly N Py'™* =~ p'%: (f - ((Aa(q) x (¢ - 1)/f) - (a = 1)/f) - f).
Now it is easy to describe M3 = Pi N P;'". Factoring out M, by the center of G, we obtain M; ~
P (P : (f - ((Aalq) x (g — 1)/f) x (g = 1)/f') - f)), where f' = f-d' and &' = (¢ — 1,3). So
ny = |Py: My| = |Py: My| = q- (¢~ 1)(¢* +1)/(¢ - 1).

Next, consider the action of wg = We,_¢, - Weys4ey = Weyter - Wey—e, 0N P. Denote by Qg

f’lﬂ}_’lw" = ([71015;'") : (Elﬁp;'").

jad jig(q) jad SL,-,(q),
10s

z(p)

a subset

{este;j|j=4,...,7} of &*. Clearly, |®)| = 8. A diagram showing the action of wo on & is this:
o+\ o} ot & o-\&
®fe 27
8 elements (12 elements) (12 elements) 8 elements
of\o}, O7\®1s
(8 elements) (8 elements)
&} &y
Diagram 2
It follows from the diagram that U, n P;"° ~ p®

We consider the structure of Ly N Py°. Let L} ¢ = (£,(t)| r € <I>1 6t € K), Uyg = (2.(t)] r € 9T\ &},
t € K). The group Uy 6 = Uy is isomorphic to p*, and L} s ~ D4(q). The center of L} ¢ is described
as follows. For d = (¢ —1,2) = 2, (L} ¢) = (hp,(#)hp, (1)) x (h,,.( )hp, (1)) =~ 22, where 4 is an element
of order 2 in the multiplicative group of the field K. The element h,,(u)h,, (1) Lies in (ho).

t Since ho
centralizes L} ¢, we have Ly N P ~ p®: (d- (d- Dy(q) x (g — 1)/d)-d) - (g — 1).

304



The center of G lies in (hg). Therefore, M3 = PN PP° ~ p®: (p : (d-(d- Dy(q) x (¢—1)/¢)-d)-(g—1)),
where ¢ = d - d’. The index |P; : M3| = |P; : M3| = n3 is equal to ¢%(¢® — 1)(¢* + 1)/(¢ — 1). Adding
subdegrees n; = 1, n3, and n; of the representation of G on the cosets w.r.t. Py, we obtain ny+n3+n3 =n.

Hence, the rank of the representation equals 3.
Remark. A representation of G on the cosets w.r.t. Ps is similar to the one above.

THEOREM 1. For simple non-Abelian groups G = Eg(gq), the parameters n, n;, n3, P, M3, and M;
of minimal permutatxon representations are given in the following list:

n= (g'—l)(q T I R (4 —:)(q 1) = g8 Lg;qll_(g_m

(e (Ds(Q) x (g-1)/€)-e),
Mz =p™ (1% : (£ - ((Asg) x (¢ - 1)/f) x (¢ = 1)/ ") - ),
= p“ (p* 1 (d- (d- Da(g) x (¢ — 1)/c)-d)- (¢ = 1)),

whered=(¢—1,2),d =(¢g—-1,3),e=(¢q—1,4), f=(¢q—-1,8), ¢ =e-d, f=f-d,c=d-d.

The rank of the representation equals 3.

2. GROUP E4(q)

A. Algebra E7. The rank of E7 equals 7. To determine a system of simple roots for E7, we assume
that it is embedded in Eg. Let X be a Cartan subalgebra in Eg and K3 be the corresponding Euclidean
space with orthonormal basis e;,...,es. Then a system II of simple roots for E; (as a subalgebra in FEg)
is defined as follows: p; = €3 —e3, p; = €3 — eq, P3 = €4 — €5, Py = €5 — €, P5 = €6 — €7, P6 = €5 + €7,

pr= Ee.

