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Abstract. The spectrum ω(G) of a finite group G is the set of element
orders of G. Let L be the projective special linear group Ln(2) with
n ≥ 3. First, for all n ≥ 3 we establish that every finite group G
with ω(G) = ω(L) has a unique non-abelian composition factor and this
factor is isomorphic to L. Second, for some special series of integers n
we prove that L is recognizable by spectrum, i. e. every finite group G
with ω(G) = ω(L) is isomorphic to L.

Introduction

Throughout this paper, all groups are assumed to be finite and all simple groups
are non-abelian. Some interesting problems in finite group theory are related to
arithmetical characteristics of the group. For example for a group G we can consider
the set π(G) of prime divisors of |G| and the set ω(G) of orders of all elements in
G. We call this last set the spectrum of G, motivating it as follows.

We recall that for an element A ∈ GL(n,C), we have

Spec(A) = {λ ∈ C : λ is an eigenvalue of A}.
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We consider the regular representation of a finite group G over C. Then G can
be viewed as a subgroup of GL(|G|,C) and we can consider

Spec(G) =
⋃

g∈G

Spec(g).

It can be easily seen that

Spec(G) = {λ ∈ C : λm = 1 for m ∈ ω(G)}.
Thus ω(G) and Spec(G) are uniquely determined one by the other and the

definition of ω(G) as the spectrum of G is therefore consistent.
If Ω is a non-empty subset of the set of natural numbers, h(Ω) stands for the

number of isomorphism classes of finite groups G with ω(G) = Ω and put h(G) =
h(ω(G)). We say that G is recognizable (by spectrum) if h(G) = 1. The group G is
almost recognizable (resp. nonrecognizable) if 1 < h(G) < ∞ (resp. h(G) = ∞). A
list of simple groups recognizable, almost recognizable or nonrecognizable by their
spectrum is given in [15, 16].

In the present paper, we focus our attention on the projective special linear
groups Ln(2). We have good evidence that these groups are recognizable by their
spectrum and therefore we put forward the following conjecture.
Conjecture. The projective special linear groups Ln(2) are recognizable by their
spectrum for all integers n ≥ 3.

It has already been proved that the conjecture is true for n ≤ 8 and n = 11, 12
(see [19, 20, 5, 6, 18, 17]). In [13] the conjecture is proved for the linear groups
Lp(2), where p is an odd prime such that 2 is a primitive root modulo p (note that
this result implies recognizability of L13(2)). In [7, 8] the groups Ln(2k), where
n = 2m ≥ 16 and k is an arbitrary natural number, are shown to be recognizable;
thus the conjecture also holds for n = 2m ≥ 16.

In this paper we first establish that for every n ≥ 3 the projective special linear
group L = Ln(2) has the following property. If G is a finite group with the same
spectrum as L, then G has a unique non-abelian composition factor and this factor
is isomorphic to L; that is, L is quasirecognizable by spectrum.

Theorem 1. The projective special linear group Ln(2) is quasirecognizable by spec-
trum for all integers n ≥ 3.

Second, we prove the conjecture for some new series of integers n. In particular,
we prove it for n = 9, 10, 14, 15. Thus Conjecture holds true for all n < 17.

Theorem 2. Let p be a prime such that 2 is a primitive root modulo p and m be
a natural number such that 2m − 1 ≥ p. The projective special linear group Ln(2)
is recognizable by spectrum for n = 2m + p − 1. If, in addition, 3 does not divide
p− 1, then the projective special linear group Ln(2) is recognizable by spectrum for
n = 2m + p + 2 and n = p + 3.

1. Preliminaries

Our notation is standard. If n is a natural number, π is a set of primes, then by
π(n) we denote the set of all prime divisors of n, and by nπ we denote the maximal
divisor t of n such that π(t) ⊆ π. Note that for a finite group G, π(G) = π(|G|) by
definition. For a set of integers X, by lcm X we denote the least common multiple
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of elements from X. By [x] we denote the integer part of x, i. e., the greatest integer
that is less than or equal to x.

