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Two groups are said to be isospectral if they share the same set of element orders. For every finite
simple linear group L of dimension n over an arbitrary field of characteristic 2, we prove that
any finite group G isospectral to L is isomorphic to an automorphic extension of L. An explicit
formula is derived for the number of isomorphism classes of finite groups that are isospectral to
L. This account is a continuation of the second author’s previous paper where a similar result
was established for finite simple linear groups L in a sufficiently large dimension (n > 26), and
so here we confine ourselves to groups of dimension at most 26.

INTRODUCTION

The spectrum ω(G) of a group G is the set of its elements orders. Two groups are said to be isospectral
if their spectra coincide. A finite group L is said to be recognizable by spectrum if every finite group G

with ω(G) = ω(L) is isomorphic to L. If we denote by h(L) the number of pairwise nonisomorphic finite
groups isospectral to L, then the property that L is recognizable is written as the equality h(L) = 1.
A group L is almost recognizable if 1 < h(L) < ∞, and is irrecognizable if h(L) = ∞. The problem of
being recognizable by spectrum for a group L reduces to determining whether L is recognizable, almost
recognizable, or irrecognizable, and in a stronger setting, to finding the value of h(L). The latest survey on
this subject can be found in [1, 2].

For simple linear groups Ln(2k), the recognizability problem is solved with n = 2 [3], n = 3 [4, 5], n = 4
[6], 11 � n � 17 [7, 8], n � 26 [8, 9], and also for k = 1 [10, 11]. The goal of the present paper is to solve
the problem for all the remaining groups Ln(2k), thus settling the question of whether finite simple linear
groups over fields of characteristic 2 are recognizable by spectrum.

THEOREM. Let L = Ln(q), where n � 2 and q = 2k, and let d = (n, q − 1).
(1) If n = 2m + 1 for some natural number m then h(L) = 1.
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(2) If n 	= 2m + 1 for any natural number m then h(L) is equal the number of positive integers dividing
the d-share of ( q−1

d , k). Moreover, a finite group G satisfies ω(G) = ω(L) if and only if G is isomorphic to
a natural extension of L by a field automorphism of order dividing the d-share of ( q−1

d , k).
In particular, L is recognizable iff n is of the form 2m + 1 or (d, q−1

d , k) = 1.
Research on the recognizability problem for a finite simple group involves studying properties of quasirec-

ognizability and recognizability among covers, as well as spectra of automorphic extensions. A simple group
L is said to be quasirecognizable if every finite group G that is isospectral to L has a unique non-Abelian
composition factor and this factor is isomorphic to L. A group L is said to be recognizable among its covers
if every finite group that contains L as a homomorphic image is isospectral to L iff it is isomorphic to L. For
a simple group L which is quasirecognizable and recognizable among covers, the number h(L) is equal to
the number of pairwise nonisomorphic automorphic extensions of L whose spectra do not differ from ω(L).

As follows from [12], all simple groups Ln(2k) are recognizable by spectrum among their covers. Isospec-
tral automorphic extensions of Ln(2k) are described in [8]. Thus, to solve the problem posed, it is sufficient
to state that Ln(2k) is quasirecognizable for 5 � n � 26 and q > 2.

1. PRELIMINARIES

We denote by [x] the integer part of a number x and by π(m) the set of prime divisors of a natural
number m. For a finite group G, put π(G) = π(|G|). By [m1, m2, . . . , ms] and (m1, m2, . . . , ms) we denote,
respectively the least common multiple and the greatest common divisor of numbers m1, m2, . . . , ms. For
a natural number r, the r-share of a natural number m is the greatest divisor t of m with π(t) ⊆ π(r). We
write mr for the r-share of m and write mr′ for the quotient m/mr.

Let G be a finite group and ω(G) its spectrum. The divisibility relation endows ω(G) with a partial
order, and the subset of elements that are maximal under this order is denoted by µ(G). For a prime r, we
refer to the maximal degree of r in ω(G) as the r-period of G.

