
Siberian Mathematical Journal, Vol. 46, No. 2, pp. 246–253, 2005
Original Russian Text Copyright c© 2005 Vasil ′ev A. V.

ON RECOGNITION OF ALL FINITE NONABELIAN SIMPLE GROUPS
WITH ORDERS HAVING PRIME DIVISORS AT MOST 13

A. V. Vasil′ev UDC 519.542

Abstract: The spectrum of a group is the set of its element orders. We say that the problem of
recognition by spectrum is solved for a finite group if we know the number of pairwise nonisomorphic
finite groups with the same spectrum as the group under study. In this article the problem of recognition
by spectrum is completely solved for every finite nonabelian simple group with orders having prime
divisors at most 13.
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Introduction

Let G be a finite group. Denote by π(G) the set of all prime divisors of the order of G. In the present
article we consider the finite nonabelian simple groups G with the property π(G) ⊆ {2, 3, 5, 7, 11, 13}. We
denote the set of all these groups by S13. Since there exist only finitely many finite nonabelian simple
groups G with the same π(G) (see, for example, the remark after Lemma 2 in [1]), the set S13 contains
finitely many isomorphic classes of groups. Using the classification of finite simple groups it is not hard
to obtain a full list of all groups in S13. There are 55 such groups, all listed in Table 1 of this article.

The spectrum ω(G) of a finite group G is the set of all element orders of G. In other words, a
natural number n is in ω(G) if and only if there is an element of order n in G. For an arbitrary subset
ω of the set of natural numbers denote by h(ω) the number of pairwise nonisomorphic finite groups G
such that ω(G) = ω. We say that for a finite group G the recognition problem is solved if we know the
value of h(ω(G)) (for brevity, h(G)). More precisely, G is said to be recognizable by spectrum (briefly,
recognizable) if h(G) = 1, almost recognizable if 1 < h(G) < ∞, and nonrecognizable if h(G) = ∞. Since
a finite group with a nontrivial normal soluble subgroup is nonrecognizable (see [2, Lemma 1]), each
recognizable or almost recognizable group is an extension of the direct product M of nonabelian simple
groups by some subgroup of Out(M). So, of prime interest is the recognition problem for simple and
almost simple groups (recall that G is almost simple if S ≤ G ≤ Aut(S) for some nonabelian simple
group S). In the middle of the 1980s Shi found the first examples of recognizable finite simple groups
(see [3, 4]). In 1994 Shi and Brandl obtained an infinite series of recognizable simple linear groups L2(q),
q �= 9 (see [5, 6]). At present the recognition problem is solved for many finite nonabelian simple and
almost simple groups. The freshest list of those groups is available in [7]. We denote the set of groups
in this list by R. In particular, R contains all finite nonabelian simple groups with prime divisors at
most 11 (see [2]). Moreover, the comparison between R and S13 shows that there are only two groups
lying in S13 \ R; namely, the groups L6(3) and U4(5).

The main purpose of this article is to prove that the groups L6(3) and U4(5) are almost recognizable,
and thus demonstrating that the recognition problem is solved for all groups in S13.
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Theorem 1. Let G be the finite simple group L6(3) and let H be a finite group with ω(H) = ω(G).
Then H � G or H � G〈γ〉, where γ is the graph automorphism of G of order 2. In particular, h(G) = 2.

Theorem 2. Let G be the finite simple group U4(5) and let H be a finite group with ω(H) = ω(G).
Then H � G or H � G〈γ〉, where γ is the field automorphism of G of order 2. In particular, h(G) = 2.

Corollary. The recognition problem is solved for every group G in S13. The values of h(G) are
listed in the last column of Table 1.

§ 1. Preliminaries

The set ω(H) of a finite group H is closed under divisibility and determined uniquely from the
set µ(H) of those elements in ω(H) that are maximal under the divisibility relation. Furthermore, the
set ω(H) determines the Gruenberg–Kegel graph (or prime graph) GK(H) whose vertices are all prime
divisors of the order of H and two primes p and q are adjacent if H has an element of order p·q. Denote by
s(H) the number of connected components of GK(H) and by πi(H), i = 1, . . . , s(H), the ith connected
component of GK(H). If H has an even order then put 2 ∈ π1(H). Denote by µi(H) (ωi(H)) the set of
numbers n ∈ µ(H) (n ∈ ω(H)) such that every prime divisor of n belongs to πi(H).