The spectrum ω(G) of a group G determines the prime graph (or Gruenberg —
Kegel graph) GK(G) whose vertex set is π(G) and two vertices p and q are adjacent
if and only if pq ∈ ω(G). Denote by s(G) the number of connected components of
GK(G).

Suppose that S is a simple non-abelian group with s(S) > 1 other than L4(3),
U4(3), and S4(3), and G is a finite group with ω(G) = ω(S). As follows from the
Gruenberg-Kegel theorem on groups with disconnected prime graphs [23] and the
main result of [1], the group G has a unique non-abelian composition factor H
and s(H) ≥ s(G), in particular s(H) > 1. Simple groups H with s(H) > 1 were
classified in [23] and [11]. So this classification may be used in proving that H ' S.

By [11], we have

s(Ln(2)) =





1 if n 6= p, p + 1;

2 if n = p or p + 1,

where p > 3 is a prime. Thus the class of linear groups over field of order 2 to which
above technique can be applied is quite restricted. A similar situation arises for
several families of simple groups. Recently a number of papers appeared, concerning
the structure of G with ω(G) = ω(S) under weaker conditions on the source group
S. First, it is shown that G is generally insoluble.

Lemma 1 ([12, Theorem 2]). Let S be a finite non-abelian simple group other than
L4(3), U4(3), S4(3), and Alt10. Suppose that G is a finite group with ω(G) = ω(S).
Then G is insoluble.

More constructive result, generalizing in a certain way the Gruenberg-Kegel
theorem, was obtained in [21]. The set of vertices of a graph is called independent
if vertices of this set are pairwise nonadjacent. Following [21], we denote by ρ(G)
(by ρ(r,G) where r ∈ π(G) ) some independent set in GK(G) (containing r) with
maximal number of vertices. Moreover, we define the independence number t(G)
of G as |ρ(G)| and the r-independence number t(r,G) of G as |ρ(r,G)|.
Lemma 2 ([21]). Let G be a finite group satisfying two conditions:

(a) there exist three primes in π(G) which are pairwise nonadjacent in GK(G),
that is t(G) ≥ 3;

(b) there exists an odd prime in π(G) which is nonadjacent to prime 2 in GK(G),
that is t(2, G) ≥ 2.

Then there exists a finite non-abelian simple group S such that S ≤ G = G/K ≤
Aut(S) for maximal normal soluble subgroup K of G. Furthermore, t(S) ≥ t(G)−1
and one of the following statements holds:

(1) S ' Alt7 or L2(q) for some odd q and t(S) = t(2, S) = 3.
(2) For every prime p in π(G) nonadjacent to 2 in GK(G) the Sylow p-subgroup

of G is isomorphic to the Sylow p-subgroup of S. In particular, t(2, S) ≥ t(2, G).

Remark that Condition (a) in the statement of above theorem may be replaced
by a weaker condition that G is insoluble (see [21]). The information about values
of independence and 2-independence numbers of finite simple groups obtained in
[22] together with this remark imply the following corollary of Lemma 2.



ON RECOGNITION OF THE PROJECTIVE SPECIAL LINEAR GROUPS OVER THE BINARY FIELD147

Lemma 3 ([22, Corollary 7.2]). Let S be a finite non-abelian simple group other
than L3(3), U3(3), S4(3), Alt10 and Altn with n satisfying {r | n − 3 ≤ r ≤
n, r is prime} = ∅. Suppose that G is a finite group with ω(G) = ω(S). Then the
conclusion of Lemma 2 holds true for G.

Above results were applied to the recognition problem in [7, 8], where a series of
linear groups with connected prime graph were proved to be recognizable.

The following number-theoretic result is of fundamental importance for investi-
gations of the prime graph structure of the finite simple groups of Lie type.

Lemma 4 (Zsigmondy[24]). Let q and m be natural numbers greater than 1. There
exists a prime divisor r of qm − 1 such that r does not divide qi − 1 for all i < m,
except for the following cases:

(a) m = 6 and q = 2;
(b) m = 2 and q = 2l − 1 for some natural number l.

