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RECOGNIZING GROUPS G2(3
n)

BY THEIR ELEMENT ORDERS
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It is proved that a finite group that is isomorphic to a simple non-Abelian group G = G2(3n) is,
up to isomorphism, recognized by a set ω(G) of its element orders, that is, H ' G if ω(H) =
ω(G) for some finite group H.

For a finite group G, we denote by ω(G) a set of its element orders. If ω is a subset of the set of natural
numbers then h(ω) denotes the number of pairwise non-isomorphic groups G such that ω(G) = w. We say
that G is recognizable by ω(G), or, briefly, recognizable, if h(ω(G)) = 1. G is almost recognizable (resp.,
non-recognizable) if the number h(ω(G)) is finite (resp., infinite).

Since every finite group possessing a non-trivial soluble normal subgroup is non-recognizable (see, e.g.,
[1, Lemma 1]), each recognizable group is an extension of a direct product M of non-Abelian simple groups
by some subgroup of Out (M). Of particular interest is the recognition problem for simple and almost
simple groups. (Recall that G is almost simple if L ≤ G ≤ Aut (L) for some non-Abelian simple group L.)
At present, of the many almost simple groups, in particular, of all sporadic groups and of all simple groups
whose prime divisors do not exceed 11, we have a knowledge as to their recognizability (for a detailed list,
see [1]). Also, recognizable are the following series of simple groups: L2(q) for q > 3, q 6= 9 (cf. [2-6]),
L3(2m) and U3(2m) (cf. [7]), Sz(q) = 2B2(q) (cf. [8]), Re(q) = 2G2(q) (cf. [9]), 2F4(q) (cf. [10]), and An,
where n = p, p+ 1, p+ 2 for some prime p > 5 (cf. [11, 12]); non-recognizable are simple groups S4(2m) (cf.
[7]) as well as almost simple groups PGLn(q) for some infinite system of pairs (n, q) (cf. [1]). Note that the
recognition problem has not thus far been solved for any simple exceptional Chevalley group (exceptional
untwisted group) but G2(3) (cf. [13]). The objective of the present article is to point out an infinite series
of simple exceptional Chevalley groups that are recognizable by their element orders. Namely, we prove the
following:

THEOREM. For every natural n, G = G2(3n) is recognizable by the set of its element orders.

Remark. [13], in which G2(3) is proved recognizable, is a fairly recent paper; in the few places in which
this group is being spoken of, our proofs are independent and so not omitted.
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1. GROUPS WITH DISCONNECTED PRIME GRAPH
AND OTHER PRELIMINARY INFORMATION

Note that the set ω(H) of a finite group H is closed and is partially ordered under divisibility, and so
is uniquely determined by a subset µ(H) consisting of elements that are maximal under the divisibility
relation. The set ω(H) of H defines the prime graph (Gruenberg–Kegel graph) GK(H) whose vertices
are prime divisors of the order of H, and two primes p and q are joined by an edge if H contains an
element of order pq. Denote by s(H) the number of connected components in GK(H), and by πi = πi(H),
i = 1, . . . , s(H), an ith connected component. For a group H of even order, put 2 ∈ π1. Let µi = µi(H) be
a set of those n ∈ µ(H) for which every prime divisor of n belongs to πi.

The next result, obtained by Gruenberg and Kegel in 1975 and published in [14], will play a crucial part
in our further reasoning.

LEMMA 1.1. If a finite group H has a disconnected prime graph GK(H) then one of the following
statements holds:

(a) H = BC is a Frobenius group with kernel B and complement C;
(b) H = ABC, where A and AB are normal subgroups of H; AB and BC are Frobenius groups with

kernels A and B and complements B and C, respectively;
(c) H is an extension of a π1(H)-group N by a group H1, where L ≤ H1 ≤ Aut (L), L is a non-Abelian

group with disconnected graph GK(L), with s(L) > s(H), and M ' H1/L is a π1(H)-group.
Finite simple non-Abelian groups with disconnected prime graph are described by the following:

LEMMA 1.2. Let L be a finite simple group for which s(L) > 2. Then |µi(L)| = 1 for 2 6 i 6 s(L).
Let ni(L) be a unique element of µi(L) for i > 2. Then values for L, π1(L), and ni(L) are as in [11,
Tables 1-3].

Proof. The groups L and the sets πi(L) are described in [14, 15]; the rest is proved in Lemma 4 of
[11]. The latter also contains revised values of the quantities in question, and of the number ni (cf. [11,
Tables 1-2]).

