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ON THOMPSON’S CONJECTURE

A.V.VASIL′EV

Abstract. For a finite group G denote by N(G) the set of conjugacy
class sizes of G. In 1980s J.G.Thompson posed the following conjecture:
if L is a finite nonabelian simple group, G is a finite group with trivial
center and N(G) = N(L), then L and G are isomorphic. Here we prove
Thompson’s conjecture when L is one of the groups A10 and L4(4). This
is the first time when Thompson’s conjecture is checked for groups with
connected prime graph.
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1. Introduction

For a finite group G denote by N(G) the set of conjugacy class sizes of G. In
1980s J.G.Thompson posed the following conjecture (see Question 12.38 in [1]).

Thompson’s Conjecture. If L is a finite nonabelian simple group, G is a finite
group with trivial center and N(G) = N(L), then L and G are isomorphic.

The prime graph GK(G) of a finite group G is defined as follows. The vertex set
of GK(G) is the set π(G) of all prime divisors of the order of G. Two distinct primes
p, q ∈ π(G) considered as vertices of the graph are adjacent by edge if and only if
there is an element of order pq in G. K.W.Gruenberg and O.Kegel introduced this
graph (it is also called the Gruenberg — Kegel graph) in the middle of the 1970s and
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gave a characterization of finite groups with disconnected prime graph (we denote
the number of connected components of GK(G) by s(G)). J. S.Williams [2] and
A. S.Kondratiev [3] obtained the classification of simple groups with s(G) > 1 and
described the components of their prime graphs. Using these deep results G.Y.Chen
[4] established that Thompson’s conjecture is valid for every finite simple group L
with s(L) > 2. Later he announced that the conjecture is true for all finite simple
groups with disconnected prime graph. Although this assertion has not been proved
in general yet, it was verified for most of such groups.

Contrary to the previous case, Thompson’s conjecture has not been checked
for any finite simple group L with connected prime graph. Here we investigate
these groups. In particular, we prove that Thompson’s conjecture holds true for
the smallest (by order) nonabelian simple group with connected prime graph (that
is the alternating group A10) and for the smallest nonabelian simple group of Lie
type with connected prime graph (that is the linear group L4(4)).

Theorem. Let L = A10 or L = L4(4). If G is a finite group with trivial center and
N(G) = N(L), then L ' G.

2. Preliminaries

Given an element x of group G, denote by xG the set {xg | g ∈ G}, that is
the conjugacy class of G containing x, and by |xG| its size. The set {x1, . . . , xs} of
elements of G is called a complete set of representatives of conjugacy classes of G,
if G =

⋃s
i=1 xG

i and xG
i ∩ xG

j = ∅ for i 6= j.

Lemma 1. If G is a finite group and {x1, . . . , xs} is a complete set of representatives
of conjugacy classes of G, then G = 〈x1, . . . , xs〉.
Proof. Let H be a proper subgroup of G. Since |G : NG(H)| = |{Hg | g ∈ G}|,
the cardinality of the set

⋃
g∈G Hg is less than |G|. Therefore this set is a proper

subset of G. If K = 〈x1, . . . , xs〉 is a proper subgroup of G, then
⋃

g∈G Kg is a
proper subset of G, which is impossible, since {x1, . . . , xs} is a complete set of
representatives of conjugacy classes of G. The lemma is proved.

Lemma 2. If G is a finite group with trivial center and a prime p ∈ π(G), then
there exists element x of G such that p divides |xG|.
Proof. Assume that there is no element x of G such that p divides |xG|. Let
{x1, . . . , xs} be a complete set of representatives of conjugacy classes of G. Then
for every i = 1, . . . , s the centralizer CG(xi) includes a Sylow p-subgroup Pi. Fix
some Sylow p-subgroup P of G. Since all Sylow subgroups of G are conjugate, there
are elements g1, . . . , gs of G such that for every i = 1, . . . , s we have P = P gi

i . Put
yi = xgi

i for i = 1, . . . , s. Then P 6 CG(yi) for all i = 1, . . . , s. On the other hand,
the set {y1, . . . , ys} is a complete set of representatives of conjugacy classes of G
and so G = 〈y1, . . . , ys〉 by Lemma 1. Thus P lies in the center of G; a contradiction.
The lemma is proved.