The Gruenberg–Kegel graph (or prime graph) of G is a graph GK(G) whose vertex set is π(G) and two
vertices p and r are connected by an edge if and only if pr ∈ ω(G). The number of connected components
of GK(G) is denoted by s(G); the maximal cardinality of independent sets of vertices (or the independence
number), by t(G); the maximal cardinality of independent sets containing vertex 2, by t(2, G). The last-
mentioned quantity, by analogy with an ordinary independence number, is called the 2-independence number
of GK(G). The neighborhood of a vertex is a set consisting of the vertex itself and vertices adjacent to that
vertex.

LEMMA 1 [13, 14]. Let L be a finite non-Abelian simple group satisfying t(L) � 3 and t(2, L) � 2
and G be a finite group with ω(G) = ω(L). Then the following statements hold:

(1) there exists a non-Abelian simple group S such that S ≤ G = G/K ≤ AutS, where K is a maximal
normal soluble subgroup of G;

(2) for every independent set ρ of vertices in GK(G) with |ρ| > 2, at most one prime from ρ lies in
π(K) ∪ π(G/S); in particular, t(S) � t(G) − 1;

(3) every prime r ∈ π(G) nonadjacent to 2 in GK(G) does not divide the product |K| · |G/S|; in
particular, t(2, S) � t(2, G).

LEMMA 2 [15, Lemma 1]. Let G be a finite group, K be a normal subgroup of G, and G/K be
a Frobenius group with kernel F and cyclic complement C. If (|F |, |K|) = 1, and F is not contained in
KCG(K)/K, then r|C| ∈ ω(G) for some prime divisor r of |K|.
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LEMMA 3. Let G be a finite group, K be a normal soluble subgroup of G, and S ≤ G = G/K ≤ Aut S

for a simple group S. Suppose π(S) \ π(K) contains numbers t and s whose neighborhoods in GK(G) are
disjoint. If r ∈ π(K) is adjacent neither to t nor to s in GK(G), and S includes a Frobenius subgroup with
cyclic complement C and kernel F for which (|F |, r) = 1, then r|C| ∈ ω(G).

Proof. Put G̃ = G/Or′(K) and K̃ = K/Or′(K). Then R = Or(K̃) 	= 1. Suppose K̃ 	= R. Then there
exists a prime u such that U = Ou(K̃/R) is not trivial. Since Or′(K̃) = 1, it follows that U∩RCK̃(R)/R = 1.
By assumption, at least one of the numbers t or s is not adjacent to u in GK(G). Denote this number by v.
Let x be an element of order v in G̃/R. Then H = U � 〈x〉 is a Frobenius subgroup of G̃/R. The preimage
of H in G̃ satisfies the conditions of Lemma 2; therefore G contains an element of order rv. Contradiction.

Hence, K̃ = R. The group S, treated as a subgroup of G̃/K̃, has a trivial intersection with K̃CG̃(K̃)/K̃.
Otherwise, S, being simple, would be in K̃CG̃(K̃)/K̃, and so G would contain an element of order tr.
Applying Lemma 2, we infer that r|C| ∈ ω(G). The lemma is proved.

LEMMA 4 [16, Cor. 3]. Let L = Ln(q), where n � 2 and q is a power of an odd prime p, and
d = (n, q − 1). Then ω(L) consists of all divisors of the following numbers:

(1) qn−1
d(q−1) ;

(2) [qn1−1,qn2−1]
(n/(n1,n2),q−1) , where n1, n2 > 0 and n1 + n2 = n;

(3) [qn1 − 1, qn2 − 1, . . . , qns − 1], where s � 3, n1, n2, . . . , ns > 0, and n1 + n2 + . . . + ns = n;
(4) pm qn1−1

d , where m, n1 > 0 and pm−1 + 1 + n1 = n;
(5) pm[qn1 − 1, . . . , qns − 1], where s � 2, m, n1, . . . , ns > 0, and pm−1 + 1 + n1 + . . . + ns = n;
(6) pm if pm−1 + 1 = n for m > 0.
If q is a natural number, r is an odd prime, and (q, r) = 1, then e(r, q) denotes the multiplicative order

of q modulo r, that is, a minimal natural number m with qm ≡ 1 (mod r). For an odd q, we put e(2, q) = 1
if q ≡ 1 (mod4), and e(2, q) = 2 otherwise.