Such a prime r is called a primitive prime divisor of qm − 1. If q is fixed, we
denote by rm any primitive prime divisor of qm − 1 (obviously, qm − 1 can have
more than one primitive prime divisor). It is also convenient to use the following
notation. If q is a natural number, r is an odd prime and (q, r) = 1, then by e(r, q)
we denote the smallest natural number m such that qm ≡ 1 (mod r). Thus for a
primitive prime divisor r of qm − 1 we have e(r, q) = m.

The last lemma describes the spectrum of Ln(2).

Lemma 5 ([13, Lemma 1]). Let n =
∑N

i=1 kidi, where k1, k2, . . . , kN , d1, . . ., dN

are natural numbers and n ≥ 3. Let e = lcm{2d1 − 1, 2d2 − 1, . . . , 2dN − 1} and
m be the smallest integer with 2m ≥ max{k1, k2, . . . , kN}. Then 2me ∈ ω(Ln(2)).
Moreover, every element of ω(Ln(2)) is a divisor of a such product.

2. Proof of Quasirecognizability for Ln(2)

In this paragraph we establish Theorem 1. Since Ln(2) where n ≤ 8 or n =
11, 12, 13 are proved to be recognizable we can assume that either n = 9, 10 or
n ≥ 14.

We consider the classical groups of Lie type and denote them according to
[3]. Sometimes we use notations Aε

l (q), Dε
l (q), and Eε

6(q), where ε ∈ {+,−} and
A+

l (q) = Al(q), A−n (q) = 2Al(q), D+
l (q) = Dl(q), D−

l (q) = 2Dl(q), E+
6 (q) = E6(q),

E−
6 (q) = 2E6(q). We denote the alternating group of degree l by Altl to avoid

confusing with groups of type Al.
Let L = Ln(2) = An−1(2) where n ≥ 9. By [22, §8] we have ρ(2, L) =

{2, rn, rn−1}, t(2, L) = 3, t(L) = [(n − 1)/2] = 4 for n = 9, 10 and t(L) =
[(n + 1)/2] ≥ 7 for n ≥ 14. Furthermore, Lemma 5 implies that all elements
of ω(L) do not exceed 2n − 1.

Let G be a finite group with ω(G) = ω(L) and K be the maximal normal soluble
subgroup of G. By Lemma 2 there is a finite non-abelian simple group S such that
S ≤ G = G/K ≤ Aut(S). Moreover t(S) ≥ t(G)− 1 and either rn, rn−1 ∈ π(S) or
S ' Alt7, A1(q) where q is odd.

(1) First we consider the exceptions. Let S ' Alt7 or S ' A1(q) where q = pk >
3 is odd. Since t(S) = 3 it follows that t(L) ≤ 4 and therefore n = 9, 10. By the
criterion of adjacency from [22], primes r5 = 31, r7 = 127, r8 = 17, and r9 = 73
are pairwise nonadjacent in GK(G). As follows from [21, Proposition 3], at least
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three of these numbers belong to π(S). Thus S 6' Alt7. Put ρ = {r5, r7, r8, r9} and
ρ′ = ρ ∩ π(S). Since ρ′ is an independent set of GK(S) with maximal number of
vertices, results of [22, Propositions 2.1,3.1,4.1] give that ρ′ = {p, r′1, r

′
2} where r′1

divides q − 1 and r′2 divides q + 1. Thus p ∈ ρ′ and ρ′ \ {p} ⊆ π(q2 − 1). Therefore
π(q2 − 1) ∩ ρ contains two elements. On the other hand, q = pk must satisfy the
inequality (q+1)/2 ≤ 210−1, otherwise ω(S) 6⊆ ω(L). Hence if p = 17 or 31 then k ≤
2; if p = 73 or 127 then k = 1. We calculate that π(q2 − 1) ⊆ {2, 3, 5, 7, 13, 29, 37}
for all possibilities of q. Therefore π(q2 − 1) ∩ ρ = ∅; a contradiction.