Lemma 3. If G and H are finite groups with trivial center and N(G) = N(H),
then π(G) = π(H).

Proof. This is a direct consequence of Lemma 2.
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Lemma 4. Suppose that G is a finite group with trivial center and p is a prime
from π(G) such that p2 does not divide |xG| for all x in G. Then a Sylow p-subgroup
of G is elementary abelian.

Proof. Fix some Sylow p-subgroup P of G. Arguing as in the proof of Lemma 2,
we can choose a complete set {x1, . . . , xs} of representatives of conjugacy classes of
G such that CG(xi) includes a subgroup Mi of P with |P : Mi| 6 p for every i =
1, . . . , s. Since the Frattini subgroup Φ(P ) is the intersection of maximal subgroups
of P , it lies in CG(xi) for every i = 1, . . . , s. Thus, Φ(P ) lies in the center of G and
so it is trivial. The lemma is proved.

Lemma 5. Let K be a normal subgroup of a finite group G, and G = G/K. If
x is the image of an element x of G in G, then |xG| divides |xG|. Moreover, if
(|x|, |K|) = 1, then CG(x) = CG(x)K/K.

Proof. The preimage of CG(x) in G includes CG(x). It follows that |xG| divides
|xG|. The rest is true by [5, Theorem 1.6.2]. The lemma is proved.

Given natural numbers n1, . . . , ns, denote by (n1, . . . , ns) its greatest common
divisor and by lcm(n1, . . . , ns) its least common multiple. For a finite group G
denote by ω(G) the spectrum of G, that is the set of element orders of G, and by
µ(G) the set of maximal by divisibility elements of ω(G). Obviously, the set ω(G)
and the prime graph GK(G) are uniquely determined by µ(G). In naming simple
groups we use the notation from [6].

3. Case L = A10

We start with some properties of L = A10.

Lemma 6 ([6]). Let L = A10. Then the following hold.
1. |L| = 28 · 34 · 52 · 7.
2. µ(L) = {8, 9, 10, 12, 15, 21}.
3. N(L) consists of n1 = 1, n2 = 33 · 52 · 7, n3 = 2 · 32 · 5 · 7, n4 = 22 · 33 · 52 · 7,

n5 = 22 ·34 ·52 ·7, n6 = 24 ·3 ·5, n7 = 24 ·3 ·52 ·7, n8 = 24 ·32 ·52 ·7, n9 = 24 ·34 ·52 ·7,
n10 = 25 ·33 ·7, n11 = 25 ·33 ·52 ·7, n12 = 25 ·34 ·5·7, n13 = 27 ·52 ·7, n14 = 27 ·32 ·52 ·7,
n15 = 27 · 33 · 5 · 7, n16 = 27 · 33 · 52, n17 = 27 · 34 · 7.

Let G be a finite group with trivial center and N(G) = N(L). We will prove that
G ' L.

Since every number from N(G) divides the order of G, Lemma 6 implies that
|L| divides |G|. By Lemma 3 we have π(G) = π(L) = {2, 3, 5, 7}.
Lemma 7. A Sylow 7-subgroup S of G is of order 7. For every nontrivial element
x of S the equality |xG| = n16 = 27 · 33 · 52 holds.

Proof. Using Lemma 4 and (3) of Lemma 6 we derive that S is elementary abelian.
Assume that 72 divides |G|. Since N(G) = N(L), the centralizer of every element
of G contains an element of order 7. Consider an element y of G such that |yG| =
n17 = 27 · 34 · 7.