Remark. Table 2 in [11] (as well as the corresponding table in [14]) contain an error: for a group
L = 2G2(q) with q = 32m+1 > 3, the set π1(L) is equal to π(q(q2 − 1)), not to π(q(q4 − 1)), as was pointed
out — this can be easily verified by direct computations.

In conclusion of this section, we formulate two versions of the widely known result concerning the faithful
action of a Frobenius group.

LEMMA 1.3. If a Frobenius group FC with kernel F and cyclic complement C = 〈c〉 of order n acts
faithfully on a vector space V of non-zero characteristic p, which is coprime to the order of the group F ,
then the minimal polynomial of an element c on V is equal to xn − 1. In particular, the natural semidirect
product V C contains an element of order p · n, and dimCV (c) > 0.

The proof follows the line of Lemma 1 in [16].

LEMMA 1.4. Let X be a finite group, N � X, and X/N be a Frobenius group with kernel F and
cyclic complement C = 〈c〉 of order n. If the preimage of F in X is a Frobenius group, then

n ·
∏

p∈π(N)

p ∈ ω(X).

The proof follows the line of Lemma 4 in [1].
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2. PROPERTIES OF THE GROUP G2(q)

Under this section, unless specified otherwise, we denote by G the group G2(q), where q = pn, p is an
odd prime, and n ∈ N.

Let Φ be a root system, Φ+ be a positive and Π = {α1, α2} a fundamental root systems of an algebra
G2, where the root α2 is longer than α1, that is, (α2, α2) = 3(α1, α1). Denote by xα(t), where α ∈ Φ and
t ∈ Fq, a root element of G, and by Xα the corresponding root subgroup. As is known, a simple exceptional
Chevalley group G = G2(q) is generated by its root elements. (For details, see [17, 18].) Following them, we
denote by H = 〈hai

(u) | i = 1, 2, u ∈ F∗q〉 a Cartan subgroup of G, and by U = 〈Xα | α ∈ Φ+〉 a maximal
unipotent subgroup corresponding to Φ+, which is a Sylow p-subgroup of G. Recall that p-elements of G
are said to be unipotent and p′-elements are said to be semisimple.

Up to conjugation, G contains two maximal parabolic subgroups. Following [19], where such groups are
described in detail, we denote these groups by P1 and P2. Of interest to us is the group P1. This admits
the Levi decomposition (cf. [18, Thm. 8.5.2]): P1 = U1 : L1, where U1 = 〈Xα | α ∈ Φ+ \ {α2}〉 is a
unipotent subgroup of order q5 and L1 = 〈H,Xα2 , X−α2〉 is a subgroup of order q(q2− 1)(q− 1); moreover,
U1 ∩ L1 = 1 and P1 = NG(U1) is the normalizer of U1 in G.

LEMMA 2.1. G contains a Frobenius subgroup FC whose kernel F is an elementary Abelian p-group
of order q2 and whose complement C = 〈c〉 is a cyclic group of order q2 − 1.

Proof. Denote by F a subgroup of U1 generated by root subgroups X3α1+α2 and X3α1+2α2 . The
subgroup is of order q2, and it is an elementary Abelian p-group since elements x3α1+α2(t) and x3α1+2α2(u)
commute, in view of the Chevalley commutator formula, for any t, u ∈ Fq (cf. [18, Thm. 5.2.2]).

A Cartan subgroup H normalizes every root subgroup. Furthermore, using the Chevalley commutator
formula, it is not hard to verify that Xg

α ⊆ F , where α = 3α1 + α2 or 3α1 + 2α2, and g runs through the
set of elements like x±α2(t), t ∈ Fq. Therefore the subgroup L1 normalizes F .

Let u ∈ F∗q , u
2 = 1. An element z = hα2(u), lying in the center of the group L1, acts on F regularly.

In fact, direct computations show that z inverts all non-trivial elements of F . Consequently, L1 acts on F
faithfully. Therefore if we treat F as a two-dimensional vector space V over a field of order q we obtain
a natural embedding of L1 in GL(V ), a group of non-singular linear transformations of V . On the other
hand, |GL(V )| = q(q2 − 1)(q − 1) = |L1|, and so L1 ' GL2(q).

The vector space V can be identified with an additive group of a field of order q2. Then the operator
of right multiplication by a primitive element of that field induces a non-singular linear transformation ϕ

of a space V of order q2 − 1, which is obviously regular on V . Hence its image c in L1 shares the same
properties. Thus the subgroup FC, where C = 〈c〉, is the desired Frobenius group. The lemma is proved.