Lemma 1.1 (Gruenberg–Kegel Theorem). If H is a finite group with disconnected graph GK(H)
then one of the following conditions holds:

(a) s(H) = 2 and H is a Frobenius group;
(b) s(H) = 2 and H = ABC where A and AB are normal subgroups of H; AB and BC are Frobenius

groups with kernels A and B and complements B and C respectively;
(c) there exists a nonabelian simple group S such that S ≤ H = H/K ≤ Aut(S) for some nilpotent

normal π1(H)-subgroup K of H and the group H/S is a π1(H)-subgroup; moreover, the graph GK(S)
is disconnected, s(S) ≥ s(H) and for every i, 2 ≤ i ≤ s(H), there is j, 2 ≤ j ≤ s(S), such that
ωi(H) = ωj(S).

Proof. See [8].

Lemma 1.2. Let S be a finite simple group with disconnected graph GK(S). Then |µi(S)| = 1
for 2 ≤ i ≤ s(S). Denote by ni = ni(S) the only element of µi(S), i ≥ 2. Then S, π1(S), and ni(S),
2 ≤ i ≤ s(S), are so as indicated in Tables 2a–2c in [7].

Proof. See [8–10].

Remark. The Gruenberg–Kegel Theorem (Lemma 1.1) and the classification of all finite nonabelian
simple groups with disconnected prime graph (Lemma 1.2) are used in most papers devoted to the recog-
nition problem. As a matter of fact, there are only two groups with connected prime graph in R. Namely,
the alternating groups A10 with h(A10) = ∞ and A16 with h(A16) = 1. Note that the group U4(5), con-
sidered in the present paper, also has a connected prime graph. Since it turns out that h(U4(5)) = 2,
this group is a first example of an almost recognizable simple group with connected prime graph.

Lemma 1.3. Let G be a Frobenius group with kernel F and complement C. Then
(a) F is nilpotent. If U is a subgroup of order pq in C, where p and q are primes (not necessary

distinct), then U is cyclic. In particular, for every odd prime p a Sylow p-subgroup of C is cyclic.
(b) Let H be a finite group, K � H, and H/K = G. If C is cyclic, (|F |, |K|) = 1, and F does not lie

in KCH(K)/K then p|C| ∈ ω(H) for some prime divisor p of K.

Proof. See [1, Lemma 1] and [11, Lemma 1].
Following [12], denote by A · B (A : B) an extension (a split extension) of a group A by a group B,

and by Am the direct product of m isomorphic copies of A. Furthermore, we denote the cyclic group of
order n simply by n whenever this does not lead to confusion. For example, the record 22 : 3 implies the
split extension of the elementary abelian 2-group of order 4 by the cyclic group of order 3.
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Table 1
Finite nonabelian simple groups with orders having prime divisors at most 13

G Order of G Out(G) s(G) h(G)

A5 22 · 3 · 5 2 3 1
L2(7) 23 · 3 · 7 2 3 1
A6 23 · 32 · 5 22 3 ∞

L2(8) 23 · 32 · 7 3 3 1
L2(11) 22 · 3 · 5 · 11 2 3 1
L2(13) 22 · 3 · 7 · 13 2 3 1

A7 23 · 32 · 5 · 7 2 3 1
L3(3) 24 · 33 · 13 2 2 ∞
U3(3) 25 · 33 · 7 2 2 ∞
L2(25) 23 · 3 · 52 · 13 22 3 1
M11 24 · 32 · 5 · 11 1 3 1

