MINIMAL PERMUTATION REPRESENTATIONS OF FINITE SIMPLE EXCEPTIONAL GROUPS OF TYPES E_6 , E_7 , AND E_8

A. V. Vasilyev*

UDC 512.542.5

A minimal permutation representation of a group is its faithful permutation representation of least degree. We will find degrees and point stabilizers, as well as ranks, subdegrees, and double stabilizers, for groups of types E6, E7, and E8. This brings to a close the study of minimal permutation representations of finite simple Chevalley groups.

This paper continues [1], where minimal permutation representations of finite simple exceptional groups of types G_2 and F_4 were described. Our present goal is to obtain a similar description for minimal permutation representations of groups E_6 , E_7 , and E_8 . We follow the notation and terminology developed in [1], in which the reader can find all necessary preliminary information and a complete list of references.

1. GROUP $E_6(q)$

A. Algebra E_6 . The rank of E_6 equals 6. Obviously, E_6 is a subalgebra of E_8 . If K is a Cartan subalgebra in E_8 , then $\mathcal{K}_{\mathbb{R}}$ is an Euclidean space of dimension 8. Let e_1, \ldots, e_8 be an orthonormal basis of $\mathcal{K}_{\mathbb{R}}$. Then a system Π of simple roots for E_6 (as an algebra of E_8) is defined as follows: $p_1=e_3-e_4$, $p_2 = e_4 - e_5, p_3 = e_5 - e_6, p_4 = e_6 - e_7, p_5 = e_6 + e_7, p_6 = -\frac{1}{2} \sum_{i=1}^{6} e_i.$

The system of positive roots is

$$\Phi^{+} = \left\{ \begin{array}{l} e_{i} \pm e_{j}, & i < j, \ i = 3, \dots, 6, \ j = 4, \dots, 7; \\ -\frac{1}{2} \sum_{i=1}^{8} \varepsilon_{i} e_{i}, \ \varepsilon_{i} = \pm 1, \ \varepsilon_{1} = \varepsilon_{2} = \varepsilon_{8} = 1, \ \prod_{i=1}^{8} \varepsilon_{i} = 1 \end{array} \right\}, \ |\Phi^{+}| = 36.$$

The matrix A has the form
$$\begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

The matrix A has the form
$$\begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{pmatrix}.$$

The Dynkin diagram is

^{*}Supported by RFFR grant No. 93-01-01501, through the program "Universities of Russia," and by grant No. RPC300 of ISF and the Government of Russia.

Translated from Algebra i Logika, Vol. 36, No. 5, pp. 518-530, September-October, 1997. Original article submitted November 1, 1995.

B. Group $E_6(q)$ and its parabolic subgroups of least index. The order of a field K equals $q = p^s$, where p is a prime. If 3 does not divide q - 1, then the group $G = E_6(q)$ coincides with the universal group $\bar{G} = \bar{E}_6(q)$. Otherwise it is isomorphic to the factor group \bar{G} w.r.t. the center \bar{Z} , which is a cyclic subgroup of order 3. Using Lemma 3 of [1], it is easy to verify that

$$\bar{Z} = \{\bar{h}_{p_1}(\mu) \cdot \bar{h}_{p_2}(\mu^2) \cdot \bar{h}_{p_5}(\mu) \cdot \bar{h}_{p_6}(\mu^2) \mid \mu \in K^*, \ \mu^3 = 1\}.$$

From the main result stated in [2] and Proposition 1 of [1], it follows that a subgroup of least index in G should be parabolic. Proposition 1 of [1] allows us to compute orders of maximal parabolic subgroups in G. Comparing these orders, we see that there are, up to conjugation, two subgroups of least index in G: $P_1 = P_{\prod \setminus \{p_1\}}$ and $P_6 = P_{\prod \setminus \{p_6\}}$ (for definitions, see [1]), which are conjugate in Aut G.

Elements $\bar{x}_r(t)$ of \bar{G} , as well as $\bar{n}_r(t)$ and $\bar{h}_r(t)$, were defined in Lemma 3 in [1]. Let S be a subgroup of G generated by the elements $x_{r_1}(t), \ldots, x_{r_k}(t_k)$. Denote by \bar{S} a subgroup of \bar{G} generated by $\bar{x}_{r_1}(t_1), \ldots, \bar{x}_{r_k}(t_k)$.