Thus the second statement of Lemma 2 holds and therefore rn and rn−1 divide
|S|. Moreover, rn and rn−1 are nonadjacent to 2 in GK(S). Therefore t(2, S) ≥ 3.
The simple groups satisfying this condition are described in [22], and we consider
them consequently.

(2) S is a sporadic group. Since rn, rn−1 ∈ π(S) there must be two odd primes
p1 and p2 in ρ(2, S) such that e(p1, 2)/e(p2, 2) = n/(n + 1). It is false when n ≥ 7
and n 6= 11 (see [22, Table 2] or [4]).

(3) S ' Altn′ . There are two odd primes among numbers n′, n′−1, n′−2, n′−3;
these are rn and rn−1. By [2, Proposition 7] we have 4 · rn−2 6∈ ω(L), although
2 ·rn−2 ∈ ω(L). Suppose that rn−2 divides the order of S. Since S does not contain
an element of order 4 ·rn−2, it follows that n′ ≥ rn−2 ≥ n′−5. Thus, there are three
odd primes among six consecutive numbers n′, . . . , n′ − 5, which implies n′ = 7 or
n′ = 8. Hence either n′ = 7, 8 or rn−2 ∈ π(K).

If n′ = 7, 8 we proceed as in (1). If n′ ≥ 9 and rn−2 ∈ π(K) we obtain a
contradiction by literally repeating the arguments from the part of [7, § 2] which
concerns the alternating groups.

To consider the simple groups of Lie type, it is convenient to separate the case
when n = 9, 10 from other cases. First we suppose that n ≥ 14. Then S must
satisfy t(2, S) ≥ 3 and t(S) ≥ t(G)−1 ≥ 6. We obtain such groups from [22, Tables
4–9].

(4) S is a group of Lie type over field of order q = pk, p is odd.
Let S ' E8(q), E7(q) or Eε

6(q). If S ' E8(q) then t(S) = 11 therefore n ≤ 24.
Since q8−1 must be less than or equal to 224−1, we have that q ≤ 8. Thus q = 3, 5
or 7. If S ' E7(q) then t(S) = 7 therefore n ≤ 16. Since (q7 − 1)/2 ≤ 216 − 1,
we have that q = 3, 5. If S ' Eε

6(q) then t(S) ≤ 6. Therefore n ≤ 14 and
(q6 − ε1)/(3, q − ε1) ≤ 214 − 1, whence q = 3, 5. Whatever group S we consider,
either a primitive prime divisor r′9 of q9 − 1 or a primitive prime divisor r′18 of
q18 − 1 belongs to π(S) ⊆ π(L). Suppose that r′9 ∈ π(L). For each q ∈ {3, 5, 7} we
calculate r′9 and establish that e(r′9, 2) ≥ 36. Hence the condition r′9 ∈ π(Ln(2))
implies n ≥ 36, which contradicts to above inequality n ≤ 24. The case r′18 ∈ ω(L)
can be done similarly.

Let S ' Aε
n′−1(q), where n′2 = (q − ε1)2 > 2. The inequality t(S) ≥ t(G) − 1

together with t(S) = [(n′ + 1)/2], t(G) = [(n + 1)/2] implies n′ ≥ n− 3. The group
S contains an element of order qn′−2 − 1, and therefore so does L. Since every
element of ω(L) does not exceed 2n − 1, we have 2n − 1 ≥ qn′−2 − 1. On the other
hand, qn′−2 ≥ qn−5 ≥ 3n−5 > 2n for all n ≥ 14; a contradiction.

Let S ' Dn′(q), where n′ is odd and q ≡ 5 (mod 8). The inequality t(S) ≥
t(G)−1 together with t(S) = [(3n′+1)/4], t(G) = [(n+1)/2] implies n′ ≥ (2n−5)/3.
The group S contains an element of order (qn′−1)/4 and therefore (qn′−1)/4 ≤ 2n−



ON RECOGNITION OF THE PROJECTIVE SPECIAL LINEAR GROUPS OVER THE BINARY FIELD149

1. Whence qn′ ≤ 2n+2. This is impossible, since qn′ ≥ q(2n−5)/3 ≥ 5(2n−5)/3 > 2n+2

for all n ≥ 14.
Let S ' 2Dn′(q), where n′ is odd and q ≡ 3 (mod 8). Since t(S) = [(3n′+4)/4] =

[(3n′+3)/4], it follows from t(S) ≥ t(G)−1 that n′ ≥ (2n−7)/3. Since S contains
an element of order (qn′ + 1)/4, we have (qn′ + 1)/4 ≤ 2n − 1. Whence qn′ ≤ 2n+2

and therefore q(2n−7)/3 ≤ 2n+2. The last inequality holds true only if q = 3 and
n ≤ 100.