We recall that a maximal torus in a finite Chevalley group is a maximal Abelian p′-subgroup (the
converse is not always true).

LEMMA 2.2. G contains two subgroups Nε, where ε = ±1, of respective orders (q2 − εq + 1) · 6. If
q ≡ ε (mod 3), then one of these subgroups is a Frobenius group with cyclic kernel of order q2 − εq + 1 and
cyclic complement of order 6. If q = 3n then both of these subgroups are Frobenius groups.

Proof. The classification of maximal tori for Chevalley groups in [20, Parts E, G] implies that G
contains two maximal cyclic tori Tε of respective orders q2 − εq + 1, where ε = ±1. By [14, Lemma 5], for
every maximal torus T of G, the set π(T ) forms a connected component of GK(G) iff (|T |, |CG(i)|) = 1
for any involution i ∈ G. Note that the description of connected components of the prime graph of simple
Lie-type groups is underpinned by just this idea (cf. Lemma 1.2 above). The results of [20, Part F] imply
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that all involutions in G are conjugate, and that the centralizer CG(i) of each is of order q2(q2 − 1)2. It is
easy to verify that (|Tε|, |CG(i)|) = 3 for q ≡ ε(mod 3) and is equal to 1 in all other cases. Consequently, if
q 6≡ ε (mod 3) then π(Tε) is a connected component in GK(G). Therefore the normalizer Nε = NG(Tε) of
a subgroup Tε in G is a Frobenius group. It remains to observe that the factor group Nε/Tε is isomorphic
to a cyclic group of order 6 (cf. [20, Part E, Ch. 2, Sec. 5]). The lemma is proved.

In the next lemma we point out some properties of the set µ(G), whose proof is based on examining the
structure of G and on several arithmetic arguments.

LEMMA 2.3. For G, the following statements hold:
(a) p2 ∈ µ(G);
(b) (q2 − 1) ∈ µ(G);
(c) if a 2-period of G is equal to 2t, that is, t ∈ N is such that 2t ∈ ω(G) and 2t+1 6∈ ω(G), then

p · 2t 6∈ ω(G);
(d) 2-periods of G and G2(qp) coincide;
(e) if q = 3n then s(G) = 3, π1(G) = π(q(q2 − 1)), n2 = q2 − q + 1, and n3 = q2 + q + 1; but if

q ≡ ε (mod 3) then s(G) = 2, π1(G) = π(q(q2 − 1)(q3 − ε)), and n2 = q2 − εq + 1;
(f) if q = 3n, where n is an odd natural number, then 5 6∈ ω(G).
Proof. Using the Chevalley commutator formula, it is not hard to determine how a Sylow p-subgroup

U of G is structured. In particular, the p-period of U is equal to p2 (which is false for p = 2). On the other
hand, it is well known that a subgroup Op′(C) of the centralizer C = CG(g) of any semisimple element g in
G is structured as follows: Op′(C) = LT , where L is a central product of Chevalley groups Li(qk), i = 1, 2,
k = 1, 2, whose root systems are subsystems of the root system of G, defined over some extension Fqk of
the field Fq, and T is a torus in G. It is not hard to verify that p2 6∈ ω(X(qk)) for every Chevalley group
X(qk) the root system of which is a subsystem in Φ(G). Therefore p2 · |g| 6∈ ω(G).

(b) A cyclic subgroup T of G of order q2 − 1 is a maximal torus. Therefore r(q2 − 1) 6∈ ω(G) for every
prime r 6= p. Moreover, if G has an element x of order p(q2 − 1) then x lies in the centralizer C of an
involution i ∈ T . Analysis of the structure of C (cf. [20, Part F, Sec. 9]) indicates that p(q2 − 1) 6∈ ω(C).

(c) Let x be a 2-element of maximal order in G. Then x lies in the maximal torus T of order q2 − 1,
and the result now follows by applying essentially the same argument as in (b).

(d) Elements x ∈ G and x′ ∈ G′ = G2(qp) whose orders are 2-periods of the groups G and G′,
respectively, lie in the maximal tori T ≤ G and T ′ ≤ G′, which are cyclic subgroups of orders q2 − 1 and
q2p − 1, respectively. On the other hand, q2p − 1 = (q2 − 1)(q2(p−1) + . . .+ q2 + 1). Since p and q are odd
numbers, 2 does not divide q2(p−1) + . . .+ q2 + 1, as desired.

(e) Follows from [11, Lemma 1.2, Tables 1 and 2].
(f) Is verified by direct computations.