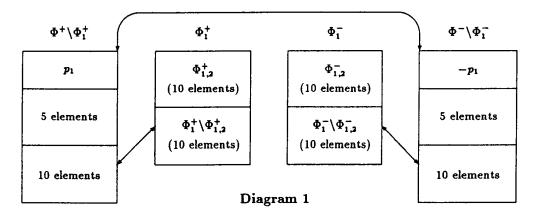
The group \tilde{P}_1 , like \tilde{P}_6 , includes a subgroup \tilde{H} , and hence also \tilde{Z} . Thus

$$\begin{split} |\bar{G}| &= q^{36}(q^{12} - 1)(q^9 - 1)(q^8 - 1)(q^6 - 1)(q^5 - 1)(q^2 - 1), \\ |\bar{P}_1| &= |\bar{P}_6| = q^{36}(q^8 - 1)(q^6 - 1)(q^5 - 1)(q^4 - 1)(q^2 - 1)(q - 1), \\ |G| &= |\bar{G}|/d', \ |P_1| = |P_6| = |\bar{P}_1|/d', \ \text{where } d' = (3, q - 1), \\ n &= |G: P_1| = |G: P_6| = |\bar{G}: \bar{P}_1| = (q^9 - 1)(q^8 + q^4 + 1)/(q - 1). \end{split}$$

First, we describe a structure of the subgroup \bar{P}_1 in the universal group \bar{G} , using the Levi decomposition; see [1, Lemma 5]. Obviously, $\bar{P}_1 = \bar{U}_1 \cdot \bar{L}_1$ (U_1 coincides with \bar{U}_1). For every element $r \in \Phi^+ \setminus \Phi_1^+$, we have $r = p_1 + s_1$, where $s_1 \in \Phi_1^+$. Therefore, U_1 is an elementary Abelian p-group of order q^{16} .

Let $\bar{H}_1 = \langle \bar{h}_{p_i}(\lambda) | i = 2, ..., 6$; $\lambda \in K^*$) and $\bar{L}_1' = \langle \bar{x}_r(t) | r \in \Phi_1$, $t \in K$. The group \bar{L}_1' is isomorphic to the universal Chevalley group $\bar{D}_5(q)$, and $\bar{L}_1 = \bar{L}_1 \cdot \langle h \rangle$, where $h \in \bar{H} \setminus \bar{H}_1$. Let $h_0 = \bar{h}_{p_1}(\lambda^4)\bar{h}_{p_2}(\lambda^5)\bar{h}_{p_3}(\lambda^6)\bar{h}_{p_4}(\lambda^3)\bar{h}_{p_6}(\lambda^2)$, where λ generates K^* ; $h_0(\mu) = \bar{h}_{p_2}(\mu)\bar{h}_{p_3}(\mu^2)\bar{h}_{p_4}(\mu^3)\bar{h}_{p_6}(\mu^2)$, where $|\mu| = 4$ for (4, q - 1) = 4, or $h_0(\mu) = \bar{h}_{p_2}(\mu)\bar{h}_{p_4}(\mu)$, where $|\mu| = 2$ for (q - 1, 4) = 2, and $h_0(\mu) = 1$ for even q. The element h_0 centralizes \bar{L}_1' , and $\langle h_0 \rangle \cap \bar{L}_1' = \langle h_0(\mu) \rangle$. Hence, the group \bar{L}_1 is isomorphic to an extension of the central product of groups \bar{L}_1' and $\langle h_0 \rangle$ over the subgroup $\langle h_0(\mu) \rangle$ by a cyclic group of order e = (q - 1, 4), that is, $\bar{L}_1 \simeq e \cdot \langle D_5(q) \times (q - 1)/e \rangle \cdot e$. Since the center of \bar{G} lies in $\langle h_0 \rangle$, we obtain $P_1 \simeq p^{16s} : (e \cdot \langle D_5(q) \times (q - 1)/e' \rangle \cdot e)$, where e' = ed' and d' = (q - 1, 3).

C. Representation of G on cosets w.r.t. P_1 . Our goal is to define double stabilizers of the representation of G on the cosets w.r.t. P_1 , that is, groups of the form $P_1 \cap P_1^x$. Therefore, we need to choose appropriate elements x in a way that these do not map into W_1 under the natural homomorphism $\varphi \colon N \to W$. Since $H \leq P_1$, the action of an element $n \in N$ on P_1 is determined by the action of its image $w \in W$ on Φ , and so below an element n will be identified with its image w. We need to adopt the following notation: $\Phi_{1,2} = \Phi_1 \cap \Phi_2$ and $\Phi_{1,6} = \Phi_1 \cap \Phi_6$. The action of w_{p_1} on Φ is shown in the following:



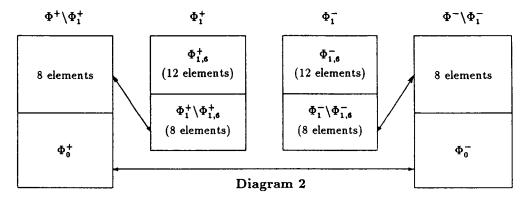
An arrow pointing from set X to set Y says that $w_{p_1}(X) = Y$; the absence of an arrow outgoing from Z indicates that $w_{p_1}(Z) = Z$.