The system of positive roots is

e;tej, 1<j 1=2,...,6, 7=3,...,T;
dt = —e1 8—38: . , |§+| = 63.
—3 Y e, gi=21, ex=es=1, [[ei=1
i=1 =1
2 -1 0 ... 0
-1
The matrix A has the form 0 A , where A’ coincides with a matrix A for Eg. The

Dynkin diagram is

PL P2 P3 P4+ Ps Pr

IPs

B. Group E7(gq) and its parabolic subgroups of least index. If 2 does not divide g— 1, then the group G =
E+(g) coincides with the universal group G = E7(g). Otherwise it is isomorphic to the factor group G over
the center Z, which is a cyclic subgroup of order 2. Using Lemma 3 in [1] yields Z = {hyp, (1) hp, (1) 2ps (1)
p€ K, ut =1}
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From the main result in (2] and Proposition 1 of 1], it follows that a subgroup of least index in G
should be parabolic. Proposition 1 of [1] allows us to compute orders of maximal parabolic subgroups in
G. Comparing these orders yields that, up to conjugation, the subgroup of least index in G is P,. The
corresponding subgroup P; of G, obviousiy, contains the center Z. Thus

|G} = ¢%(¢"® — 1)(¢™* — 1)(¢"* - 1)(¢"° - 1)(¢® - 1)(¢° - 1)(¢* - 1),

|P1] = ¢%3(¢*? - 1)(¢° - 1)(¢® ~ 1)(¢° - 1)(¢* - 1)(¢* - 1)(¢ - 1),

(Gl = IGI/d, |P1] = |P1l/d, where d = (g—1,2),n = [G s Po| = |G : Bl = (¢~ 1)@+ 1)(e*+1)/(a~1).

First, we describe the structure of the group P, = U, - L;. For every element r € $+\&}, we have
r = p; + 8;, where 5, € if.‘Therefore, U~ Uy ~ p37*. Let H; = (71,,(,\)| i=2,...,7 A € K%
and I = (%.(t)] r € ®1, t € K). The group L) is isomorphic to the universal Chevalley group Ee(g),
and Ly = i - (h), where h € B\Hy. Let ho = fipy (3)igs (V)ips (Y¥)ipe (A)ipa (1) ip (A4, (A7) and
ho(is) = hp,(1)Rp, (13)hp, (1) hp,(1?), Where X generates K*, and p® = 1. Then L; is isomorphic to an
extension of the central product of groups L} and (ho) over the subgroup (ho(x)) by a cyclic group of order
d’, that is, L} ~ d' - (Ee(q) % (g — 1)/d’) - d', where d’' = (g — 1,3).

Since the center of G is a subgroup of {hq), we obtain Py ~ p?"* : (d' - (Es(q) x (g — 1)/c) - d'), where
c=d-d,d=(2,q-1).

C. Representation of G on cosets w.r.t. P;. The element w,, acts on & as is shown in Diagram 1 [for the
group Fs(g)], but the orders of %, &7, and &, are, of course, greater in this case. Namely, |&*| = 63,
|#F| = 36, and |®],| = 20. Thus U; N P} ™ ~ p*®,

Let L ; = (2.(t)| r € ®1,3, t € K) = Ds(q) and Uy,3 = (2,(t)| r € 7\ @} ,, t € K) = Uy,2. Since the
equality r = p; + 83, where a3 € &7 ;, holds for every element r € $1\&{,, the group Uy ; is Abelian. It is
isomorphic to p%.. o

The elements hg and hy, (1), where A generates K*, centralise L ,, and the element z(u)- hy, (1), where
z(u) € Z(L} ;) and p* = 1, lies in (ho). Hence Ly N Py ™ =~ p: (e ((Ds(q) x (g~ 1)/e€) x (g — 1)/e) - €),
where e = (g — 1,4). Factoring out M; by the center of G, we find

My=PiNP™ = p™: (0" : (' ((Ds(g) x (g~ 1)/e) x (g —1)/e) -¢)),

where ¢’ = e/d. Therefore, [Py : M;| = |Py: M3| =ny = q-(¢° — 1)(¢® + ¢* + 1)/(q — 1).
Let Wo = We,—erWeyter = WeyterWey—e,- Denote by &3 a subset {e; te;| 7 =3,...,7} of &, and by
u an element —e; — eg of . A diagram showing the action of wg on & is this:

o+\&7 ot o O\,

+ -
b ®5 _ &y —u
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16 elements

(20 elements)

(20 elements)

o5
{10 elements)

o\o,
(16 elements)

®r\®;y

(16 elements)

16 elements

2y
(10 elements)

Diagram 3




It follows from the diagram that U; n Py ~ p'7°.

Let f;’l’-, = (& (t)] r € 17, t € K), U,z = (Z.(t)| 7 *I>+\(I>1 nt € K) ~ U7 The group Uy 7 is
isomorphic to p'%*, and E’l'-, is isomorphic to Ds(g). Following essentially the same argument as was used
for M, we see that M3 = Py N Py° ~ p'™: (p*®*: (¢ - ((Ds(q) x (g~ 1)/e) x (g — 1)/€) - €), where ¢’ = e/d,
e=(g—1,4),d=(2,¢—1). Thus n3 = |P1: M3| = |Pr: Ma| = ¢*%(¢° — 1)(¢®* + ¢* + 1)/(g - 1).