Suppose that 7 does not divide |y|. Let x be an element of CG(y) having order
7. Then CG(xy) = CG(x)∩CG(y) and so lcm(|xG|, |yG|) divides |(xy)G|. Since S is
abelian, CG(x) includes S up to conjugacy. Hence 7 does not divide |xG|. It follows
that |xG| is equal to n6 = 24 · 3 · 5 or n16 = 27 · 33 · 52. In both cases, 27 · 34 · 5 · 7
divides |(xy)G|, which is impossible.
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Suppose that 7 divides |y|. Let |y| = 7t. Since S is elementary abelian, the
numbers 7 and t are coprime. Put u = y7 and v = yt. Then y = uv and CG(y) =
CG(u) ∩ CG(v). Therefore, |vG| divides |yG| = 27 · 34 · 7. On the other hand, the
element v is of order 7 and so |vG| is equal to n6 = 24 · 3 · 5 or n16 = 27 · 33 · 52; a
contradiction.

Thus S has order 7.
If the second assertion of the lemma is false, there is an element x of S such that

|xG| = n6 = 24 · 3 · 5. Let P be a Sylow 3-subgroup of G such that M = CG(x)∩P
has index 3 in P . Since M is maximal, there exists a nontrivial element y in the
intersection of the center Z(P ) of P and M . Since y ∈ Z(P ), we have |yG| = n13 =
27 · 52 · 7 by (3) of Lemma 6, which is impossible, beqause x ∈ CG(y).

The lemma is proved.

Lemma 8. Suppose that q ∈ {2, 3, 5}, Q is a Sylow q-subgroup of G, and Z(Q) is
its center. Then the order of the centralizer CG(y) of every element y of Z(Q) is
not divisible by 7. If q = 5, then either |Q| = 52 or |Z(Q)| = 5.

Proof. If y lies in Z(Q), then q does not divide |yG|, so by Lemma 6 we have
|yG| = n2 = 33 · 52 · 7 for q = 2, |yG| = n13 = 27 · 52 · 7 for q = 3, and |yG| is equal
to n10 = 25 · 33 · 7 or n17 = 27 · 34 · 7 for q = 5. In all cases 7 does not divide CG(y)
by Lemma 7.

Let q = 5. By Lemma 7 there exists an element x of order 7 such that |Q :
CQ(x)| = 52. If |Q| > 52, then C = CQ(x) 6= 1. On the other hand, Z(Q) ∩ C = 1.
If |Z(Q)| > 5, then Q = 〈C, Z(Q)〉. However, in that case 1 6= Z(C) 6 Z(Q); a
contradiction.

Lemma 9. O2,2′(G) = O2(G). In particular, G is insoluble.

Proof. Put K = O2(G), G = G/K, and denote by x and by H the images of an
element x and a subgroup H of G in G. If the statement of the lemma is false, then
there is r ∈ {3, 5, 7} such that Or(G) 6= 1.

If P = O7(G) 6= 1, then |P | = 7. Let y be an element of the center Z(Q) of
a Sylow 5-subgroup Q. Since 5 does not divide 6 = 7 − 1, the subgroup P 〈y〉 is
cyclic. Hence 7 divides |CG(y)|. Since (5, |K|) = 1, Lemma 5 implies that 7 divides
|CG(y)|, which is impossible by Lemma 8. Thus, O7(G) = 1.

Let q ∈ {3, 5}, and Q be a Sylow q-subgroup of G. If Oq(G) 6= 1, then V =
Z(Oq(G)) is a nontrivial normal subgroup of G. If x is an element of order 7 in
G, then V = CV (x) × [V, x]. Lemma 7 implies that |xG| is a divisor of 27 · 33 · 52,
hence the index of CV (x) in V is at most 52 for q = 5, and 33 for q = 3. Therefore,
|[V, x]| 6 q3. Since n = 6 is the least number such that 7 divides qn−1, the subgroup
[V, x]〈x〉 must be abelian. Thus, [V, x] = 1 and V = CV (x). On the other hand,
the center Z(Q) of a Sylow subgroup Q has a nontrivial intersection with V . The
element z of order q from this intersection commutes with x. Since (|K|, q) = 1,
there exists a preimage z of z in G such that z lies in the center of a Sylow q-
subgroup of G. By Lemma 5, the centralizer of z also contains an element of order
7, that contradicts Lemma 8. Therefore, Oq(G) = 1, and the lemma is proved.