We start by determining the structure of a double stabiliser $\bar{M}_2 = \bar{P}_1 \cap \bar{P}_1^{w_{p_1}} = (\bar{U}_1 \cap \bar{P}_1^{w_{p_1}}) : (\bar{L}_1 \cap \bar{P}_1^{w_{p_1}}).$ From Diagram 1, it follows that $\bar{U}_1 \cap \bar{P}_1^{w_{p_1}} \simeq p^{15s}$. Let $\bar{L}'_{1,2} = \langle \bar{x}_r(t) | r \in \Phi_{1,2}, t \in K \rangle \simeq \bar{A}_4(q) \simeq SL_5(q)$, $\bar{U}_{1,2} = \langle \bar{x}_r(t) | r \in \Phi_1^+ \setminus \Phi_{1,2}^+, t \in K \rangle \simeq U_{1,2}$. The group $U_{1,2}$ is Abelian, as is U_1 . Therefore, $U_{1,2} \simeq p^{10s}$. The center of $\bar{L}'_{1,2}$ is generated by the element

$$z(\mu) = \bar{h}_{p_4}(\mu)\bar{h}_{p_4}(\mu^3)\bar{h}_{p_8}(\mu^4)\bar{h}_{p_6}(\mu^2),$$

where $\mu^{5} = 1$. Its order is equal to f = (q - 1, 5). The elements h_{0} and $\bar{h}_{p_{1}}(\lambda)$ centralize $\bar{L}'_{1,2}$, and the element $z(\mu)\bar{h}_{p_{1}}(\mu)$ lies in $\langle h_{0} \rangle$. Hence $\bar{L}_{1} \cap \bar{P}_{1}^{w_{p_{1}}} \simeq p^{10s} : (f \cdot ((\bar{A}_{4}(q) \times (q - 1)/f) \cdot (q - 1)/f) \cdot f)$. Now it is easy to describe $M_{2} = P_{1} \cap P_{1}^{w_{p_{1}}}$. Factoring out \bar{M}_{2} by the center of \bar{G} , we obtain $M_{2} \simeq p^{15s} : (p^{10s} : (f \cdot ((\bar{A}_{4}(q) \times (q - 1)/f) \times (q - 1)/f') \cdot f))$, where $f' = f \cdot d'$ and d' = (q - 1, 3). So $n_{2} = |P_{1} : M_{2}| = |\bar{P}_{1} : \bar{M}_{2}| = q \cdot (q^{8} - 1)(q^{3} + 1)/(q - 1)$.

Next, consider the action of $w_0 = w_{e_3-e_7} \cdot w_{e_3+e_7} = w_{e_3+e_7} \cdot w_{e_3-e_7}$ on Φ . Denote by Φ_0^+ a subset $\{e_3 \pm e_j | j = 4, ..., 7\}$ of Φ^+ . Clearly, $|\Phi_0^+| = 8$. A diagram showing the action of w_0 on Φ is this:



It follows from the diagram that $\bar{U}_1 \cap \bar{P}_1^{w_0} \simeq p^{8s}$.

We consider the structure of $\bar{L}_1 \cap \bar{P}_1^{w_0}$. Let $\bar{L}'_{1,6} = \langle \bar{x}_r(t) | r \in \Phi_{1,6}, t \in K \rangle$, $\bar{U}_{1,6} = \langle \bar{x}_r(t) | r \in \Phi_1^+ \backslash \Phi_{1,6}^+$, $t \in K \rangle$. The group $\bar{U}_{1,6} = U_{1,6}$ is isomorphic to p^{8s} , and $\bar{L}'_{1,6} \simeq \bar{D}_4(q)$. The center of $\bar{L}'_{1,6}$ is described as follows. For d = (q-1,2) = 2, $z(\bar{L}'_{1,6}) = \langle \bar{h}_{p_2}(\mu)\bar{h}_{p_4}(\mu)\rangle \times \langle \bar{h}_{p_4}(\mu)\bar{h}_{p_5}(\mu)\rangle \simeq 2^2$, where μ is an element of order 2 in the multiplicative group of the field K. The element $\bar{h}_{p_2}(\mu)\bar{h}_{p_4}(\mu)$ lies in $\langle h_0 \rangle$. Since h_0 centralizes $\bar{L}'_{1,6}$, we have $\bar{L}_1 \cap \bar{P}_1^{w_0} \simeq p^{8s} : (d \cdot (d \cdot D_4(q) \times (q-1)/d) \cdot d) \cdot (q-1)$.

The center of \bar{G} lies in (h_0) . Therefore, $M_3 = P_1 \cap P_1^{w_0} \simeq p^{8s}$: $(p^{8s} : (d \cdot (d \cdot D_4(q) \times (q-1)/c) \cdot d) \cdot (q-1))$, where $c = d \cdot d'$. The index $|P_1 : M_3| = |\bar{P}_1 : \bar{M}_3| = n_3$ is equal to $q^8(q^5 - 1)(q^4 + 1)/(q - 1)$. Adding subdegrees $n_1 = 1$, n_2 , and n_3 of the representation of G on the cosets w.r.t. P_1 , we obtain $n_1 + n_2 + n_3 = n$. Hence, the rank of the representation equals 3.

Remark. A representation of G on the cosets w.r.t. P_6 is similar to the one above.