Suppose S ' 2Dn′(3) and 9 ≤ n ≤ 100. Since n′ ≥ 5 the group S contains an
element of order (35 +1)/4 = 61. Therefore 61 ∈ π(L) and n ≥ e(61, 2) = 60. Since
n ≥ 60, we have n′ ≥ (2n − 7)/3 > 37. Therefore S contains an element of order
r′36 = 757. Since 757 ∈ π(L), we have n ≥ e(757, 2) = 756; a contradiction.

(5) S is a group of Lie type over field of order q = 2k. Observe that S is not a
simple Suzuki or Ree group, otherwise t(S) < 6.

Recall that rn and rn−1 divide |S|. Put en = e(rn, 2k) and en−1 = e(rn−1, 2k).
Since rn divides 2enk − 1 we have that n divides enk. By the same reason n − 1
divides en−1k. Suppose that enk > n. Then prime r with e(r, 2) = enk divides the
order of S and does not divide the order of L. Therefore r ∈ ω(S) \ ω(G), which is
impossible. Thus enk = n. Suppose that en−1k > n−1. Then en−1k ≥ 2(n−1) > n
and the similar argumentation leads us to a contradiction. Thus en−1k = n− 1.

If S is a classical group of Lie type other than L then we obtain a contradiction
by literally repeating the arguments from the part of [7, § 2] which concerns the
corresponding groups.

Let S ' E8(2k). By [22, Proposition 3.2] an odd prime r is nonadjacent to 2 in
GK(S) if and only if e(r, 2k) ∈ {15, 20, 24, 30}. Therefore en, en−1 ∈ {15, 20, 24, 30}.
On the other hand, en/en−1 = n/(n − 1). These two conditions imply n ≤ 6; a
contradiction.

We consider the groups E7(2k), Eε
6(2k), F4(2k), and G2(2k) in the similar way.

Namely, by solving the equation en/en−1 = n/(n− 1) for each group, we find that
all solutions are less than 14.

(6) Now we suppose that L = L9(2) or L = L10(2). Since ω(S) ⊆ ω(L) and
r9 = 73 ∈ π(S), we have {73} ⊆ π(S) ⊆ π(L10(2)) = {2, 3, 5, 7, 11, 17, 31, 73, 127}.

Let S be a classical group of Lie type of rank n′ (or n′ − 1 if S of type Aε)
over field of order q = pk where p ∈ π(L10(2)). If p = 2 and S 6' L we obtain
a contradiction as in (5). So we can assume that p is odd. In view of conditions
t(2, S) ≥ 3 and t(S) ≥ 3 we have n′ ≥ 4. Therefore q = 3, 5, 7, 9, or 11, otherwise
there is an element in S of order greater than 210 − 1. On the other hand, either a
primitive prime divisor of q4 − 1 or a primitive prime divisor of q4 + 1 belongs to
ω(S). It follows that q = 3 or 7. Since 73 ∈ π(S) and e(73, 7) = 24, e(73, 3) = 12,
we infer that n′ ≥ 12 for groups of type Aε and n′ ≥ 6 for other classical groups.
Thus q5 + 1 divides |S| and therefore a primitive prime divisor of q10 − 1 belongs
to π(S). But primitive prime divisors of 710−1 and 310−1 do not lie in π(L10(2)).

Let S be an exceptional group of Lie type over field of order q.
If q is odd, then S can be isomorphic to E8(q), E7(q), Eε

6(q), G2(q), or 2G2(32k+1).
The first three types of groups have been considered in (4) without using the as-
sumption that n ≥ 14.