LEMMA 5 (Zsigmondy’s theorem [17]). Let q be a natural number greater than 1. For every natural
m, there then exists a prime r with e(r, q) = m but for the cases where q = 2 and m = 1, q = 3 and m = 1,
and q = 2 and m = 6.

A prime r with e(r, q) = m is called a primitive prime divisor of qm − 1. A divisor t of qm − 1 is a
greatest primitive divisor if π(t) consists of primitive prime divisors and t is the greatest divisor with this
property. A formula for expressing greatest primitive divisors in terms of cyclotomic polynomials φn(x) is
given by the following:

LEMMA 6. Let q and m be natural numbers, q > 1, m � 3, and let k be the greatest primitive divisor
of qm − 1. Then

k =
φm(q)

∏

r∈π(m)

(φmr′ (q), r)
.

Proof. Let r be a primitive prime divisor of qm − 1. Since m � 3, it follows that r is odd. It is well
known that qm − 1 can be factored into a product of values φd(q), where d runs over the set of divisors of
m. In this product, by definition, the number r can divide only the factor φm(q). Hence, k divides φm(q).
On the other hand, the set π(φm(q)) may contain nonprimitive prime divisors.

Let r be an odd prime divisor of φm(q). By [18, Chap. IX, Lemma 8.1(1)], this is possible only if
m = e(r, q), or else if m = e(r, q)ri for i > 0 with the r-share of φm(q) equal to r. Primitive prime divisors
of qm−1 are exactly those r for which m = e(r, q). Thus, we have to divide φm(q) by odd primes r such that
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m = e(r, q)ri for some i > 0. If m = e(r, q)ri for i > 0 then r is in π(m) and divides φmr′ (q). Conversely,
if r divides φmr′ (q) and belongs to π(m) then mr′ = e(r, q) and m = e(r, q)ri for i > 0.

Suppose φm(q) is divisible by 2. Then m is a power of 2, as follows by [18, Chap. IX, Lemma 8.1(2)].
Moreover, since m � 3, we conclude that φm(q) is not divisible by 4. Thus, we should divide φm(q) by 2
if q is odd and m = 2i. If q is odd and m = 2i, then 2 divides φm2′ (q) = q − 1. Conversely, if 2 divides
φm2′ (q), then m2′ = 1, and hence m is a power of 2. The lemma is proved.

2. PROOF OF THE THEOREM

Let L = Ln(q), where q is even. As noted, the theorem has already been proven to hold for all n < 5 and
for q = 2, and we may so assume that n � 5 and q > 2. For 3 � i � n, denote by ki the greatest primitive
divisor of qi − 1 (which is not 1 by Lemma 5). Note that 3 divides q2 − 1, and hence these divisors are all
coprime to 3. Furthermore, they all are in ω(L). Let ri ∈ π(ki), 3 � i � n. According to [19, Tables 4,
8], the independence number t(L) is equal to [n+1

2 ] and the 2-independence number t(2, L) is equal to 3;
{2, rn, rn−1} and {rn, rn−1, . . . , r[n+1/2]} are independent sets of vertices in GK(L).

Let G be a finite group and ω(G) = ω(L). By Lemma 1, G has a unique non-Abelian composition
factor S. Denote the soluble radical of G by K. Then S ≤ G = G/K ≤ Aut S. Furthermore, S satisfies
t(S) � t(G) − 1, and any number in π(kn−1) ∪ π(kn) does not divide the product |K| · |G/S|. The last-
mentioned fact entails kn, kn−1 ∈ ω(S).