THEOREM 1. For simple non-Abelian groups $G = E_6(q)$, the parameters n, n_2 , n_3 , P, M_2 , and M_3 of minimal permutation representations are given in the following list:

$$n = \frac{(q^{s}-1)(q^{s}+q^{4}+1)}{q-1}, \ n_{2} = \frac{(q^{s}-1)(q^{s}+1)}{q-1}, \ n_{3} = q^{8} \cdot \frac{(q^{s}-1)(q^{4}+1)}{q-1};$$

$$P = p^{16s} : (e \cdot (D_{5}(q) \times (q-1)/e') \cdot e),$$

$$M_{2} = p^{15s} : (p^{10s} : (f \cdot ((\bar{A}_{4}(q) \times (q-1)/f) \times (q-1)/f') \cdot f)),$$

$$M_{3} = p^{8s} : (p^{8s} : (d \cdot (d \cdot D_{4}(q) \times (q-1)/c) \cdot d) \cdot (q-1)),$$
where $d = (q-1,2), \ d' = (q-1,3), \ e = (q-1,4), \ f = (q-1,5), \ e' = e \cdot d', \ f' = f \cdot d', \ c = d \cdot d'.$
The rank of the representation equals 3.

2. GROUP $E_7(q)$

A. Algebra E_7 . The rank of E_7 equals 7. To determine a system of simple roots for E_7 , we assume that it is embedded in E_8 . Let K be a Cartan subalgebra in E_8 and K_B be the corresponding Euclidean space with orthonormal basis e_1, \ldots, e_8 . Then a system II of simple roots for E_7 (as a subalgebra in E_8) is defined as follows: $p_1 = e_2 - e_3$, $p_2 = e_3 - e_4$, $p_3 = e_4 - e_5$, $p_4 = e_5 - e_6$, $p_5 = e_6 - e_7$, $p_6 = e_6 + e_7$, $p_7 = -\frac{1}{2}\sum_{i=1}^8 e_i$.

The system of positive roots is

$$\Phi^{+} = \left\{ \begin{array}{l} e_{i} \pm e_{j}, \ i < j, \ i = 2, \dots, 6, \ j = 3, \dots, 7; \\ -e_{1} - e_{8}, \\ -\frac{1}{2} \sum_{i=1}^{8} \varepsilon_{i} e_{i}, \ \varepsilon_{i} = \pm 1, \ \varepsilon_{1} = \varepsilon_{8} = 1, \ \prod_{i=1}^{8} \varepsilon_{i} = 1 \end{array} \right\}, \ |\Phi^{+}| = 63.$$

The matrix A has the form
$$\begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & & & & \\ 0 & & A' & & \\ \vdots & & & & \end{pmatrix}$$
, where A' coincides with a matrix A for E_6 . The

Dynkin diagram is

B. Group $E_7(q)$ and its parabolic subgroups of least index. If 2 does not divide q-1, then the group $G=E_7(q)$ coincides with the universal group $\bar{G}=\bar{E}_7(q)$. Otherwise it is isomorphic to the factor group \bar{G} over the center \bar{Z} , which is a cyclic subgroup of order 2. Using Lemma 3 in [1] yields $\bar{Z}=\{\bar{h}_{p_1}(\mu)\bar{h}_{p_3}(\mu)\bar{h}_{p_3}(\mu)|\mu\in K^*, \ \mu^2=1\}$.

From the main result in [2] and Proposition 1 of [1], it follows that a subgroup of least index in G should be parabolic. Proposition 1 of [1] allows us to compute orders of maximal parabolic subgroups in G. Comparing these orders yields that, up to conjugation, the subgroup of least index in G is P_1 . The corresponding subgroup \bar{P}_1 of \bar{G} , obviously, contains the center \bar{Z} . Thus

$$|\bar{G}| = q^{63}(q^{18} - 1)(q^{14} - 1)(q^{12} - 1)(q^{10} - 1)(q^8 - 1)(q^6 - 1)(q^2 - 1),$$

$$|\bar{P}_1| = q^{63}(q^{12} - 1)(q^9 - 1)(q^8 - 1)(q^6 - 1)(q^5 - 1)(q^2 - 1)(q - 1),$$

 $|G| = |\bar{G}|/d, |P_1| = |\bar{P}_1|/d, \text{ where } d = (q-1,2), n = |G:P_1| = |\bar{G}:\bar{P}_1| = (q^{14}-1)(q^9+1)(q^5+1)/(q-1).$