Consider the action of an element wy; = wg - wy on &, where w, is a reflection corresponding to the
element u, defined above. A diagram depicting that action is the following:

&t\&} 33 . >y &\@]
L2 @17
e\8f, ®7\®
_ )

Diagram 4

Obviously, My = P, N P;"* = L;. Therefore, |P; : My| = ¢®™*. We have 1+ |P; : M3|+ |Py : Ma]+ |Py:
M| = |G : P;|. Hence the rank of the representation equals 4.

THEOREM 2. For simple non-Abelian groups G = E7(g), the parameters n, na, na, ny, P, Mz, M3,

and M4 of minimal permutation- representatlons are given in the following list:
(qu_l)(q +)(q +1) ,na=gq- [CM —1)gg‘+g +1) ,ns =ql®. (g'_1)q(g—'i{-g'+12’ ne = g7

P=p" (d’ (Es(q) x (g—1)/c)- d’),

Mz =p* : (p'° : (¢ - ((Ds(q) x (g - 1)/€) x (¢~ 1)/e) - €)),

M= p”‘ (' 1 (¢ - ((Ds(g) x (g — 1)/e) x (g — 1)/e) - €)),

My =d - (Es(q) x (- 1)/c) - d',
whered=(¢—1,2),d' = (¢~ 1,3),e=(¢—-1,4), ' =e/d,c=d-d.

The rank of the representation equals 4.

3. GROUP Es(q)

A. Algebra Eg. The rank of Eg equals 8. If e;,...,eg is an orthonormal basis of the Euclidean space
Kpg, where K is a Cartan subalgebra of Eg, then a system II of simple roots for Eg is defined as follows:
PrL=e€1—€2, P2 =€2—€3,P3 =€3—€4,Pg =€4—€5,P5 =€5—€5,P5 =€ —€7,P7 =€+ €7, P8 = "% Z €i-

i=1

The system of positive roots is

e;tej, 1<) t=1,...,6, j=2,...,T,

§+"—' —:i:g.-—-eg, l:l,...,?; . , iQ+|:120'
——% Z €€, € = %1, eg =1, H g =1
=1 i=1
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The matrix A has the form 0 A , where A’ coincides with a matrix 4 for E7. The

Dynkin diagram is

Pr P2 P3 P4 Ps D7 Ps
IPG

B. Group FEj3(q) and its parabolic subgroups of least index. The universal group Eg(q) coincides with the
adjoint group G = Eg(g). From the main result in [2] and Proposition 1 of [1], it follows that a subgroup of
least index in G should be parabolic. Proposition 1 of {1] allows us to compute orders of maximal parabolic
subgroups of G. Comparing these orders, we see that, up to conjugation, the subgroup of least index in G
is P;. Thus

IGl = ¢%°(¢* ~ 1)(¢** - 1)(¢ — 1)(¢*® — 1)(g"* - 1)(¢*? — 1)(¢® — 1)(¢* ~ 1),

|P1| = ¢**%(g™® — 1)(¢** — 1)(¢** — 1)(¢*° - 1)(¢® - 1)(¢® — 1)(¢* - 1)(¢ - 1),

G+ Paf = (¢ = 1)(g" + 1)(@® + 1)(e* + 1)/{g - 1).

In view of the Levi decomposition, Py = U; - L. For all but one r € <I>+\<I>f', we have r = p; -+ 31, where
3 € Qf. The excepted element is u = e; — eg = 2p1 + 3p2 + 4p3 + 5ps + 6ps + 3ps + 4p7 + 2ps. For every
r (except u of course) of #+\ &7, there exists an element +' € +\&] such that r + ' = u. Therefore,
Lemma 1 in [1] (Chevalley commutator formula) implies that U, is isomorphic to p* - p®¢*. -

Let Li = (X,| r € ®1) ~ E+(q). The element hy = hy(A) = hp, (A2)hp, (A3)hp, (A*)hp, (A3)hp, (A8) X
Ppe(A%)hp, (A%)hy, (A?), where ) generates K*, centralises L since (u,p;) = 0 for every i = 2,...,8. Fur-
thermore, the center of the subgroup L] is in (h,). Hence Ly ~ d-(E+(q) x(¢—1)/d)-d, where d = (¢—1,2).