In [8, Props. 1-4], it was stated that the factor S is isomorphic either to L or to one of the groups L2(u),
G2(u), 2G2(u), or E8(u), where u is odd.

PROPOSITION 1. A group S is not isomorphic to L2(u), where u is odd.
Proof. Suppose S � L2(u) and u = vl, where v is an odd prime. Then µ(S) = {v, (u+1)/2, (u−1)/2}.

The numbers rn and rn−1 are in π(S) and are not adjacent to 2 in GK(S). Therefore, one of the numbers
is equal to v and the other is a divisor of (u + ε)/2, where ε is specified by u ≡ ε (mod 4).

We claim that 4 is in ω(S), or in ω(K). Assume the contrary. Since 8 ∈ ω(G), there must be an element
of order 4 in G. Hence, G/S should contain an element of order 2. If S admitted a field automorphism
of order 2, l would be even and (u − 1)/2 would be divisible by 4. Consequently, G admits a diagonal
automorphism of S; that is, G contains a subgroup isomorphic to PGL2(u). There is a cyclic torus of order
u + ε in PGL2(u), and either rn or rn−1 is adjacent to 2 in GK(G). Contradiction.

Denote rn−2 by r. As noted, there are no elements of orders rnr and rn−1r in L. By Lemma 4, L

contains no elements of order 4r.
Suppose r ∈ π|G/S|. Then G admits a field automorphism ϕ of order r. The centralizer CS(ϕ) is

isomorphic to L2(u1/r), which contains an element of order v; hence vr ∈ ω(G). Contradiction.
Assume r ∈ π(S). Then r divides (q − ε)/2. If 4 ∈ ω(S), then (q − ε)/2 is divisible by 4, and so there

is an element of order 4r in G, which is impossible. If 4 	∈ ω(S) then 2 ∈ π(K). A Borel subgroup B of S

is a Frobenius group with kernel of order u and cyclic complement of order (u− 1)/2. Applying Lemma 3
with t = rn and s = rn−1, we infer that (u − 1) ∈ ω(G). Thus, if ε = 1 then 4r ∈ ω(G), and if ε = −1
then one of rn, rn−1 divides (u− 1)/2; so r is adjacent to one of these numbers in GK(G). We arrive at a
contradiction in any case.

Suppose r ∈ π(K). If again we apply Lemma 3 with the Frobenius group B where t = rn and s = rn−1

we see that r(u− 1)/2 ∈ ω(G). If ε = −1 then one of the numbers rnr or rn−1r is in ω(G), a contradiction.
If (u − 1)/2 is divisible by 4, then 4r ∈ ω(G), a contradiction. Hence, u ≡ 1 (mod4), and there are no
elements of order 4 in S. We have 4 ∈ ω(K).
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Let H be a Hall {2, r}-subgroup of K and N = NG(H). By the Frattini argument, G = NK, and so
N/(N ∩K) � G/K. An element of order rn in N acts fixed-point-freely on H ; therefore H is nilpotent by
Thompson’s theorem. This means that 4r is in ω(H), a contradiction. The proposition is proved.

If S is a group of type E8, G2, or 2G2 over a field of odd characteristic, then 2 is adjacent to the
characteristic in GK(S). Since kn and kn−1 are in ω(S) and have no divisors adjacent to 2 in GK(S),
each of these numbers divides the order of some maximal torus of S. Orders of maximal tori for the groups
under consideration are stated in [19, Lemma 1.3].