First, we describe the structure of the group $\bar{P}_1 = \bar{U}_1 \cdot \bar{L}_1$. For every element $r \in \Phi^+ \backslash \Phi_1^+$, we have $r = p_1 + s_1$, where $s_1 \in \Phi_1^+$. Therefore, $\bar{U}_1 \simeq U_1 \simeq p^{27s}$. Let $\bar{H}_1 = \langle \bar{h}_{p_i}(\lambda) | i = 2, \ldots, 7; \ \lambda \in K^* \rangle$ and $\bar{L}_1' = \langle \bar{x}_r(t) | \ r \in \Phi_1$, $t \in K \rangle$. The group \bar{L}_1' is isomorphic to the universal Chevalley group $\bar{E}_6(q)$, and $\bar{L}_1 = \bar{L}_1' \cdot \langle h \rangle$, where $h \in \bar{H} \backslash \bar{H}_1$. Let $h_0 = \bar{h}_{p_1}(\lambda^3)\bar{h}_{p_2}(\lambda^4)\bar{h}_{p_3}(\lambda^5)\bar{h}_{p_4}(\lambda^6)\bar{h}_{p_5}(\lambda^3)\bar{h}_{p_6}(\lambda^4)\bar{h}_{p_7}(\lambda^2)$ and $h_0(\mu) = \bar{h}_{p_2}(\mu)\bar{h}_{p_3}(\mu^2)\bar{h}_{p_6}(\mu)\bar{h}_{p_7}(\mu^2)$, where λ generates K^* , and $\mu^3 = 1$. Then \bar{L}_1 is isomorphic to an extension of the central product of groups \bar{L}_1' and $\langle h_0 \rangle$ over the subgroup $\langle h_0(\mu) \rangle$ by a cyclic group of order d', that is, $\bar{L}_1' \simeq d' \cdot (E_6(q) \times (q-1)/d') \cdot d'$, where d' = (q-1,3).

Since the center of \bar{G} is a subgroup of $\langle h_0 \rangle$, we obtain $P_1 \simeq p^{27s} : (d' \cdot (E_6(q) \times (q-1)/c) \cdot d')$, where $c = d \cdot d'$, d = (2, q-1).

C. Representation of G on cosets w.r.t. P_1 . The element w_{p_1} acts on Φ as is shown in Diagram 1 [for the group $E_6(q)$], but the orders of Φ^+ , Φ_1^+ , and $\Phi_{1,2}^+$ are, of course, greater in this case. Namely, $|\Phi^+| = 63$, $|\Phi_1^+| = 36$, and $|\Phi_{1,2}^+| = 20$. Thus $\bar{U}_1 \cap \bar{P}_1^{w_{p_1}} \simeq p^{26s}$.

Let $\bar{L}'_{1,2} = \langle \bar{x}_r(t) | \ r \in \Phi_{1,2}, \ t \in K \rangle \simeq \bar{D}_5(q)$ and $\bar{U}_{1,2} = \langle \bar{x}_r(t) | \ r \in \Phi_1^+ \backslash \Phi_{1,2}^+, \ t \in K \rangle \simeq U_{1,2}$. Since the equality $r = p_2 + s_2$, where $s_2 \in \Phi_{1,2}^+$, holds for every element $r \in \Phi_1^+ \backslash \Phi_{1,2}^+$, the group $U_{1,2}$ is Abelian. It is isomorphic to p^{16s} .

The elements h_0 and $\bar{h}_{p_1}(\lambda)$, where λ generates K^* , centralise $\bar{L}'_{1,2}$, and the element $z(\mu) \cdot \bar{h}_{p_1}(\mu)$, where $z(\mu) \in Z(\bar{L}'_{1,2})$ and $\mu^4 = 1$, lies in $\langle h_0 \rangle$. Hence $\bar{L}_1 \cap \bar{P}_1^{w_{p_1}} \simeq p^{16s}$: $(e \cdot ((\bar{D}_5(q) \times (q-1)/e) \times (q-1)/e) \cdot e)$, where e = (q-1,4). Factoring out M_2 by the center of \bar{G} , we find

$$M_2 = P_1 \cap P_1^{w_{p_1}} \simeq p^{26s} : (p^{16s} : (c' \cdot ((\bar{D}_5(q) \times (q-1)/e) \times (q-1)/e) \cdot e)),$$

where c'=e/d. Therefore, $|P_1:M_2|=|\bar{P}_1:\bar{M}_2|=n_2=q\cdot(q^9-1)(q^8+q^4+1)/(q-1)$.

Let $w_0 = w_{e_2-e_7}w_{e_2+e_7} = w_{e_2+e_7}w_{e_2-e_7}$. Denote by Φ_0^+ a subset $\{e_2 \pm e_j | j = 3, ..., 7\}$ of Φ^+ , and by u an element $-e_1 - e_8$ of Φ^+ . A diagram showing the action of w_0 on Φ is this:

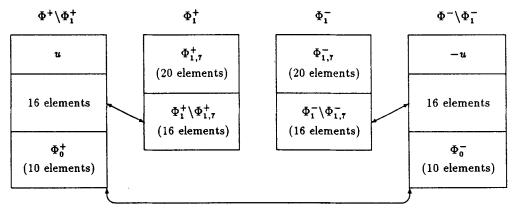


Diagram 3

It follows from the diagram that $\bar{U}_1 \cap \bar{P}_1^{w_0} \simeq p^{17s}$.

