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Abstract: The spectrum of a finite group is the set of its element orders. A finite group G is said to
be recognizable by spectrum, if every finite group with the same spectrum as G is isomorphic to G. The
purpose of the paper is to prove that for every natural m the finite simple Chevalley group F4(2m) is
recognizable by spectrum.
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Introduction

The spectrum ω(G) of a finite group G is the set of its element orders. In other words, a natural
number n is in ω(G) if and only if there is an element of order n in G. A finite group G is said to be
recognizable by spectrum (briefly, recognizable) if H ' G for every finite group H such that ω(H) = ω(G).
Since a finite group with a nontrivial normal soluble subgroup is not recognizable (see [1, Lemma 1]),
each recognizable group is an extension of the direct product M of simple nonabelian groups by some
subgroup of Out(M). Of most interest is the recognition problem for simple and almost simple groups
(a group G is almost simple if S 6 G 6 Aut(S) for some simple nonabelian group S). In the middle of
the 1980s Shi found the first examples of recognizable finite simple groups (see [2, 3]). In 1994 Shi and
Brandl proved recognizability of the infinite series of simple linear groups L2(q), q 6= 9 (see [4, 5]). The
recognition problem is solved at present for all groups with prime divisors at most 11 (see [6]) and several
infinite series of recognizable finite simple and almost simple groups are obtained. The list of groups is
available in [6] for which the recognition problem is solved.

The purpose of this article is to prove the following

Theorem. For every natural number m the group G = F4(2m) is recognizable by spectrum.

Remark. Recognizability of F4(2) is proved in [7]. So we may assume m > 1 while proving the
theorem.

§ 1. Preliminaries

The set ω(H) of a finite group H is closed under divisibility and uniquely determined by the set
µ(H) of those elements in ω(H) that are maximal under the divisibility relation. Moreover, the set ω(H)
determines the Gruenberg–Kegel graph GK(H) whose vertices are all prime divisors of the order of H and
two primes p and q are adjacent ifH has an element of order p·q. Denote by s(H) the number of connected
components of GK(H) and by πi(H), i = 1, . . . , s(H), the ith connected component of GK(H). If H
has even order then put 2 ∈ π1(H). Denote by µi(H) (ωi(H)) the set of numbers n ∈ µ(H) (n ∈ ω(H))
such that every prime divisor of n belongs to πi.
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For the group G = F4(q) with q = 2m, m ∈ N, it was shown in [8] that s(G) = 3. So we may use the
following two lemmas.

Lemma 1.1 (a corollary of the Gruenberg–Kegel theorem). Let H be a finite group with s(H) > 2.
Then there exists a simple nonabelian group S such that S ≤ H = H/K 6 Aut(S) for some nilpotent
normal π1(H)-subgroup K of H and the group H/S is a π1(H)-subgroup. Moreover, the graph GK(L)
is disconnected, s(S) ≥ s(H), and for every i, 2 ≤ i ≤ s(H), there is j, 2 ≤ j ≤ s(S), such that
ωi(H) = ωj(S).

Proof. See [9].

Lemma 1.2. Let S be a finite simple nonabelian group nonisomorphic to the alternating group A6

and s(S) > 2. Then S is quasirecognizable, that is, every finite group H with ω(H) = ω(S) contains
a composition factor isomorphic to S.

Proof. See [10].

Lemma 1.3. Let H be a finite group, K C H, and let H/K be a Frobenius group with kernel F
and cyclic complement C. If (|F |, |K|) = 1 and F does not lie in KCH(K)/K then p|C| ∈ ω(H) for some
prime divisor p of |K|.

Proof. See [11, Lemma 1].

Lemma 1.4. Let L = G2(q), where q = pn and p is a prime. Then L contains the Frobenius subgroup
FC whose kernel F is an elementary abelian p-group of order q2 and whose complement C = 〈c〉 is a
cyclic group of order q2 − 1.