Let S ' G2(q), q = pk is odd. If q > 31 then 210 − 1 < q2 + q + 1 ∈ ω(S). Thus
we can assume that q ≤ 31. If n = 9 then 17 ∈ π(S) and so 17 ∈ π(p(q6 − 1)). If
p = 17 then 307 = 172+17+1 ∈ π(S)\π(L). Thus q6 ≡ 1 (mod 17), whence q2 ≡ 1
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(mod 17) and therefore q ≡ ±1 (mod 17). This implies q ≥ 33; a contradiction. If
n = 10 then 11 ∈ π(S) and so 11 ∈ π(p(q6 − 1)). If p = 11 then prime divisor 19 of
112 + 11 + 1 lies in π(S) \ π(L). Therefore q ≡ ±1 (mod 11). Thus either q ≥ 32
or q = 23. Since q ≤ 31, it follows that q = 23. Since 73 6∈ π(G2(23)), we have a
contradiction.

Let S ' 2G2(q), where q = 32k+1. It follows from 73 ∈ π(S) that 73 divides
q6 − 1 = 36(2k+1) − 1. Therefore e(73, 3) = 12 divides 6(2k + 1); a contradiction.

If q is even and S is not a Suzuki or Ree group, we use a technique described in
(5). Solving the equation en/en−1 = n/(n− 1) we find that S ' E6(q) and n = 9.
Since 13 ∈ ω(S) \ ω(L), we have a contradiction.

Let S ' 2B2(q), where q = 22k+1 > 2. If k > 4 then 210 − 1 < q − 1 ∈ ω(S),
so we can assume that k ≤ 4. Since rn, rn−1 ∈ π(S), we have that rn, rn−1 divide
q4 − 1 = 24(2k+1) − 1 and therefore n, n− 1 divide 4(2k + 1); which contradicts to
inequalities n(n− 1) ≥ 72 and 4(2k + 1) ≤ 36.

Let S ' 2F4(q), q = 22k+1 > 2. Again we can assume that k ≤ 4. Since
rn, rn−1 ∈ π(S), we have that rn, rn−1 divide q6 − 1 = 26(2k+1) − 1 and therefore
n, n − 1 divide 6(2k + 1); which contradicts to inequalities n(n − 1) ≥ 72 and
6(2k + 1) ≤ 54.

Thus S ' L and Theorem 1 is proved.

3. Proof of Theorem 2

Let G be a finite group with ω(G) = ω(L) and K be the maximal normal soluble
subgroup of G. We conclude from Theorem 1 that G = G/K is an almost simple
group with unique non-abelian composition factor isomorphic to L. Thus we can
assume that L ≤ G ≤ Aut(L).

Suppose that G 6= L. Since Out(L) = 2, we infer that G = Aut(L) = L〈γ〉
where γ is a graph automorphism. Consider the centralizer CL(γ) of γ in L. If
n is odd then CL(γ) contains a subgroup isomorphic to B(n−1)/2(2). Therefore
rn−1 · 2 ∈ ω(G) ⊆ ω(G); a contradiction. If n is even then CL(γ) contains a
subgroup isomorphic to Cn/2(2). Therefore rn · 2 ∈ ω(G) ⊆ ω(G); a contradiction.
Thus G = L.

Suppose that K 6= 1. Then there exists a prime r such that Or(K) 6= K. Denote
by G̃ and K̃ the factor groups G/Or(K) and K/Or(K) respectively. The group K̃

is a nontrivial r-group. Let Φ(K̃) be the Frattini subgroup of K̃. Denote by Ĝ and
K̂ the factor groups G̃/Φ(K̃) and K̃/Φ(K̃) respectively. Since G/K ' Ĝ/K̂, it is
sufficient to proof that ω(Ĝ) 6⊆ ω(L). Therefore we may assume that G = Ĝ and
K = K̂ is a nontrivial elementary abelian r-group.