L2(27) 22 · 33 · 7 · 13 6 3 1
A8 26 · 32 · 5 · 7 2 2 1

L3(4) 26 · 32 · 5 · 7 D12 4 1
U4(2) 26 · 34 · 5 2 2 ∞
Sz(8) 26 · 5 · 7 · 13 3 4 1
L2(49) 24 · 3 · 52 · 72 22 3 1
U3(4) 26 · 3 · 52 · 13 4 2 1
M12 26 · 33 · 5 · 11 2 2 1
U3(5) 24 · 32 · 53 · 7 S3 2 ∞
A9 26 · 34 · 5 · 7 2 2 1

L2(64) 26 · 32 · 5 · 7 · 13 6 3 1
M22 27 · 32 · 5 · 7 · 11 2 4 1
J2 27 · 33 · 52 · 7 2 2 ∞

S6(2) 29 · 34 · 5 · 7 1 2 2
A10 27 · 34 · 52 · 7 2 1 ∞

U4(3) 27 · 36 · 5 · 7 D8 2 1
G2(3) 26 · 36 · 7 · 13 2 3 1
S4(5) 26 · 32 · 54 · 13 2 2 ∞
L4(3) 27 · 36 · 5 · 13 22 2 1
U5(2) 210 · 35 · 5 · 11 2 2 ∞

2F4(2)′ 211 · 33 · 52 · 13 2 2 1
A11 27 · 34 · 52 · 7 · 11 2 2 1

L3(9) 27 · 36 · 5 · 7 · 13 22 2 2
HS 29 · 32 · 53 · 7 · 11 2 3 1

S4(7) 28 · 32 · 52 · 74 2 2 ∞
O+

8 (2) 212 · 35 · 52 · 7 S3 2 2
3D4(2) 212 · 34 · 72 · 13 3 2 1

A12 29 · 35 · 52 · 7 · 11 2 2 1
G2(4) 212 · 33 · 52 · 7 · 13 2 2 1
M cL 27 · 36 · 53 · 7 · 11 2 2 1
S4(8) 212 · 34 · 5 · 72 · 13 6 2 ∞
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Table 1 (continuation)

G Order of G Out(G) s(G) h(G)

A13 29 · 35 · 52 · 7 · 11 · 13 2 3 1
S6(3) 29 · 39 · 5 · 7 · 13 2 2 2
O7(3) 29 · 39 · 5 · 7 · 13 2 2 2
U6(2) 215 · 36 · 5 · 7 · 11 S3 3 1
U4(5) 27 · 34 · 56 · 7 · 13 22 1 2
A14 210 · 35 · 52 · 72 · 11 · 13 2 2 1

L5(3) 29 · 310 · 5 · 112 · 13 2 2 1
Suz 213 · 37 · 52 · 7 · 11 · 13 2 3 1
A15 210 · 36 · 53 · 72 · 11 · 13 2 2 1

O+
8 (3) 212 · 312 · 52 · 7 · 13 S4 2 2
A16 214 · 36 · 53 · 72 · 11 · 13 2 1 1
Fi22 217 · 39 · 52 · 7 · 11 · 13 2 2 1
L6(3) 211 · 315 · 5 · 7 · 112 · 132 22 2 2

§ 2. Proof of Theorem 1

Let G be the finite simple group L6(3) and let H be the finite group with ω(H) = ω(G). We have
µ(G) = µ(H) = {182, 121, 120, 104, 80, 78, 36}. Thus s(G) = 2 and we apply Lemma 1.1. A result of [13]
allows us to eliminate the cases (a) and (b) of the lemma. So we come to the following situation. There
exists a nonabelian simple group S such that S ≤ H = H/K ≤ Aut(S) for some nilpotent normal π1(H)-
subgroup K of H and the group H/S is a π1(H)-subgroup; moreover, the graph GK(S) is disconnected,
s(S) ≥ s(H) and there is j, 2 ≤ j ≤ s(S), such that ω2(H) = ωj(S). Obviously, π(S) ⊆ π(H) = π(G).
So S ⊆ S13. On the other hand, n2(H) = n2(G) = 121. Therefore, one of the connected components
of GK(S) must be {121}. There are only two groups in S13 satisfying this condition: L5(3) and G
itself. Let S � L5(3). Since 7 does not divide the order of Aut(S), a Sylow 7-subgroup P of H lies
in K. The nilpotency of K implies that a subgroup P is normal in H. Since 21 = 7 · 3 �∈ ω(H), the
group P : R, where R is the Sylow 3-subgroup of H/K, is the Frobenius group with kernel P and
complement R. By Lemma 1.3 R must be cyclic. But a Sylow 3-subgroup of S ≤ H/K is obviously not
cyclic; a contradiction.