Proof. Let Φ be a root system, let Φ+ be a positive system, and let Π = {α1, α2} be a fundamental
root system of Lie algebra G2 where the root α2 is longer than α1; that is, (α2, α2) = 3(α1, α1). Denote
by xα(t), where α ∈ Φ, t ∈ Fq, the root element of L; by Xα, the corresponding root subgroup; by
H =

〈
hαi(u) | i = 1, 2, u ∈ F∗

q

〉
, the Cartan subgroup of L; and by U = 〈Xα | α ∈ Φ+〉, the maximal

unipotent subgroup corresponding to Φ+. The subgroup U is a Sylow p-subgroup of L. Up to conjugation
there exist two maximal parabolic subgroups in L. Following [12], where such subgroups are described
in detail, we denote these groups by P1 and P2. Of interest to us is the group P1. It admits the Levi
decomposition: P1 = U1 : L1, where U1 = 〈Xα | α ∈ Φ+ \ {α2}〉 is a unipotent subgroup of order q5,
L1 = 〈H,Xα2 , X−α2〉 is a subgroup of order q(q2 − 1)(q − 1), U1 ∩ L1 = 1, and P1 = NL(U1) is the
normalizer of U1 in L.

Denote by F the subgroup of U1 generated by the root subgroups X3α1+α2 and X3α1+2α2 . In view of
the Chevalley commutator formula [13, Theorem 5.2.2], the elements x3α1+α2(t) and x3α1+2α2(u) commute
for all t, u ∈ Fq. Thus, F is an elementary abelian p-group of order q2.

The Cartan subgroup H normalizes every root subgroup. Furthermore, using the Chevalley commu-
tator formula it is easy to verify that Xg

α ⊆ F , where α = 3α1 +α2 or 3α1 + 2α2, and g runs through the
set of the elements of the type x±α2(t), t ∈ Fq. Therefore, the subgroup L1 normalizes F .

Consider F as a two-dimensional vector space V over the field of order q and choose the elements
x3α1+α2(1) and x3α1+2α2(1) as a basic vectors v1 and v2 of V . Since L1 normalizes F , there is a natural
homomorphism ψ from L1 to GL(V ). The images of the elements xα2(t), x−α2(t) and hα1(λ) with t ∈ Fq,
λ ∈ F∗

q , of L1 under ψ are as follows:(
1 t
0 1

)
,

(
1 0
t 1

)
,

(
λ 0
0 1

)
.

Since these matrices generate the group GL2(q), the map ψ is an epimorphism. But |L1| = |GL2(q)|,
and so L1 ' GL2(q).

Now the vector space V can be identified with the additive group of the field of order q2. Then the
operator of right multiplication by a primitive field element induces a nonsingular linear transformation ϕ
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of order q2 − 1 of the space V which is obviously regular on V . Its preimage c in L1 shares the same
property. Thus, the subgroup FC with C = 〈c〉 is the desired Frobenius group. The lemma is proved.

Remark. The proof of the lemma above is a slight modification of the proof of Lemma 2.1. in [14]
where the same result was obtained for G2(q), q = pn, with p an odd prime.

Lemma 1.5. Suppose that G = F4(q), q = 2m, m ∈ N, acts on a finite 2-group V . Then for every
element x ∈ G of odd order the group CV (x) is nontrivial.

Proof. There exist an algebraic group G̃ over the algebraic closure of Fq and an epimorphism σ

of G̃ such that G = O2′
(G̃σ), where G̃σ is the centralizer of σ in G̃. Moreover, there exists a maximal

σ-stable torus T of G which contains x.
Without loss of generality, we may assume that V is an absolutely irreducible module for G. Since

every such module by the Steinberg theorem [15, Theorems 41 and 43] is the tensor product of the G̃-
modules obtained from the so-called basic modules by applying the powers of a Frobenius automorphism,
we can suppose that V is basic. The basic modules for G̃ are essentially determined by Veldkamp in [16].
It follows from Table II of [16] that T centralizes some nonzero subspace in V , so the lemma is proved.