Lemma 10. G ' L.

Proof. We preserve the notation K = O2(G) and G = G/K from the previous
lemma. By that lemma M 6 G 6 Aut M , where M = S1 × . . . × Sk is a direct
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product of finite nonabelian simple groups S1, . . . , Sk. Obviously, π(Si) ⊆ π(L) for
i = 1, . . . , k. Up to isomorphism, there are finitely many finite nonabelian simple
groups S with π(S) ⊆ π(L). Using the classification of finite simple groups one can
list them all, similarly to [7]. It follows that [6] contains the information about all
necessary groups, and we will use it without further reference.

Suppose that there is an element x ∈ G \ M of order 7. Put P = Sx
1 . Since

P is simple, every its natural projection Pi on Si, i = 1, . . . , k, is either trivial or
isomorphic to S1. On the other hand, since P is normal in M , every subgroup Pi,
i = 1, . . . , k is also normal. Hence Pi = 1 or Pi = Si. Therefore, there is the unique
j ∈ {1, . . . , k} such that Sx

1 = Sj . Since (|Out S|, 7) = 1 for all finite nonabelian
simple groups S with π(S) ⊆ π(L), we have S1 = Sj 6= S1. Therefore, k > 7. The
order of every nonabelian simple group is divided by at least three primes, and
7 does not divide |M |, so 5 divides the order of every Si, i = 1, . . . , k. Lemma 8
implies that the center Z(Q) of a Sylow 5-subgroup Q of G has the order 5, and so
lies in M . Put N = NG(Q). By Frattini argument, N/(N ∩M) ' G/M . Hence x
normalizes Z(Q) and so centralizes it; a contradiction.

Thus, 7 divides the order of M , and so divides the order of exactly one of the
subgroup Si. We denote this subgroup by S1. The subgroup S1 is a normal subgroup
of G, and we denote by Ĝ and M̂ the factor groups G/S1 and M/S1 respectively.
Suppose that k > 2. Then a Sylow 5-subgroup of Ĝ is nontrivial and its center Z has
a nontrivial intersection with M̂ . Consider a nontrivial element y of T = S2×. . .×Sk

such that its image in Ĝ lies in Z. Since y centralizes S1, it lies in the center of a
Sylow 5-subgroup of G and centralizes an element of order 7; a contradiction.

Thus, M is a nonabelian simple group with Sylow 7-subgroup of order 7, and
27 · 34 · 52 divides |M |. Using [6, 7] again, we obtain that, up to isomorphism, there
are only two such groups: A10 and O+

8 (2).
Let x be an element of order 7 in G and x be its image in G. If M ' O+

8 (2),
then |xG| is a multiple of 35, and so is |xG| by Lemma 5. This contradicts (3) of
Lemma 6. Thus, M is isomorphic to A10. Since |xG| = 27 ·33 ·52 = |xG|, the element
x centralizes K. If K 6= 1, then x centralizes an element from the center of a Sylow
2-subgroup of G, which is impossible by Lemma 8. Therefore, G = G. If G ' S10,
then there is an element x in G such that |xG| = 32 · 5; a contradiction.

The lemma and the theorem in case L = A10 are proved.

4. Case L = L4(4)

We start with some properties of L = L4(4).