3. PROOF OF THE MAIN RESULT

We fix some natural n and denote by G the group G2(q), where q = 3n. Assume that G defies statement
of the theorem and that a finite group H is a counterexample. Then H 6' G, ω(H) = ω(G), and µ(H) =
µ(G); hence, by Lemma 2.3(e), s(H) = s(G) = 3, π1(H) = π1(G) = π(q(q2−1)), n2(H) = n2(G) = q2−q+1,
and n3(H) = n3(G) = q2 + q + 1.

Since s(H) = 3, H admits three possibilities, in compliance with items (a)-(c) in Lemma 1.1.
First let H = BC be a Frobenius group. By the Thompson theorem in [21], the kernel B of this group

is a nilpotent subgroup. By [6, Lemma 3], H is insoluble as is any other group the number of connected
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components in the prime graph of which is strictly more than 2. Consequently, the complement C is
an insoluble group. This implies, in particular, that s(C) = 1 (cf. [6, proof of Lemma 4]). Therefore
s(H) = 2, a contradiction. The case where H is a Frobenius 2-group, that is, H satisfies the conditions of
Lemma 1.1(b), can be treated similarly.

Thus we may assume that H = N ·H1, where L ≤ H1 ≤ Aut (L) for some non-Abelian simple group L
such that s(L) > 3, and N and H1/L are π1(G)-groups.

We claim that L ' G. By Lemma 1.2, L is one of the groups in [11, Tables 2 and 3]. Analysis of
different possibilities for L proceeds along similar lines; so, we only handle some exemplifying cases.

Assume that L does not belong to any infinite series, for instance, L 'M22. Table 3 in [11] indicates that
s(L) = 4, n2(L) = 5, n3(L) = 7, and n3(L) = 11. Since the connected components of the graph GK(H),
distinct from π1, can only be obtained from similar components of GK(L), we have n2 = n2(H) = ni(L) and
n3 = n3(H) = nj(L) for some i, j ∈ {2, 3, 4} such that ni < nj . On the other hand, n2 = n2(G) = q2−q+1
and n3 = n3(G) = q2 + q+1. Therefore n3−n2 = 2 · 3n = 2q is equal to one of the numbers nj(L)−ni(L),
that is, to 2, 4, or 6. In the first and second cases, contradiction is obvious. For the last case q = 3, and by
Lemma 2.3(f), 5 6∈ ω(G). But 5 ∈ ω(L) ⊆ ω(H). Contradiction.

Let L ' F1. Then s(L) = 4 and nj−ni cannot be equal to 12, 18, or 30. The only acceptable possibility
is the case where j = 3, i = 2, and nj − ni = 18. Here, we have q = 9. It follows that n2 = 92− 9 + 1 = 73,
but n2 = n2(L) = 41, and we arrive at a contradiction again.

The cases treated above contain enough arguments (comparison of n3 − n2 = 2q and nj(L) − ni(L),
expressing q in terms of these values, and application of Lemma 2.3(f)), in order to sort out all other
possibilities for L not in infinite series. Moreover, such arguments are sufficient to deny all the infinite
series but A1(q′) = L2(q′), where q′ ≡ ±1 (mod 4), in Tables 2 and 3 of [11]. We handle the latter case.

Let L ' L2(q′), where first q′ ≡ 1 (mod 4), q′ = p′
m, and p′ is a prime. We have s(L) = 3, n2(L) = p′,

and n3(L) = (q′ + 1)/2.
If q′ = p′ then p′ = n2(L) = n3 = q2 + q + 1 and (p′ + 1)/2 = n3(L) = n2 = q2 − q + 1. It follows

that 2q = n3 − n2 = (p′ − 1)/2. Expressing p′ from the latter equality and substituting it in the former,
we obtain 4q + 1 = p′ = q2 + q + 1. Hence q = 3 and q′ = 13. Let L = L2(13). This group is described in
[22], and so its properties which are made use of in what follows are easily verifiable. The group Aut (L)
has no elements of order 9. Hence H1 also has none. On the other hand, 9 ∈ ω(G), and so 3 ∈ ω(N).
Denote by H0 the preimage of L in H. It follows that N �H0 and CH0(N) ⊆ N . The group L contains a
subgroup K, which is a Frobenius group with cyclic kernel F of order 13 and cyclic complement R of order
6. Again, 13 = n2(L) = n2(H), and hence the preimage of F in H0 is a Frobenius group with kernel N
and complement F . Thus the preimage X of K in H0 satisfies all the conditions of Lemma 1.4. Therefore
18 = 3 · 6 ∈ ω(X) ⊆ ω(H0) ⊆ ω(H) = ω(G). By Lemma 2.3(a), 9 ∈ µ(G), a contradiction.

