- 1. Let G be a finite Abelian group. Prove that
 - (a) if $|G| \neq 1$ then G has an element of prime order;
 - (b) for every prime divisor r of |G|, there exists an element $g \in G$ of order r;
 - (c) if m divides |G| then G has a subgroup of order m;
 - (d) if |G| = mn, where (m, n) = 1, then G has exactly one subgroup of order m;
 - (e) if |G| = mn, where (m, n) = 1, A is the subgroup of order m of G, and m_1 divides m, then every subgroup of G of order m_1 is contained in A.
- 2. Let \mathbb{Q} be the additive group of the field of rationals.
 - (a) Is there a nontrivial group homomorphism $\varphi : \mathbb{Q} \to G$ such that $\mathbb{Q}\varphi$ is finite?
 - (b) Is $\mathbb{Q} = A + B$ for some proper subgroups A and B of \mathbb{Q} ?
 - (c) Does \mathbb{Q} contain a maximal subgroup?
 - (d) Prove that, for every positive integer n, the factor group \mathbb{Q}/\mathbb{Z} contains exactly one subgroup of order n.
 - (e) Does there exist a surjective homomorphism $\mathbb{Q} \to \mathbb{Z}$?

Additional problems.

1. Prove that

$$Q_8 = \left\{ \pm \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right), \pm \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \pm \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \pm \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array} \right) \right\},$$

where $i^2 = -1$, is a subgroup of $SL_2(\mathbb{C})$. Prove that Q_8 is not Abelian. Are Q_8 and D_8 isomorphic? Find all normal subgroups of Q_8 . The group Q_8 is called the *quaternion* group.

2. Let F be a field of finite order q. Prove that the minimal p such that

$$\underbrace{1+1+\ldots+1}_{p \text{ times}} = 0$$

is prime. Prove that F has a subfield isomorphic to \mathbb{Z}_p . Deduce that $q = p^n$ for some positive integer n.

- 3. Let F be a finite field of order q. The groups $GL_n(F)$ and $SL_n(F)$ are usually denoted by $GL_n(q)$ and $SL_n(q)$, respectively.
 - (a) Find $|GL_2(q)|, |SL_2(q)|, |GL_2(q)/Z(GL_2(q))|, |SL_2(q)/Z(SL_2(q))|.$
 - (b) Prove that $GL_2(2) \simeq S_3$, $GL_2(3)/Z(GL_2(3)) \simeq S_4$, $SL_2(3)/Z(SL_2(3)) \simeq A_4$.
 - (c) Find $|GL_n(q)|$, $|SL_n(q)|$, $|GL_n(q)/Z(GL_n(q))|$, $|SL_n(q)/Z(SL_n(q))|$.
- 4. Let A and B be subsets of a group G and let $g \in G$. Prove that

- (a) $(A \cup B)^g = A^g \cup B^g;$ (b) $(A \cap B)^g = A^g \cap B^g;$ (c) $(A \setminus B)^g = A^g \setminus B^g;$ (d) $(AB)^g = A^g B^g;$
- (e) $(A^{-1})^g = (A^g)^{-1};$

- (f) $\langle A \rangle^g = \langle A^g \rangle;$
- (g) $(N_B(A))^g = N_{B^g}(A^g);$
- (h) $(C_B(A))^g = C_{B^g}(A^g);$
- (i) if $A \le B \le G$ then $|B^g : A^g| = |B : A|$.