The authors are grateful to Frank Lübeck who explained to one of them how to apply the results by
Veldkamp [16] to what is needed in this paper.

The last lemma describes the set µ(G).

Lemma 1.6. Let G = F4(2m), m ∈ N and m > 1. Then

µ(G) = {16, 8(q − 1), 8(q + 1), 4(q2 − 1), 4(q2 + 1), 4(q2 − q + 1), 4(q2 + q + 1),

2(q − 1)(q2 + 1), 2(q + 1)(q2 + 1), 2(q3 − 1), 2(q3 + 1),

(q2 − 1)(q2 − q + 1), (q2 − 1)(q2 + q + 1), q4 − 1, q4 + 1, q4 − q2 + 1}.
In particular, µ2(G) = {q4 + 1}, µ3(G) = {q4 − q2 + 1}.

Proof. The conjugacy classes of the group G were determined by Shinoda in [17]. We use his results
to obtain the element orders of G.

2-elements. Theorem 2.1 in [17] asserts that in G there are 35 2-element conjugacy classes (in-
cluding the identity element). Their representatives are given in the same theorem. Using the Chevalley
commutator formula we obtain the following:

x0 is the identity element;
x1, . . . , x4 are elements of order 2;
x5, . . . , x19 are elements of order 4;
x20, . . . , x30 are elements of order 8;
x31, . . . , x34 are elements of order 16.
2′-elements. It is well known that in G each 2′-element lies in some maximal torus. According

to [17], G contains 25 maximal tori:
H(1) ' Zq−1 × Zq−1 × Zq−1 × Zq−1;
H(2) ' Zq−1 × Zq−1 × Zq2−1;
H(3) ' Zq−1 × Zq−1 × Zq−1 × Zq+1;
H(4) ' Zq−1 × Zq−1 × Zq+1 × Zq+1;
H(5) ' Zq2−1 × Zq−1 × Zq+1;
H(i) ' Zq−1 × Zq3−1, where i = 6, . . . , 10;
H(11) ' H(12) ' Zq4−1;
H(13) ' H(14) ' Zq−1 × Zq3+1;
H(i) ' Zq+1 × Zq3−1, where i = 15, . . . , 22;
H(23) ' Zq4+1;
H(24) ' Zq4−q2+1;
H(25) ' Zq2−q+1 × Zq2−q+1.
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Since (q − 1, q3 + 1) = (q + 1, q3 − 1) = 1, the tori H(13) and H(15) are cyclic. Thus, the maximal
orders (by divisibility) of 2′-elements of G are q4−1, q4 +1, (q−1)(q3 +1), (q+1)(q3−1), and q4−q2 +1.

The other elements. Using Table IV in [17] and information on the structure of the centralizers
of 2-elements and 2′-elements, we calculate the maximal orders of the composite elements in G. They are
8(q − 1), 8(q + 1), 4(q2 − 1), 4(q2 + 1), 4(q2 − q + 1), 4(q2 + q + 1), 2(q3 − 1), 2(q3 + 1), 2(q + 1)(q2 + 1),
2(q − 1)(q2 + 1). So the lemma is proved.

§ 2. Proof of the Theorem

Let G = F4(q), q = 2m, m ∈ N, m > 1, and let H be a finite group with ω(H) = ω(G).
Lemmas 1.1 and 1.2 imply that G ≤ H = H/K ≤ Aut(G) for some nilpotent normal π1(H)-

subgroup K of H and the group H/S is a π1(H)-subgroup. We complete the proof in three steps.

Proposition 1. K is an elementary abelian p-group with p = 2 or p = 3.

Proof. Using induction on the order of H we may assume that K is an elementary abelian p-group
for some prime p. Let p 6= 2, 3.