Let q′ = p′
m, m > 1. Then p′ = n2(L) = n2 = q2 − q + 1 and (q′ + 1)/2 = n3(L) = n3 = q2 + q + 1.

This means that (nm
2 + 1)/2 = n2 + 2q. Hence nm

2 − 2n2 + 1 = 4q. We have nm
2 − 2n2 + 1 > n2

2− 2n2 + 1 =
(n2 − 1)2 = (q2 − q)2 = q2(q − 1)2, which is of course greater than 4q since q > 3.

Let L ' L2(q′) and q′ ≡ −1 (mod 4). If q′ = p′ is a prime then two distinct expressions of p′ via q yield
a quadratic equation for q, whose solutions are 1 and 2. If q′ = p′

m, m > 1, then a chain of inequalities like
in the preceding case leads us to a contradiction again.

Thus we may assume that L ' G. We claim that the subgroup N of H is trivial. This fact follows from
the following:
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Proposition 3.1. Let N be a non-trivial normal subgroup of a finite group X and L = X/N be a
factor group isomorphic to G. Then ω(X) 6⊆ ω(G).

Proof. Assume that the theorem fails, letting X be a counterexample of minimal order. Then every
Sylow subgroup S of N is normal in X. Assume, to the contrary, that Y = NX(S) is the normalizer of
S in X, and Y 6= X. By the Frattini lemma, G ' X/N = Y N/N ' Y/(Y ∩ N). Since X is a minimal
counterexample, the group Y meets the conclusion of the theorem. On the other hand, ∅ 6= ω(Y ) \ω(G) ⊆
ω(X) \ ω(G) = ∅. Contradiction.

Now we claim that N is an r-group for some prime r. Indeed, let S be a proper Sylow subgroup of N .
Then we arrive at a contradiction by applying the theorem to the group X/S and its normal divisor N/S.
Likewise we can prove that N is an elementary Abelian r-group. Since s(G) > 1, L acts on N faithfully.
Consequently, if we identify N with a vector space V over a field Fr, then L and hence G can be thought
of as subgroups of GL(V ).

First let r = 3. By Lemma 2.2, G contains a Frobenius group with kernel of order q2− q+ 1 coprime to
3 and cyclic complement of order 6; so, by Lemma 1.3, the natural semidirect product X1 = NG contains
an element of order 18. By [23. Lemma 10], ω(X1) ⊆ ω(X). Hence X also has an element of order 18,
which contradicts Lemma 2.3(a).

Next let r 6= 3. Apply then Lemma 1.3 to a Frobenius group with kernel of order q2 and cyclic
complement of order q2− 1 (such a group exists in view of Lemma 2.1). Then X1 and hence X will contain
an element of order r · (q2 − 1), which contradicts Lemma 2.3(b). The proposition is proved.

The group H0, which is the preimage of L in H, satisfies the conditions of the proposition. Thus N = 1.
Consequently, H = H1 and L ≤ H ≤ Aut (L). Denote the factor H/L by M . Obviously, M ≤ Out (L).
Therefore every element of M is a product of some field automorphism f and graph automorphism g. We
claim that f and g are trivial.

Let f 6= 1 and r be a prime dividing the order of f . There is no loss of generality in assuming that
|f | = r. Denote by τ an automorphism of the field Fq inducing f . If q = 3n then r divides n, and we put
q′ = qn/r. Since τ fixes a subfield Fq′ of Fq, f centralizes a subgroup L′ of L isomorphic to G2(q′). Hence
r · k ∈ ω(H) for every number k ∈ ω(L′) such that (r, k) = 1. Let r 6= 3. By Lemma 2.3(a), 9 ∈ ω(L′). But
9r ∈ ω(H) = ω(G), which is a contradiction with Lemma 2.3(a). Let r = 3. In view of Lemma 2.3(d), the
2-periods of L′ and L coincide and are equal to 2t, say. It follows that 3 ·2t ∈ ω(H), which is a contradiction
with Lemma 2.3(c). Thus f = 1.

Let g 6= 1. Then, as is known, the order of Fq is an odd power of 3, and |g| = 2. The centralizer C
of g in L is isomorphic to a Ree group Re(q) = 2G2(q). On the other hand, Re(q) contains an element of
order q2 − q + 1. Therefore 2(q2 − q + 1) ∈ ω(H) = ω(G), which clashes with Lemma 2.3(e). The theorem
is proved.
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