Thus S � G, and we will write G instead of S. Let K �= 1. Since K is nilpotent, inducting on the
order of H, we may suppose that K is a p-group for some prime p. If we take a factor group H/Φ(K)
instead of H, where Φ(K) is a Frattini subgroup of K, then the same induction argument allows us to
consider K as an elementary abelian p-group. Assume that p �= 3. The group G includes a Frobenius
subgroup with kernel F of order 35 = 243 and cyclic complement C of order (35 − 1)/2 = 121 (see the
proof of Lemma 3 in [14]). Since p �= 3 and G is simple, we have (|F |, |K|) = 1 and CH(K) = K. By
Lemma 1.3, H contains an element of order 121 · p; a contradiction.

We may thus suppose that K is a 3-group. The group H/K includes a subgroup L isomorphic to S6(3)
which acts on K by conjugation. Inspection of the table of the Brauer 3-characters for L in [15] shows
that an element x ∈ L of order 7 has a fixed point in every absolutely irreducible module over a field of
characteristic 3. Thus x centralizes some nontrivial element in K and hence 21 ∈ ω(H); a contradiction.

We have G ≤ H ≤ Aut(G). The group Out(G) is an elementary abelian group of order 4. Let δ be
a diagonal automorphism and let γ be a graph automorphism of G. Then Aut(G) = G〈δ, γ〉. The action
of δ and γ on G can be represented as follows: Let g denote the image in G of a matrix A in SL6(3).
Then gδ is the image of AD, where D = diag{1, 1, 1, 1, 1,−1}, and gγ is the image of the matrix A−T , the
inverse transpose of A. Thus, |δ| = |γ| = 2. Furthermore, since D−T = D, we see that δ and γ commute
and the automorphism τ = γδ is also of order 2.
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Suppose that H �≤ G〈γ〉. Since D centralizes in SL6(3) a subgroup isomorphic to SL5(3); therefore, δ
centralizes the image of this subgroup in G. Hence, if δ ∈ H, there exists an element of order 121 · 2
in H, which is impossible. In SL6(3) we now consider the matrix

A =




0 −1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 −1
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0




.

Direct calculation shows that the matrix B = A ·(A−T )D is of order 24 and the cyclic subgroup generated
by B has trivial intersection with the center of SL6(3). If g is the image of A in G then (gτ)2 = ggγδ is
the image of B in G of order 24. Therefore, gτ is of order 48. Since 48 �∈ ω(H), we have τ �∈ H.

Thus, H ≤ G〈γ〉. Using GAP (see [16]), we obtain some matrix representatives A of all conjugacy
classes in SL6(3). Calculation of the projective orders of AA−T allows us to find the spectrum of G〈γ〉. It
turns out that ω(G) = ω(G〈γ〉). Hence, H = G or H = G〈γ〉, and so h(G) = 2. The theorem is proved.

§ 3. Proof of Theorem 2

Let G be the finite simple group U4(5) and let H be a finite group with ω(H) = ω(G). We have
µ(G) = µ(H) = {63, 60, 52, 24}. The prime graph GK(G) = GK(H) has the following form:

13

5

7

2 3

Fig. 1

Since this graph is connected, we cannot apply Lemma 1.1 directly. So the proof is more complicated
and we divide it in several natural steps.

Lemma 3.1. Let K be a maximal normal soluble subgroup of H. Then only one of the three primes
5, 7, 13 can divide the order of K. In particular, H is insoluble.