C. Representation of G on cosets w.r.t. P;. The element w,, acts on $ as is shown in Diagram 1 (see
Sec. 1.C). Therefore, Uy N P;"‘ ~ p* - p®** x p*. Let Lig=(X;|r € ®12) = Eg¢(q) and Uy2 = (X,|
r € 87\&},). It is clear that Uy ~ p*™.

The elements h, and hy, (), where A generates K*, centralize L}, and so does the element
hu(A)hp, (A~2). Furthermore, Z(L} ;) < (huhy,(A7%)). Hence Ly N P™ =~ p?™ : (d'- (Es(q) x (g -
1)/d)x (g -1))-d. .

Thus My = PLNP]™ ~ (p*-p** xp*) : (p*" : (d'-(Es(q) x (g—1)/d') x (¢—1))-d'), where d’ = (¢—1,3),
and |Py: Ms| =g (q"* — 1)(¢° + 1)(¢* +1)/(g - 1).

We know that (u,p;) = O for every ¢ = 2,...,8. Therefore, w, acts on & as follows: we(®;) = ¥;,
wy = (@T\®T) = 7\ @7, wy(3~\®]) = #*\&}. Hence P, N P°* = M3 = L;. Thus |P, : M;| = ¢°7*.

Consider an element wg = wy, - wp,. The following diagram reflects the action of wg on &:
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ot \Qf Q'{' &7 $-\&7
27 elements QIZ Qx-,z 27 element
(] em (36 elements) (36 elements) € $
et\%7, o7\81,
27 elements (27 elements) (27 elements) 27 elements 1
h >< s
u —u
e; —e€g —ez t+eg
N\ — )

Diagram 5

In this way Uy N P{° ~ p*® and LiNPy° = Ly; = L1 N P;’**. Therefore, My ~ p*** : (p*™ :
(d' - (Be(g) x (g —1)/d') x (g — 1)) -d’). The index of My in P; equals ¢%° - (¢'* ~ 1)(¢® + 1)(¢° + 1)/(¢ — 1)-
Now consider an element wy = w,, —.,We, 4¢,, Whose action on ¢ is shown in the following diagram:

e+\&} &f 7 & \&7
12 elements Q:g ;,3 12 elements
32 elements QT\§;3 ‘I’;\Qig 32 elements
u —e; —eg ey +eg —u
29 £ 2
(12 elements) (12 elements)

Diagram 6

Here &} denotes the set {e; te;| j =2,...,7}. Thus Uy N PY* ~ p* - p*%* x p'%*. Let Ljg = (X,
r € ®18) ~ Ds(q) and Uy g = (X,| r € F\&{4) ~ p**. Since h, centralizes L 5, we obtain Ms =
Pyn PP ~ (p* - p%* x p'%*) : (p®* : (d- (d- De(q) x (g — 1)/d) - d) - (¢ — 1)), where d = (¢ — 1,2), and
|Pr: Ms| = ¢*%(g"* — 1)(¢" + ® + 1)(¢® +¢* +1)/(¢ - 1).

We have |G : Pyl = 1+ zs: |Py : M;|. Hence, the rank of G’s representation on the cosets w.r.t. P,
equals 5. =

THEOREM 3. For simple non-Abelian groups G = Eg(q), the parameters n, n3, ns, ng4, ns, P, Ma,
Mai, My, and My of minimal permutation representations are given in the following list:
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0 _ 12 10 8 16 _ ° . 16 _ ° LIRY
n = @2-UG +;3(f AN - o 1)(:_4;1)(1 ) py = ¢, ny = g0 U 1)(:_4;1)(1 Y%
14_ 12 .6 (R
ng = ¢'? . =1l +;1_+1)(q tg +1),

P=(p*-p*):(d-(Ex(q) x (¢ — 1)/d)-d),

My = (p*-p** x p*): (p*" : (&' - (Be(q) x (¢ — 1)/d) x (g — 1)) - &),

M3 =d- (Ex(q) x (g~ 1)/d)-d,

My =p* : (p" : (& - (Ee(q) x (¢ - 1)/d') x (¢ - 1)) - &),

My = (p* - p° x p'¥) : (p** : (d (d- Ds(q) x (g — 1)/d) - d) - (g — 1)),
where d = (q —_ 1,2), d = (q - 1,3).

The rank of the representation equals 5.
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