PROPOSITION 2. A group S is not isomorphic to E8(u), where u is odd.
Proof. In [19], based on the adjacency criterion outlined in [19, Props. 2.5, 3.2, and 4.5], an independent

vertex set of GK(E8(u)) consisting of 11 vertices was constructed and the conclusion was made that the
independence number of this graph is equal to 11. But [19, Prop. 3.2] shows that there is no loss of
independency in adding a primitive prime divisor w of u5 − 1 to the set constructed. On the other hand,
GK(E8(u)) lacks in thirteen pairwise nonadjacent vertices. Thus, we need to introduce the following
amendments into [19, Table 9]: (i) enlarge the maximal independent set of vertices in the graph GK(E8(u))
by adding w, and (ii) change the value of t(E8(u)) from 11 to 12.∗

Suppose S � E8(u) and u is odd. Since t(S) = 12 and [n+1
2 ] = t(L) � t(S) + 1, it follows that n � 26.

Orders of maximal tori in S whose divisors may be nonadjacent to 2 are u8 − u4 + 1, u8 − u6 + u4 − u2 + 1,
u8 + u7 − u5 − u4 − u3 + u + 1, and u8 − u7 + u5 − u4 + u3− u + 1. Each of the orders does not exceed 2u8;
hence kn, kn−1 � 2u8.

On the other hand, E8(u) includes a cyclic torus of order u8 − 1; so u8 − 1 ∈ ω(L). In particular,
32 ∈ ω(L)\µ(L). By Lemma 4, multiples of 32 can arise in ω(L) only if they divide expressions of the form
2m[qn1 − 1, . . . , qns − 1], where m � 5 and 2m−1 + 1 + n1 + . . . + ns = n. Thus, if n � 17 then either there
are no elements of order 32 in L, or 32 ∈ µ(L); for larger n, every element of ω(L), which is a multiple of
32, does not exceed 32(qn−17 − 1). Hence, n � 18 and u8 � 32qn−17. Substituting the last estimate into
the inequality in the previous paragraph, we conclude that kn, kn−1 � 64qn−17.

At the moment we show that at least one of the inequalities above leads to a contradiction, by examining
every n from 18 to 26 separately. In each case we make use of the formula for greatest primitive divisors
given in Lemma 6.

If p is an odd prime then

kpt =
qpt − 1

(qpt−1 − 1)(q − 1, p)
� qpt−1(p−1)

(q − 1, p)
.

Thus, for n = 18, the condition that k17 � 64q implies that q16 � 64q(q − 1, 17). In a similar way, we
derive q18 � 64q3(q − 1, 19) for n = 19, 20, q22 � 64q7(q − 1, 23) for n = 23, 24, and q20 � 64q9(q − 1, 5) for
n = 25, 26. The resulting inequalities are impossible in all cases.

Using estimates k20 = q10+1
(q2+1)(q2+1,5) � q8

2 and k22 = q11+1
(q+1)(q+1,11) � q10

2(q+1,11) , we infer that q8 �
128q4(q2 + 1, 5), for n = 21, and q11 � 64q5(q + 1, 11) for n = 22. These inequalities are false for q > 2.
The proposition is proved.

PROPOSITION 3. A group S is not isomorphic to G2(u), where u is odd.
Proof. Let S � G2(u) and u be odd. Then t(S) = 3; so t(L) � 4 and n � 8. Orders of maximal tori

of S that have prime divisors nonadjacent to 2 in GK(S) are equal to u2 + u + 1 and to u2 − u + 1 and,
consequently, do not exceed 2u2. Thus, kn, kn−1 � 2u2.

∗We are grateful to W. Shi and H. He who drew our attention to this fact.
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There is a cyclic torus of order u2 − 1 in S. Therefore, u2 − 1 ∈ ω(L). Notice that u2 − 1 is divisible
by 8. Multiples of 8 can arise in ω(L) only if they divide expressions of the form 2m[qn1 − 1, . . . , qns − 1],
where m � 3 and 2m−1 + 1 + n1 + . . . + ns = n. Hence, u2 � 8qn−5. Thus, kn, kn−1 � 16qn−5. From these
inequalities we conclude that q4 � 16q(q − 1, 5), for n = 5, 6, and q6 � 16q3(q − 1, 7) for n = 7, 8. The
resulting inequalities are false for q > 2. The proposition is proved.