Proof. Assume firstly that each of the three primes 5, 7, 13 divides the order of K. Since K is
soluble, it includes the soluble Hall {5, 7, 13}-subgroup R. Since every two distinct primes in {5, 7, 13}
are nonadjacent in GK(H), the same is true for GK(R). Then s(R) = 3 and R is insoluble by Lemma
1.1; a contradiction. Therefore, K �= H and H is insoluble.

Let p, q, r be distinct primes in {5, 7, 13} given in arbitrary order. Assume that two of them, for
definiteness p and q, divide |K|, whereas r does not. Consider the Hall {p, q}-subgroup T in K. By the
Frattini argument H = KNH(T ). Therefore, the normalizer N = NH(T ) contains an element of order r,
which acts fixed-point-freely on T . Lemma 1.3 implies that T is nilpotent. Hence p · q ∈ ω(T ) ⊆ ω(H);
a contradiction.

Lemma 3.2. There exists a finite simple group S ∈ S13 such that S ≤ H = H/K ≤ Aut(S).
Proof. If we denote by L = S1 × · · · × Sm the socle of H, where Si are nonabelian simple groups;

then H ≤ Aut(L). It is obvious that every Si is S13. So we need only to prove m = 1.
Suppose that m ≥ 2. By Lemma 3.1 there exists a prime p ∈ {7, 13} that divides the order of H.

Assume that p divides |L|. If p = 7 then there exists an element of order 7 · 2 in L, which is impossible,
since 14 �∈ ω(H). If p = 13 then either 13 · 3 ∈ ω(H) or every Si is a Suzuki group Sz(8) and so
13 · 5 ∈ ω(H). In both cases we have a contradiction.

Thus, we may assume that p divides only the order of Out(L). Let ϕ ∈ H be an automorphism
of L of order p and P = Sϕ

1 . Since P is simple, its every natural projection Pi to Si, i = 1, . . . , m,
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is either trivial or isomorphic to S1. On the other hand, since P is normal in L, the same is true for
every Pi, i = 1, . . . , m. Hence Pi = 1 or Pi = Si. Therefore, there exists unique j ∈ {1, . . . , m} such that
Sϕ

1 = Sj . If j �= 1 then there arises a ϕ-orbit ∆ of length p which consists of subgroups isomorphic to S1.
Without loss of generality we may assume that ∆ = {S1, S2, . . . , Sp}. Let a1 be an element of order t in
S1 and ai = aϕi

1 . Let g be the element of L, whose projections gi to Si are defined as follows: gi = ai for
i = 1, . . . , p and gi = 1 otherwise. Then g is of order t, and an element gϕ ∈ H is of order t · p. If p = 7
then we may take a1 of order t = 2. But 7 · 2 �∈ ω(H); a contradiction. If p = 13 then either we take a1

of order 3 or S1 � Sz(8) and we take a1 of order 5. In both cases we obtain a contradiction. Thus,
Sϕ

1 = S1, and the same is true for every Si, i = 1, . . . , m. Since ϕ �= 1; therefore, ϕ acts nontrivially on
some Sk. Then ϕ induces an outer automorphism of Sk of order p. Since Sk ∈ S13, it is impossible (see
the third column of Table 1). Thus, m = 1. The lemma is proved.

Lemma 3.3. S � G.

Proof. We consider all possibilities for the group S consecutively:
A. S � A5, A6, L2(7), L2(9), L2(8), U3(3), U4(2), U5(2), L3(3). Since Out(S) is not divided by 5, 7, 13

and only one of these primes divides the order of S, we have a contradiction by Lemma 3.1.
B. S � L2(11), M11, M12, M22, HS, M cL, U6(2), L5(3), Suz, F i22, L6(3) and An, with n = 11, . . . , 16.