Let $\bar{L}'_{1,7} = \langle \bar{x}_r(t) | \ r \in \Phi_{1,7}, \ t \in K \rangle$, $\bar{U}_{1,7} = \langle \bar{x}_r(t) | \ r \in \Phi_1^+ \backslash \Phi_{1,7}^+, \ t \in K \rangle \simeq U_{1,7}$. The group $U_{1,7}$ is isomorphic to p^{16s} , and $\bar{L}'_{1,7}$ is isomorphic to $\bar{D}_5(q)$. Following essentially the same argument as was used for M_2 , we see that $M_3 = P_1 \cap P_1^{w_0} \simeq p^{17s}$: $(p^{16s} : (c' \cdot ((\bar{D}_5(q) \times (q-1)/e) \times (q-1)/e) \cdot e)$, where c' = e/d, e = (q-1,4), d = (2,q-1). Thus $n_3 = |P_1 : M_3| = |\bar{P}_1 : \bar{M}_3| = q^{10}(q^9-1)(q^8+q^4+1)/(q-1)$.

Consider the action of an element $w_1 = w_0 \cdot w_4$ on Φ , where w_u is a reflection corresponding to the element u, defined above. A diagram depicting that action is the following:

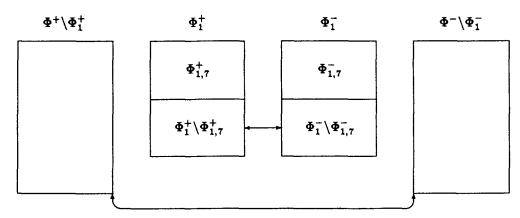


Diagram 4

Obviously, $M_4 = P_1 \cap P_1^{\omega_1} = L_1$. Therefore, $|P_1: M_4| = q^{27s}$. We have $1 + |P_1: M_2| + |P_1: M_3| + |P_1: M_4| = |G: P_1|$. Hence the rank of the representation equals 4.

THEOREM 2. For simple non-Abelian groups $G = E_7(q)$, the parameters n, n_2 , n_3 , n_4 , P, M_2 , M_3 , and M_4 of minimal permutation representations are given in the following list:

and
$$M_4$$
 of minimal permutation-representations are given in the following list:
$$n = \frac{(q^{14}-1)(q^9+1)(q^8+1)}{q-1}, \ n_2 = q \cdot \frac{(q^9-1)(q^8+q^4+1)}{q-1}, \ n_3 = q^{10} \cdot \frac{(q^9-1)(q^8+q^4+1)}{q-1}, \ n_4 = q^{27}, \\ P = p^{27s} : (d' \cdot (E_6(q) \times (q-1)/c) \cdot d'), \\ M_2 = p^{26s} : (p^{16s} : (c' \cdot ((\bar{D}_5(q) \times (q-1)/e) \times (q-1)/e) \cdot e)), \\ M_3 = p^{17s} : (p^{16s} : (c' \cdot ((\bar{D}_5(q) \times (q-1)/e) \times (q-1)/e) \cdot e)), \\ M_4 = d' \cdot (E_6(q) \times (q-1)/c) \cdot d', \\ \text{where } d = (q-1,2), \ d' = (q-1,3), \ e = (q-1,4), \ c' = e/d, \ c = d \cdot d'.$$

The rank of the representation equals 4.

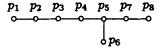
3. GROUP $E_8(q)$

A. Algebra E_8 . The rank of E_8 equals 8. If e_1, \ldots, e_8 is an orthonormal basis of the Euclidean space $\mathcal{K}_{\mathbb{R}}$, where \mathcal{K} is a Cartan subalgebra of E_8 , then a system Π of simple roots for E_8 is defined as follows: $p_1 = e_1 - e_2$, $p_2 = e_2 - e_3$, $p_3 = e_3 - e_4$, $p_4 = e_4 - e_5$, $p_5 = e_5 - e_6$, $p_6 = e_6 - e_7$, $p_7 = e_6 + e_7$, $p_8 = -\frac{1}{2}\sum_{i=1}^8 e_i$. The system of positive roots is

$$\Phi^{+} = \left\{ \begin{array}{l} e_{i} \pm e_{j}, \ i < j, \ i = 1, \dots, 6, \ j = 2, \dots, 7; \\ - \pm e_{i} - e_{8}, \ i = 1, \dots, 7; \\ - \frac{1}{2} \sum\limits_{i=1}^{8} \epsilon_{i} e_{i}, \ \epsilon_{i} = \pm 1, \ \epsilon_{8} = 1, \ \prod\limits_{i=1}^{8} \epsilon_{i} = 1 \end{array} \right\}, \ |\Phi^{+}| = 120.$$

The matrix A has the form $\begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & & & & \\ 0 & & A' & & \\ \vdots & & & \end{pmatrix}$, where A' coincides with a matrix A for E_7 . The