Lemma 11 ([6]). Let L = L4(4). Then the following hold.
1. |L| = 212 · 34 · 52 · 7 · 17.
2. µ(L) = {12, 30, 63, 85}.
3. N(L) consists of n1 = 1, n2 = 32·5·7·17, n3 = 22·33·5·7·17, n4 = 24·33·52·7·17,

n5 = 26 · 5 · 17, n6 = 26 · 32 · 52 · 7 · 17, n7 = 26 · 34 · 52 · 7 · 17, n8 = 28 · 3 · 7 · 17,
n9 = 28 · 32 · 5 · 7 · 17, n10 = 28 · 33 · 7, n11 = 28 · 33 · 52 · 7 · 17, n12 = 28 · 34 · 5 · 7 · 17,
n13 = 210 ·3·5·7·17, n14 = 210 ·32 ·7·17, n15 = 210 ·32 ·52 ·7·17, n16 = 210 ·33 ·5·7·17,
n17 = 212 ·32 ·5 ·7 ·17, n18 = 212 ·32 ·52 ·17, n19 = 212 ·33 ·7 ·17, n20 = 212 ·34 ·5 ·7.

Let G be a finite group with trivial center and N(G) = N(L).
Since every number from N(G) divides the order of G, Lemma 11 implies that

|L| divides |G|. By Lemma 3 we have π(G) = π(L) = {2, 3, 5, 7, 17}.
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Lemma 12. If p ∈ {7, 17}, then a Sylow p-subgroup S of G is of order p. There is
no element of order 7 · 17 in G.

Proof. The proof is quite similar to that of Lemma 7. First of all, Lemma 4 implies
that S is elementary abelian. If |x| = p, then |xG| = n5 = 26 · 5 · 17 or |xG| = n18 =
212 · 32 · 52 · 17 for p = 7, and |xG| = n10 = 28 · 33 · 7 or |xG| = n20 = 212 · 34 · 5 · 7
for p = 17.

Assume that p = 7 and |S| > p2. Consider an element y of G such that |yG| =
n20 = 212 · 34 · 5 · 7.

Suppose that 7 does not divide |y|. Let x be an element of CG(y) having order
7. Then CG(xy) = CG(x) ∩ CG(y) and so lcm(|xG|, |yG|) divides |(xy)G|. Since
S is abelian, CG(x) includes S up to conjugacy. Hence 7 does not divide |xG|. It
follows that |xG| is equal to n5 = 26 · 5 · 17 or n18 = 212 · 32 · 52 · 17. In both cases,
212 · 34 · 5 · 7 · 17 divides |(xy)G|, which is impossible by (3) of Lemma 11.

Suppose that 7 divides |y|. Let |y| = 7t. Since S is elementary abelian, the
numbers 7 and t are coprime. Put u = y7 and v = yt. Then y = uv and CG(y) =
CG(u)∩CG(v). Therefore, |vG| divides |yG| = 212 · 34 · 5 · 7. On the other hand, the
element v is of order 7 and so |vG| is equal to n5 = 26 ·5 ·17 or n18 = 212 ·32 ·52 ·17;
a contradiction.

Assume that p = 17 and |S| > p2. Considering an element y with |yG| = n18 =
212 · 32 · 52 · 17, we obtain a contradiction as in the case p = 7. Therefore, S is of
order p in both cases. Thus, the centralizer of every element of order 7 does not
contain an element of order 17. The lemma is proved.

Lemma 13. Suppose that q ∈ {2, 3, 5}, Q is a Sylow q-subgroup of G, and Z(Q)
is its center. Then for every element y ∈ Z(Q), the order of the centralizer CG(y)
is coprime to 7 for q = 5, coprime to 17 for q = 3, and coprime to 7 · 17 for q = 2.

Proof. If y lies in Z(Q), then q does not divide |yG|, so by (3) Lemma 11 we have
|yG| = n2 = 32 · 5 · 7 · 17 for q = 2, |yG| = n5 = 26 · 5 · 17 for q = 3, and |yG| is equal
to one of the numbers n8 = 28 · 3 · 7 · 17, n10 = 28 · 33 · 7, n14 = 210 · 32 · 7 · 17, or
n19 = 212 · 33 · 7 · 17 for q = 5. Thus, the centralizer of y has the desired order.

Lemma 14. O2,2′(G) = O2(G). In particular, G is insoluble.

Proof. Put K = O2(G), G = G/K, and denote by x and by H the images of an
element x and a subgroup H of G in G. If the statement of the lemma is false, then
there is p ∈ π(L) \ {2} such that Op(G) 6= 1.