Since 11 ∈ ω(S) \ ω(G), we have a contradiction.
C.1. S � L2(49). In this case 25 ∈ ω(S) \ ω(G); a contradiction.
C.2. S � L2(64), S4(8). We have 65 ∈ ω(S) \ ω(G), which is impossible.
C.3. S � 2F4(2)′, L3(9). In this case 16 ∈ ω(S) \ ω(G); a contradiction.
C.4. S � 3D4(2), S6(3), O7(3), S4(7), L2(27). Since 14 ∈ ω(S) \ ω(G), we obtain a contradiction.
D. S � L3(4), U3(5), J2, S6(2), U4(3), O+

8 (2) and An, where n = 7, . . . , 10. Since 13 does not divide
|Aut(S)|, we have 13 ∈ ω(K). On the other hand, each of these groups includes a subgroup isomorphic
to L2(7) and so it includes a Frobenius group F � 7 : 3. Consider the factor group H̃ = H/O13′(K). We
have P = O13(H̃) �= 1. So F acts on P faithfully and its kernel of order 7 acts fixed-point-freely on P .
By Lemma 1.3, there exists an element of order 13 · 3 in H; a contradiction.

E. S � L2(25), U3(4), S4(5), L3(3). Since 7 ∈ ω(K) and S includes a Frobenius subgroup 5 : 2, we
have 7 · 2 ∈ ω(H); a contradiction.

F. S � L2(13), G2(3). Since 5 does not divide |Aut(S)|, it divides the order of K. Since 3 · 7 �∈
ω(Aut(S)); therefore, ω(K) contains 7 or 9. Then Lemma 3.1 implies that 9 ∈ ω(K). Let T be the Hall
{3, 5}-subgroup in K. Since 13 does not divide |K|, there exists an element of order 13 in NH(T ) which
acts fixed-point-freely on T . Hence T is nilpotent. So 9 · 5 belongs to ω(H); a contradiction.

G. S � G2(4). Since there are no elements of order 9 in Aut(S); therefore, |K| is divided by 3.
On the other hand, S includes a Frobenius subgroup with kernel of order 13 and cyclic complement of
order 6. Therefore, 3 · 6 belongs to ω(H); a contradiction.

H. S � Sz(8) � 2B2(8). Using [12], we find that µ(S) = {4, 5, 7, 13}, |Out(S)| = 3, and µ(Aut(S)) =
{7, 12, 13, 15}. Since S includes the Frobenius subgroups 26 : 7 and 13 : 4, there are no elements of order
5, 7, 13 in K. Furthermore, 4 · 5, 9 · 7 ∈ ω(H), hence 4, 9 ∈ ω(K). If H � Aut(S) then H includes the
Frobenius group 13 : 12 and there exists an element of order 36 in H; a contradiction. Thus, H = S
and K is a {2, 3}-group.

Consider the factor group H̃ = H/O2(K) and the subgroup K̃ = K/O2(K). Assume that O3,2(K̃) �=
O3(K̃). Notice first of all that the nontrivial abelian group P = Z(O2(K̃/O3(K̃))) acts on O3(K̃)
faithfully. Furthermore, if C = C

H̃/O3(K̃)
(P ) contains an element of order 13 then C = H/O3(K̃). Hence

7 · 2 ∈ ω(H); a contradiction. Let X be a subgroup of order 13 in H̃/O3(K̃). A subgroup F = [P, X] : X

is a Frobenius group with kernel [P, X] and complement X. The group F acts on O3(K̃) faithfully. So
there exists an element of order 3 · 13 in H; a contradiction. Thus, O3,2(K̃) = O3(K̃), and O2(K) is
a Sylow 2-subgroup of K.
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We now denote by H̃ and by K̃ the factor groups H/O3(K) and K/O3(K) respectively. Assume
that O2,3(K̃) �= O2(K̃). Using the same arguments as in previous paragraph and an element of order 7
instead of an element of order 13, we arrive at a contradiction.

O3(K) is a Sylow 3-subgroup of K. Hence, Thus, K is a direct product of a Sylow 2-subgroup and
a Sylow 3-subgroup. Therefore, K contains an element of order 36, which is impossible. The lemma
is proved.

Thus, S � G and we will write G instead of S.

Lemma 3.4. G ≤ H ≤ Aut(G).

