- 1. Prove that
 - (a) A_5 is a simple group of order 60;
 - (b) a nonabelian group of order less than 60 cannot be simple;
 - (c) all simple groups of order 60 are isomorphic.
- 2. (Note: problems 2–6 give a description of Sylow subgroups in symmetric groups.) Given integers t and p, define $t_p = p^{\alpha}$ if p^{α} divides t and $p^{\alpha+1}$ does not divide t. Assume that n is natural and p is prime. Prove that

$$(n!)_p = p^{\left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \dots}$$

- 3. Consider the cyclic subgroup $Z = \langle (1, 2, \dots, p) \rangle$ of S_p . Prove that
 - (a) $|S_p : Z|_p = 1$, so $Z \in \operatorname{Syl}_p(S_p)$;
 - (b) $C_{S_p}(Z) = Z.$
- 4. Consider the cyclic subgroup

$$Z = \langle (1, 2, \dots, p)(p+1, p+2, \dots, 2p) \dots ((p-1)p+1, (p-1)p+2, \dots, p^2) \rangle$$

of S_{p^2} . Let $C = C_{S_{n^2}}(Z)$. Denote by X the set

$$\{\{1, 2, \dots, p\}, \{p+1, p+2, \dots, 2p\}, \dots, \{(p-1)p+1, (p-1)p+2, \dots, p^2\}\}$$

of subsets of $\{1, \ldots, p^2\}$. Prove that:

- (a) C permutes the elements of X. In particular, there exists a homomorphism $\varphi : C \to S(X) \simeq S_p$;
- (b) ker $\varphi = A = \langle (1, 2, \dots, p), (p+1, p+2, \dots, 2p), \dots, ((p-1)p+1, (p-1)p+2, \dots, p^2) \rangle$ is abelian;
- (c) there exists a subgroup B of C such that $B \simeq S_p$ and $B \cap A = \{e\}$;
- (d) $C\varphi = B\varphi = S(X) \simeq S_p$. In particular φ is surjective and $C = AB = A \rtimes B$;
- (e) $|S_{p^2}: C|_p = 1$. In particular, for every Sylow *p*-subgroup *P* of *B*, the product *AP* is a Sylow *p*-subgroup of S_{p^2} .
- 5. Consider the cyclic subgroup

$$Z = \langle (1, 2, \dots, p)(p+1, p+2, \dots, 2p) \dots ((p-1)p^{n-1}+1, (p-1)p^{n-1}+2, \dots, p^n) \rangle$$

of S_{p^n} . Let $C = C_{S_{p^n}}(Z)$. Denote by X the set

$$\{\{1, 2, \dots, p\}, \{p+1, p+2, \dots, 2p\}, \dots, \{(p-1)p^{n-1}+1, (p-1)p^{n-1}+2, \dots, p^n\}\}$$

of subsets of $\{1, \ldots, p^n\}$. Prove that:

(a) C permutes the elements of X. In particular, there exists a homomorphism $\varphi : C \to S(X) \simeq S_{p^{n-1}}$;

- (b) ker $\varphi = A = \langle (1, 2, \dots, p), (p+1, p+2, \dots, 2p), \dots, ((p-1)p^{n-1}+1, (p-1)p^{n-1}+2, \dots, p^n) \rangle$ is abelian;
- (c) there exists a subgroup B of C such that $B \simeq S_{p^{n-1}}$ and $B \cap A = \{e\}$;
- (d) $C\varphi = B\varphi = S(X) \simeq S_{p^{n-1}}$. In particular, φ is surjective and $C = AB = A \rtimes B$;
- (e) $|S_{p^n}: C|_p = 1$. In particular, for every Sylow *p*-subgroup *P* of *B*, the product *AP* is a Sylow *p*-subgroup of S_{p^n} .

Thus, a Sylow *p*-subgroup P of S_{p^n} can be written as $P = A_{n-1}A_{n-2}...A_1$, where A_i is elementary abelian of order p^i and, for every i, the product $A_{n-1}A_{n-2}...A_i$ is a normal subgroup of P.

6. Write

$$n = \alpha_0 + \alpha_1 p + \ldots + \alpha_k p^k,$$

where $0 \leq \alpha_i < p$ for all *i*. (This is called the *p*-adic expansion of *n*.) Consider a subgroup

$$L = \underbrace{S_p \times \ldots \times S_p}_{\alpha_1 \text{ times}} \times \underbrace{S_{p^2} \times \ldots \times S_{p^2}}_{\alpha_2 \text{ times}} \times \ldots \times \underbrace{S_{p^k} \times \ldots \times S_{p^k}}_{\alpha_k \text{ times}}$$

of S_n . Prove that $|S_n : L|_p = 1$. Deduce the structure of a Sylow *p*-subgroup of S_n .

- 7. Find all Sylow subgroups of
 - (a) S_5 ;
 - (b) S_{10} .