Suppose that Op(G) 6= 1 for p equal to 7 or 17. Then G includes a Hall {7, 17}-
subgroup of order 7 · 17. However, this subgroup must be cyclic, which contradicts
Lemma 12.

Let P be a Sylow 3-subgroup of G. If O3(G) 6= 1, then V = Z(O3(G)) is a
nontrivial normal subgroup of G. Let x be an element of order 17 in G. Since |xG|
is a divisor of 28·33·7 or 212·34·5·7, we may assume that |V : CV (x)| 6 34. Therefore,
the order of [V, x] is at most 34. It follows that [V, x] = 1, and so V = CV (x). If z
is a nontrivial element of Z(P ) ∩ V , then |CG(z)| is a multiple of 17. By Lemma 5
the same is true for its preimage z in G such that z lies in the center of a Sylow
3-subgroup of G. This contradicts Lemma 13. Therefore, O3(G) = 1.

Assume that O5(G) 6= 1 and consider an element x of order 7 in G instead of an
element of order 17. Arguing as in the previous paragraph we come to an element
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z of the center of a Sylow 5-subgroup of G such that |zG| is a multiple of 7. This is
impossible by Lemma 13. Therefore, O5(G) = 1, and the lemma is proved.

Lemma 15. G ' L.

Proof. Lemma 15 implies that M 6 G 6 AutM , where M = S1 × . . . × Sk is
a direct product of nonabelian simple groups S1, . . . , Sk. Since G cannot include
a Hall {7, 17}-subgroup, the numbers 7 and 17 divide the order of exactly one
of these groups, and we assume that they divide S1. Therefore, S1 is a normal
subgroup of G, and we denote by Ĝ and M̂ the factor groups G/S1 and M/S1

respectively. Suppose that k > 2. Then a Sylow 5-subgroup of Ĝ is nontrivial and
its center Z has a nontrivial intersection with M̂ . Consider a nontrivial element y

of T = S2 × . . . × Sk such that its image in Ĝ lies in Z. Since y centralizes S1, it
lies in the center of a Sylow 5-subgroup of G and centralizes an element of order 7;
a contradiction.

Thus, M = S1 and G is almost simple. Consider all nonabelian simple group S
such that π(S) ⊆ π(L), the number 34 · 52 divides |Aut S|, and Sylow p-subgroups
of S are of order p for p ∈ {7, 17}. Using [6, 7] one can check that only groups
L = L4(4) and S8(2) satisfy these conditions. If G ' S8(2) ' Aut(S8(2)), then
there exists an element x of order 17 with |xG| = 216 · 35 · 52 · 7, which is impossible
by Lemma 5 and (3) of Lemma 11.

Thus, L 6 G 6 AutL. Therefore, the number 212 · 34 · 5 · 7 divides |xG| for an
element x of G of order 17. By Lemma 5 the same is true for the preimage x of
x in G. By (3) of Lemma 11 we have |xG| = |xG| = 212 · 34 · 5 · 7. Therefore, x
centralizes K = O2(G). If K 6= 1, then x centralizes a nontrivial element from the
center of a Sylow 2-subgroup of G, that contadicts Lemma 13.

Therefore, L 6 G 6 L〈φ, τ〉, where φ is an involutory field automorphism, τ is an
involutory graph automorphism of L, and φτ = τφ. Using [8, (19.1),(19.6),(19.9)]
we obtain the information on the structure of centralizers of φ, τ and τφ in L. If
G = L〈φ〉, then |CL(x)| = |CG(x)| for every element x of order 17. So |xG| = 2|xL|,
which is impossible by (3) of Lemma 11. If G is equal to L〈τ〉 or L〈τφ〉, then
|xG| = 2|xL| for every element x of order 7; a contradiction. Finally, if G = Aut L,
then for element x of order 17, we have |CG(x)| = 2|CL(x)|, but |G : L| = 4, and
so again |xG| = 2|xL|, which is impossible.

The lemma and the theorem are proved.
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