Proof. Let K �= 1. There exists a prime p such that Op(K) �= K. Denote by H̃ the factor
group H/Op(K). The normal subgroup K̃ = K/Op(K) is a nontrivial p-group. Denote by Ĥ the factor
group H̃/Φ(K̃) and by K̂, the factor group K̃/Φ(K̃), where Φ(K̃) is a Frattini subgroup of K̃. Since
H/K � H̃/Φ(K̃), it is sufficient to show that ω(Ĥ) �⊆ ω(H). So we assume that H = Ĥ and K is
nontrivial elementary abelian p-group for some prime p.

Suppose that C = CH(K) �⊆ K. Since CK is a normal subgroup of H, the group CK/K includes G.
Then H contains an element of order 13 · p. Hence p = 2 and 2 · 7 ∈ ω(H); a contradiction. Thus we may
assume that C ≤ K and G acts on K faithfully.

The group G includes a subgroup L2(25), which includes a Frobenius subgroup with kernel isomorphic
to 52 and cyclic complement of order 12. If p = 3, 7, 13 then p · 12 ∈ ω(H), which is impossible.

Let p = 2 or 5. The group G includes a subgroup L isomorphic to U3(5), which acts on K by
conjugation. Inspection of the tables of the Brauer p-characters of the group L in [15] shows that
the element x ∈ L of order 7 has a fixed point in every absolutely irreducible module over a field of
characteristic p (that is, 2 or 5). Thus, x centralizes some nontrivial element in K and hence p ·7 ∈ ω(H);
a contradiction. The lemma is proved.

Remark. The case p = 5 can be eliminated by another way, since there is a Frobenius subgroup
24 : 5 in S4(5) ≤ G.

Lemma 3.5. H = G or H = G〈γ〉, where γ is the field automorphism of G of order 2.

Proof. We have G ≤ H ≤ Aut(G). Notice first of all that G is a centralizer in L4(25) of the
automorphism σ = θγ, where θ is the graph automorphism and γ is the field automorphism of L4(25).
This implies that the action of θ and the action of γ on G coincide. We fix the notation γ for the
automorphism of G induced by this action.

The group Out(G) is an elementary abelian group of order 4. Let δ be the diagonal automorphism
and let γ be the field automorphism of G. Then Aut(G) = G〈δ, γ〉. The action of δ and γ on G can be
represented as follows. Let g denote the image in G of A in SU4(5). Then gδ is the image of AD, where
D = diag{1, 1, 1,−1}, and gγ is the image of A−T , i.e., the inverse transpose of A (see the remark in the
previous paragraph). Thus, |δ| = |γ| = 2. Furthermore, since D−T = D, therefore δ and γ commute and
the automorphism τ = γδ is also of order 2.

Suppose that H �≤ G〈γ〉. Since D centralizes in SU4(5) a subgroup isomorphic to SU3(5); we see
that δ centralizes the image of this subgroup in G. Hence, if δ ∈ H then there exists an element of order
7 · 2 in H, which is impossible. We now consider in SU4(5) the matrix

A =




λ λ2 0 0
λ10 λ17 0 0
0 0 λ λ2

0 0 λ10 λ17


 ,

where λ generates the multiplicative group of the field F52 . Direct calculation shows that the matrix
B = A · (A−T )D is of order 20 and the cyclic subgroup generated by B has trivial intersection with the
center of SU4(5). If g is the image of A in G then (gτ)2 = ggγδ is the image of B in G of order 20.
Therefore, gτ is of order 40. Since 40 �∈ ω(H), we have τ �∈ H.
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Thus, H ≤ G〈γ〉. Using GAP (see [16]), we obtain some matrix representatives A of all conjugacy
classes in SU4(5). Calculation of the projective orders of the matrices AA−T allows us to find the
spectrum of G〈γ〉. It turns out that ω(G) = ω(G〈γ〉). Hence, H = G or H = G〈γ〉, and h(G) = 2. The
theorem is proved.

The author is grateful to V. D. Mazurov, M. A. Grechkoseeva, and to the reviewer for helpful
comments on the content and style of this article.
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