Suppose that C = CG(K) 6= K. Since C is normal in G and L is simple, C/K
contains L. Therefore r · ω(L) ⊆ ω(C) ⊆ ω(G) = ω(L). However by [7, Lemma
4(3)] there is r′ ∈ π(L) such that r · r′ 6∈ ω(L). Therefore r · r′ ∈ r · ω(L) \ ω(L); a
contradiction. Thus C = K and L acts faithfully on K.

Thus we can apply results concerning orders of elements arising when a group
acts faithfully on an elementary abelian group.

Lemma 6 ([14, Lemma 1]). Let G be a finite group, KCG, and G/K be a Frobenius
group with kernel F and cyclic complement C. If (|F |, |K|) = 1 and F does not lie
in KCG(K)/K, then r · |C| ∈ ω(G) for some prime divisor r of |K|.
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Lemma 7 ([7, Lemma 5]). Let L be a finite simple group Ln(q), d = (q − 1, n).
(1) If there exists a primitive prime divisor r of qn− 1, then L contains a Frobe-

nius subgroup with kernel of order r and cyclic complement of order n;
(2) L contains a Frobenius subgroup with kernel of order qn−1 and cyclic com-

plement of order qn−1−1
d .

Suppose that r 6= 2. Then we consider the Frobenius subgroup F of L from
Lemma 7(2). Applying Lemma 6 to the preimage of F in G we obtain that r ·
(2n−1−1) ∈ ω(G). On the other hand, Lemma 5 implies that r · (2n−1−1) 6∈ ω(L);
a contradiction.

Thus we can assume that r = 2. Observe that the above argumentation does
not require a special form of n, as declared in the statement of the Theorem. This
form is crucial when K is an elementary abelian 2-group. More precisely, we obtain
the following statement.

Proposition 1. Let L = Ln(2), n ≥ 3. If a finite group G is a minimal coun-
terexample to the assertion: ω(G) = ω(L) ⇒ G ' L, then G is isomorphic to an
extension K ·L where K is an elementary abelian 2-group on which L acts faithfully.

Now we fix our attention on groups Ln(2) with n satisfying the conditions of
Theorem 2.

Lemma 8. Let p be a prime such that 2 is a primitive root modulo p and n =
2m + p− 1, m ≥ 1. If L = Ln(2), then 2m+1p 6∈ ω(L).

Proof. Suppose that 2m+1p ∈ ω(L). By Lemma 5 there exist natural numbers
k1, . . . , kN and d1, . . . , dN with

∑N
i=1 kidi = n satisfying two conditions: (a) e =

lcm{2d1 − 1, . . . , 2dN − 1} is divisible by p; (b) the smallest integer l with 2l ≥
max{k1, . . . , kN} is greater than or equal to m+1. Since p divides e, it follows that
p divides 2di−1 for some di. By hypothesis, 2 is a primitive root modulo p, therefore
di is divisible by p − 1. On the other hand, from l ≥ m + 1 we deduce that there
exists j such that kj > 2m. If i = j then n ≥ kidi > 2m(p− 1) ≥ 2m + p− 1 = n;
a contradiction. If i 6= j then n ≥ kj + di > 2m + p− 1 = n; a contradiction. The
lemma is proved. ¤
Lemma 9. Let p be a prime such that 2 is a primitive root modulo p, n = 2m+p−1,
2m − 1 ≥ p and L = Ln(2). Suppose that K is an elementary abelian 2-group on
which L acts faithfully. Then there exists an element of order 2m+1p in KL and
ω(KL) 6= ω(L).