Dynkin diagram is



B. Group $E_8(q)$ and its parabolic subgroups of least index. The universal group $\bar{E}_8(q)$ coincides with the adjoint group $G = E_8(q)$. From the main result in [2] and Proposition 1 of [1], it follows that a subgroup of least index in G should be parabolic. Proposition 1 of [1] allows us to compute orders of maximal parabolic subgroups of G. Comparing these orders, we see that, up to conjugation, the subgroup of least index in G is P_1 . Thus

$$|G| = q^{120}(q^{30} - 1)(q^{24} - 1)(q^{20} - 1)(q^{18} - 1)(q^{14} - 1)(q^{12} - 1)(q^{8} - 1)(q^{2} - 1),$$

$$|P_{1}| = q^{120}(q^{18} - 1)(q^{14} - 1)(q^{12} - 1)(q^{10} - 1)(q^{8} - 1)(q^{6} - 1)(q^{2} - 1)(q - 1),$$

$$|G: P_{1}| = (q^{30} - 1)(q^{12} + 1)(q^{10} + 1)(q^{6} + 1)/(q - 1).$$

In view of the Levi decomposition, $P_1 = U_1 \cdot L_1$. For all but one $r \in \Phi^+ \setminus \Phi_1^+$, we have $r = p_1 + s_1$, where $s_1 \in \Phi_1^+$. The excepted element is $u = e_1 - e_8 = 2p_1 + 3p_2 + 4p_3 + 5p_4 + 6p_5 + 3p_6 + 4p_7 + 2p_8$. For every r (except u of course) of $\Phi^+ \setminus \Phi_1^+$, there exists an element $r' \in \Phi^+ \setminus \Phi_1^+$ such that r + r' = u. Therefore, Lemma 1 in [1] (Chevalley commutator formula) implies that U_1 is isomorphic to $p^s \cdot p^{56s}$.

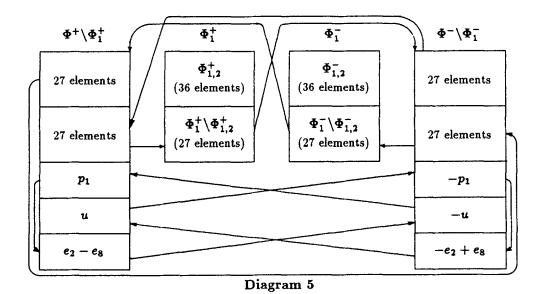
Let $L'_1 = \langle X_r | r \in \Phi_1 \rangle \simeq \bar{E}_7(q)$. The element $h_u = h_u(\lambda) = h_{p_1}(\lambda^2) h_{p_2}(\lambda^3) h_{p_3}(\lambda^4) h_{p_4}(\lambda^5) h_{p_5}(\lambda^6) \times h_{p_6}(\lambda^3) h_{p_7}(\lambda^4) h_{p_6}(\lambda^2)$, where λ generates K^* , centralises L'_1 since $(u, p_i) = 0$ for every $i = 2, \ldots, 8$. Furthermore, the center of the subgroup L'_1 is in $\langle h_u \rangle$. Hence $L_1 \simeq d \cdot (E_7(q) \times (q-1)/d) \cdot d$, where d = (q-1, 2).

C. Representation of G on cosets w.r.t. P_1 . The element w_{p_1} acts on Φ as is shown in Diagram 1 (see Sec. 1.C). Therefore, $U_1 \cap P_1^{w_{p_1}} \simeq p^s \cdot p^{54s} \times p^s$. Let $L'_{1,2} = \langle X_r | r \in \Phi_{1,2} \rangle \simeq \bar{E}_6(q)$ and $U_{1,2} = \langle X_r | r \in \Phi_1^+ \setminus \Phi_{1,2}^+ \rangle$. It is clear that $U_{1,2} \simeq p^{27s}$.

The elements h_u and $h_{p_1}(\lambda)$, where λ generates K^* , centralize $L'_{1,2}$ and so does the element $h_u(\lambda)h_{p_1}(\lambda^{-2})$. Furthermore, $Z(L'_{1,2}) \leq \langle h_uh_{p_1}(\lambda^{-2})\rangle$. Hence $L_1 \cap P_1^{w_{p_1}} \simeq p^{27s} : (d' \cdot (E_6(q) \times (q-1)/d') \times (q-1)) \cdot d'$.

Thus $M_2 = P_1 \cap P_1^{w_{p_1}} \simeq (p^s \cdot p^{54s} \times p^s) : (p^{27s} : (d' \cdot (E_6(q) \times (q-1)/d') \times (q-1)) \cdot d')$, where d' = (q-1,3), and $|P_1 : M_2| = q \cdot (q^{14} - 1)(q^9 + 1)(q^5 + 1)/(q-1)$.