PROPOSITION 4. A group S is not isomorphic to 2G2(u).
Proof. Suppose S � 2G2(u), where u = 32l+1 > 3. Then t(S) = 5, and so n � 12. Orders of maximal

tori in S are equal to u − 1, u + 1, u −
√

3u + 1, and u +
√

3u + 1 and, consequently, do not exceed 2u.
Thus, kn, kn−1 � 2u.

The number u+1 is in ω(L) and is a multiple of 4; so it does not exceed 4(qn−3−1). Hence, u � 4qn−3.
Thus, kn, kn−1 � 8qn−3.

Suppose n = 5. Then k5 � 8q2, and consequently q4 � 8q2(q − 1, 5). If n = 7, then k7 � 8q4 entails
q6 � 8q4(q − 1, 5). In both cases we arrive at a contradiction with the fact that q > 2.

Let n = 6. It follows from k5 � 8q3 that q4 � 8q3(q − 1, 5), whence q ∈ {4, 8, 16}. Suppose q = 4 or
q = 16. Then k5 is a multiple of 11. This means that 11 is in ω(S) and should therefore divide the order
of a maximal torus in S. The order of every maximal torus in S divides u6 − 1; hence 11 divides u6 − 1.
On the other hand, 11 divides u10 − 1. Consequently, 11 divides u2 − 1 and is therefore adjacent to 2 in
GK(S), a contradiction. If q = 8, then k5 is a multiple of 151, and hence u6 − 1 is divisible by 151. Since
350− 1 is a multiple of 151, u2− 1 is divisible by 151, and so 151 is adjacent to 2 in GK(S). Contradiction.

Let n = 8. From k7 � 8q5, it follows that q6 � 8q5(q − 1, 7), which yields q ∈ {4, 8}. For q = 4, 8, the
number k7 is a multiple of 127; therefore 127 must divide u6 − 1. The multiplicative order of 3 modulo 127
is 126, which implies u � 321. Thus, 321 � u � 4q5 � 4 · 85 � 312. Contradiction.

Let n � 9. Then 16 ∈ ω(L). Since the 2-period of S is equal to 4 and the order of OutS is odd, K

contains an element of order 4. A Borel subgroup of S is a Frobenius group with kernel of order u3 and
cyclic complement of order u−1. Applying Lemma 3 with t = rn and s = rn−1, we see that 2(u−1) ∈ ω(G).

Denote rn−2 by r. Suppose r ∈ π(G/S). Then G admits a field automorphism ϕ of S of order r.
The centralizer CS(ϕ) is isomorphic to 2G2(u1/r), which contains an element of order 4; hence 4r ∈ ω(G).
Contradiction.

Suppose r ∈ π(S). The fact that r is not equal to 3 implies that r divides the order of one of the
maximal tori. Since u +

√
3u + 1 is divisible by one of the numbers rn or rn−1 and u−

√
3u + 1 is divisible

by the other, while u+1 is a multiple of 4, it follows that r divides u−1. Consequently, 4r divides 2(u−1),
which belongs to ω(G). Contradiction.

Suppose r ∈ π(K). Let H be a Hall {2, r}-subgroup of K and N = NG(H). By the Frattini argument,
G = NK, and so N/(N ∩K) � G/K. An element of N of order rn acts fixed-point-freely on H , and hence
H is nilpotent by Thompson’s theorem. This means that 4r is in ω(H), a contradiction. The proposition
is proved.

Thus, S � L and L ≤ G/K. The preimage of L in G is isospectral to L, and therefore K is trivial by
[12, Cor. 1]. To complete the proof of the theorem, it remains to apply [8, Thm. 2].
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