There exists a subgroup A in G isomorphic to the simple linear group A3(q). Therefore, G contains
a Frobenius subgroup with kernel F of order q3 and complement C of order q3 − 1 (see the proof of
Lemma 3 in [18]). Since p 6= 2 and G is simple, we have (|F |, |K|) = 1 and CH(K) = K. Thus,
Lemma 1.3 implies that H contains an element of order p(q3 − 1). Using Lemma 1.6, we find that p
divides q + 1.

At the same time G includes a subgroup B isomorphic to G2(q). By Lemma 1.4 the group G2(q)
includes a Frobenius subgroup with kernel F of order q2 and complement C of order q2−1. By Lemma 1.3
the group H contains an element of order p(q2−1). Using Lemma 1.6, we find that p divides either q2 +1
or q2 + q + 1, or q2 − q + 1.

Since q = 2m, we have (q + 1, q2 + 1) = (q + 1, q2 + q + 1) = 1. Furthermore, (q + 1, q2 − q + 1) = 1,
if q ≡ 1(mod 3), and (q + 1, q2 − q + 1) = 3, if q ≡ −1(mod 3). The proposition is proved.

Proposition 2. K = 1.

Proof. By Proposition 1, we may assume that K is an elementary abelian p-group, where p = 2 or
p = 3.

If p = 2 then Lemma 1.5 implies that there exists an element of order 2(q4+1) inH, which contradicts
Lemma 1.6.

Let p = 3. The group G/K includes a subgroup D that is isomorphic to 2F4(2) and acts on K by
conjugation in G. Inspection of the table of the Brauer 3-characters for the group 2F4(2) in [19] shows
that the element x ∈ D of order 16 has a fixed point in every absolutely irreducible module over a field of
characteristic 3. Thus, x centralizes some nontrivial element in K, and hence 48 ∈ ω(H); a contradiction.

Proposition 3. H = G.

Proof. We have G ≤ H ≤ Aut(G). The group Out(G) is cyclic of order 2m, and there exists
a graph automorphism σ whose image in Out(G) generates that group. Furthermore, 〈σ2〉 is the group of
field automorphisms of G. This group centralizes in G a subgroup F isomorphic to F4(2). If σ lies in H
then H includes a subgroup F 〈σ〉 containing an element of order 32 (see [20, p. 169]), which contradicts
Lemma 1.6. So we may suppose the factor group H̃ = H/G to include only field automorphisms. Since
the centralizer C of each field automorphism contains a subgroup isomorphic to F4(2), we have 16 ∈ ω(C).
If some odd prime p divides |H̃| then 16p ∈ ω(H); a contradiction. So H̃ is a cyclic 2-group generated
by some field automorphism of G.

Let τ be the automorphism of Fq of order 2, and let t be an element of Fq such that t 6= tτ . We identify
τ with the field automorphism of G that it induces. Obviously, τ is of order 2, as an element of H, and
its image τ̃ is the unique involution in H̃. Let Π = {αi | i = 1, . . . , 4} be the system of fundamental roots
of the Lie algebra F4 and let xαi(t), i = 1, . . . , 4, be the corresponding root elements of G. Consider the
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element g = xα1(t)xα2(t)xα3(t)xα4(t) of G and the element h = gτ of H. Using the Chevalley commutator
formula, we can check that the element g is of order 16, and that the canonical form of unipotent element
h2 of G involves xα1(t+ tτ ), xα2(t+ tτ ), xα3(t+ tτ ), and xα4(t+ tτ ). Since t 6= 0 and t+ tτ 6= 0; therefore,
g and h2 are regular unipotent elements by [21, Proposition 5.1.3], and [21, Proposition 5.1.2] implies
that these elements have the same order. Hence h is of order 32, and so 32 ∈ ω(H); a contradiction.
Thus, H = G and the theorem is proved.

The authors are grateful to E. P. Vdovin for a helpful remark on the paper.
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