We know that $(u, p_i) = 0$ for every i = 2, ..., 8. Therefore, w_u acts on Φ as follows: $w_u(\Phi_1) = \Phi_1$, $w_u = (\Phi^+ \setminus \Phi_1^+) = \Phi^- \setminus \Phi_1^-$, $w_u(\Phi^- \setminus \Phi_1^-) = \Phi^+ \setminus \Phi_1^+$. Hence $P_1 \cap P_1^{w_u} = M_3 = L_1$. Thus $|P_1 : M_3| = q^{57s}$. Consider an element $w_0 = w_u \cdot w_{p_1}$. The following diagram reflects the action of w_0 on Φ :



In this way $U_1 \cap P_1^{w_0} \simeq p^{28s}$ and $L_1 \cap P_1^{w_0} = L_{1,2} = L_1 \cap P_1^{w_{p_1}}$. Therefore, $M_4 \simeq p^{28s} : (p^{27s} : (d' \cdot (E_6(q) \times (q-1)/d') \times (q-1)) \cdot d')$. The index of M_4 in P_1 equals $q^{29} \cdot (q^{14} - 1)(q^9 + 1)(q^5 + 1)/(q-1)$. Now consider an element $w_1 = w_{e_1 - e_7} w_{e_1 + e_7}$, whose action on Φ is shown in the following diagram:

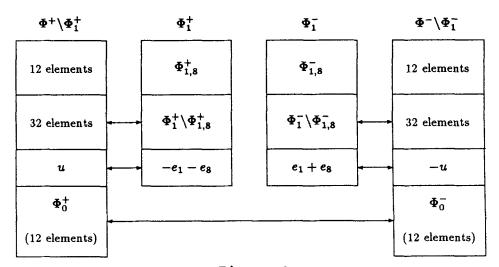


Diagram 6

Here Φ_0^+ denotes the set $\{e_1 \pm e_j | j = 2, \ldots, 7\}$. Thus $U_1 \cap P_1^{w_1} \simeq p^s \cdot p^{32s} \times p^{12s}$. Let $L'_{1,8} = \langle X_\tau | r \in \Phi_{1,8} \rangle \simeq \bar{D}_6(q)$ and $U_{1,8} = \langle X_\tau | r \in \Phi_1^+ \backslash \Phi_{1,8}^+ \rangle \simeq p^{33s}$. Since h_u centralizes $L'_{1,8}$, we obtain $M_5 = P_1 \cap P_1^{w_1} \simeq (p^s \cdot p^{32s} \times p^{12s}) : (p^{33s} : (d \cdot (d \cdot D_6(q) \times (q-1)/d) \cdot d) \cdot (q-1))$, where d = (q-1,2), and $|P_1 : M_5| = q^{12}(q^{14}-1)(q^{12}+q^6+1)(q^8+q^4+1)/(q-1)$.

We have $|G:P_1|=1+\sum_{i=2}^{5}|P_1:M_i|$. Hence, the rank of G's representation on the cosets w.r.t. P_1 equals 5.

THEOREM 3. For simple non-Abelian groups $G = E_8(q)$, the parameters n, n_2 , n_3 , n_4 , n_5 , P, M_2 , M_3 , M_4 , and M_5 of minimal permutation representations are given in the following list:

```
n = \frac{(q^{50}-1)(q^{12}+1)(q^{10}+1)(q^{5}+1)}{q-1}, \quad n_{2} = q \cdot \frac{(q^{14}-1)(q^{5}+1)(q^{5}+1)}{q-1}, \quad n_{3} = q^{57}, \quad n_{4} = q^{29} \cdot \frac{(q^{14}-1)(q^{5}+1)(q^{5}+1)}{q-1}, \\ n_{5} = q^{12} \cdot \frac{(q^{14}-1)(q^{12}+q^{6}+1)(q^{5}+q^{4}+1)}{q-1}; \\ P = (p^{s} \cdot p^{56s}) : (d \cdot (E_{7}(q) \times (q-1)/d) \cdot d), \\ M_{2} = (p^{s} \cdot p^{54s} \times p^{s}) : (p^{27s} : (d' \cdot (E_{6}(q) \times (q-1)/d') \times (q-1)) \cdot d'), \\ M_{3} = d \cdot (E_{7}(q) \times (q-1)/d) \cdot d, \\ M_{4} = p^{28s} : (p^{27s} : (d' \cdot (E_{6}(q) \times (q-1)/d') \times (q-1)) \cdot d'), \\ M_{5} = (p^{s} \cdot p^{32s} \times p^{12s}) : (p^{33s} : (d \cdot (d \cdot D_{6}(q) \times (q-1)/d) \cdot d) \cdot (q-1)), \\ \text{where } d = (q-1,2), d' = (q-1,3).
```

The rank of the representation equals 5.

REFERENCES

- 1. A. V. Vasilyev, "Minimal permutation representations of finite simple exceptional groups of types G_2 and F_4 ," Algebra Logika, 35, No. 6, 663-684 (1996).
- 2. M. W. Liebeck and J. Saxl, "On the orders of maximal subgroups of the finite exceptional groups of Lie type," Proc. London Math. Soc., 55, 299-330 (1987).