Proof. The group L contains two subgroups A ' Lp(2) and B ' Ln−p(2) such that
A×B is a subgroup of L. By Lemma 7(1) there is a Frobenius subgroup F = 〈x, y〉
of A with |x| = p, |y| = rp, where rp is a primitive prime divisor of 2p − 1. The
group F acts on M = [K, y] in such a way that CM (y) = 1 and CM (x) 6= 1. In
particular,

K0 = CK(x) 6≤ CK(y). (∗)
It is easy to see that CL(x) = 〈x〉 ×N where N ' Ln−p+1(2) = L2m(2) and N

acts on K0. If this action is not faithful then N centralizes K0 and hence CL(x)
centralizes K0. It is obvious that B ≤ N contains a subgroup F z which is a
conjugate of F in L. Since |CK(xz)| = |K0| and K0 ≤ CK(N) ≤ CK(xz), we see
that CK(xz) = K0 and hence CL(xz) centralizes K0. Since y ∈ CL(xz), then y
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centralizes K0. This contradicts (∗). So N acts faithfully on K0. By Lemma 7(1),
there exists a Frobenius subgroup in N of type r2m : 2m. By Lemma 6 we have
2m+1 ∈ ω(K0N). Hence there is an element of order 2m+1p in KL. On the other
hand, by Lemma 8 there is no element of order 2m+1p in L, thus concluding the
proof. ¤
Lemma 10. Let p be a prime such that 2 is a primitive root modulo p, 3 does not
divide p− 1, n = 2m + p− 1, 2m − 1 ≥ p or n = p and L = Ln+3(2). Let K be an
elementary abelian 2-group on which L acts faithfully. Then ω(KL) 6= ω(L).

Proof. Using [9] or [10] it is easy to verify that every element of order 7 from
L5(2) centralizes some nontrivial element in every irreducible L5(2)-module over
a field of characteristic 2 and so the same is true for every L5(2)-module over a
field of characteristic 2. If x is an element of order 7 of L contained in a subgroup
isomorphic to L3(2), then its centralizer K0 = CK(x) in K is not trivial. It is easy
to see that CL(x) = 〈x〉 × N where N ' Ln(2) and N acts on K0. If this action
is not faithful, then N centralizes K0. At first, assume that 3 does not divide n.
Using Lemma 5 and arguments as in proof of Lemma 8, we obtain that L does
not contain an element of order 2 · 7 · rn where rn is a primitive prime divisor of
2n− 1. On the other hand, since N centralizes K0, there exists an element of order
2 · rn in K0N , which implies that there is an element of order 2 · 7 · rn in KL. So
ω(KL) 6= ω(L) and the lemma is proved in this case. If 3 divides n then using
Lemma 5 we obtain that 2 · 7 · rn−1 6∈ ω(L). But K0N contains an element of order
2 · rn−1, and so KL contains an element of order 2 · 7 · rn−1. Thus ω(KL) 6= ω(L)
again.

Therefore we can suppose that N acts on K0 faithfully. We first suppose that
n = 2m + p − 1. By Lemma 9 there is an element of order p · 2m+1 in K0N
which implies that there is an element of order 7 · p · 2m+1 in KL. Suppose that
7 · p · 2m+1 ∈ ω(Ln+3(2)). Since 7 is a primitive prime divisor of 23 − 1, p is a
primitive prime divisor of 2p−1 − 1, and 3 does not divide p − 1, by Lemma 5 we
have that n + 3 > 2m + (p− 1) + 3 = n + 3. Thus 7 · p · 2m+1 6∈ ω(L).

Suppose now that n = p + 3. Then by Lemma 6 and Lemma 7, there exists
an element of order p · 2 in K0N . Therefore 7 · p · 2 ∈ ω(KL). Suppose that
7 · p · 2 ∈ ω(Ln+3). Since 7 is a primitive prime divisor of 23 − 1, p is a primitive
prime divisor of 2p−1 − 1, and 3 does not divide p − 1, by Lemma 5 we have that
n + 3 ≥ 2 + (p− 1) + 3 = n + 4, a contradiction. The Lemma is thus proved. ¤

Applying Lemmas 9 and 10 we establish that K = 1 and therefore L = G.
Theorem 2 is proved.
Remark. Since 2 is a primitive root modulo p for p = 3, 5, 11, Theorem 2 yields
that groups Ln(2) are recognizable for n = 4+(3−1)+3 = 9, n = 8+(3−1) = 10,
n = 11 + 3 = 14, and n = 8 + (5 − 1) + 3 = 15. Together with previous results it
implies that groups Ln(2) are recognizable by spectrum for all n < 17.
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