- 1. Given a group G and subgroups $M_i \leq G$ for $1 \leq i \leq r$, prove that the following statements are equivalent:
 - (a) every element $g \in G$ can be uniquely written in the form $g = m_1 m_2 \dots m_r$ with $m_i \in M_i$;
 - (b) the identity element $1 \in G$ can be uniquely written in the form $1 = m_1 m_2 \dots m_r$ with $m_i \in M_i$;
 - (c) some element $g \in G$ can be uniquely written in the form $g = m_1 m_2 \dots m_r$ with $m_i \in M_i$.
- 2. Suppose that G = HK, where H and K are subgroups of G. Show that also $G = H^x K^y$ for all elements $x, y \in G$. Deduce that if $G = HH^x$ for a subgroup H and an element $x \in G$ then H = G.
- 3. Let H be a subgroup of prime index p in a finite group G. Suppose that no prime smaller than p divides |G|. Prove that $H \leq G$.

Additional problems.

1. If $G = H^{x_1} \dots H^{x_k}$ for a subgroup H and $H^{x_i} H^{x_j} = H^{x_j} H^{x_i}$ for all i, j, then H = G.