- 1. Prove that a subgroup of index 2 is normal.
- 2. If A, B are normal subgroups of G, then
 - (a) $A \cap B$ is a normal subgroup of G;
 - (b) AB is a normal subgroup of G.
- 3. Prove that the factor group $\mathbb{Z}/n\mathbb{Z}$ is a cyclic group of order n.
- 4. Denote by \mathbb{C}^* the multiplicative group of the field of complex numbers \mathbb{C} . Let $\mathbb{R}_{>0}$ be the group of all positive real numbers under multiplication and $U = \{z \in \mathbb{C} \mid z \cdot \overline{z} = 1\}$ be the group of all complex numbers of module 1 under multiplication. Construct surjective homomorphisms from \mathbb{C}^* onto $\mathbb{R}_{>0}$ and onto U, and find the kernels of these homomorphisms.
- 5. Find all normal subgroups and all (up to isomorphism) homomorphic images of symmetric groups S_3 and S_4 .
- 6. The set $Z(G) = \{z \in G \mid zg = gz \text{ for all } g \in G\}$ is called the *center* of a group G. Prove that
 - (a) Z(G) is a characteristic subgroup of G;
 - (b) if G/Z(G) is cyclic, then G is abelian.
- 7. For a subset M of G, set $M^G := \{m^g \mid m \in M, g \in G\}$. Suppose that M is invariant, i. e., $M = M^G$. Prove that $\langle M^G \rangle$ is normal in G.
- 8. Prove that the Frattini subgroup $\Phi(G)$ is a normal and, moreover, a characteristic subgroup of G.
- 9. Let H be a normal subgroup of G and $x \in G$ is such that (|x|, |G : H|) = 1. Prove that $x \in H$.

Additional problems

- 1. Let $A \leq B \leq G$.
 - (a) If A is characteristic in B and B is characteristic in G, then A is characteristic in G.
 - (b) If A is characteristic in B and $B \leq G$, then $A \leq G$.
 - (c) The condition $A \leq B \leq G$ does not imply that $A \leq G$ (consider the dihedral group of order 8 or the alternating group A_4 for examples).
- 2. In the dihedral group G of order 8 find subgroups A, B such that A is normal in G, B is normal in A, and B is not normal in G.
- 3. Find all normal subgroups of a dihedral group.