- 1. (The Frattini Argument) Assume that G acts transitively on a set X and H is a transitive subgroup of G. Denote by G_x the stabilizer in G of $x \in X$. Prove that $G = HG_x$.
- 2. If G acts on a set X, then the Frattini subgroup $\Phi(G)$ does not act transitively on X.
- 3. If $P \in \text{Syl}_p(\Phi(G))$, then P is normal in G. In particular, $\Phi(G)$ is the direct product of its Sylow subgroups.
- 4. Assume that a finite group G acts transitively on Ω , $\alpha \in \Omega$, and G_{α} is the stabilizer of α in G. Let P be a Sylow p-subgroup of G_{α} . Denote by Fix(P) the set

$$\{\omega \in \Omega \mid \forall x \in P, \ \omega x = \omega \}.$$

Prove that $N_G(P)$ acts transitively on Fix(P).

- 5. Assume that G is a transitive subgroup of S_p , p is prime, and G contains a transposition. Prove that $G = S_p$.
- 6. If A is an abelian transitive subgroup of S_n , then |A| = n. In particular, $C_{S_n}(A) = A$.
- 7. An abelian group G is said to be *elementary abelian*, if there exists a prime p such that $g^p = 1$ for every $g \in G$. Prove that
 - (a) G is elementary abelian of order p^n if and only if $G \simeq \mathbb{Z}_p^n$, where \mathbb{Z}_p^n is a direct product of n cyclic groups of order p;
 - (b) there exist transitive elementary abelian subgroups of S_9 , S_{25} , and S_{p^2} , where p is prime;
 - (c) if G is elementary abelian of order p^n , then $\operatorname{Aut}(G) \simeq \operatorname{GL}_n(p)$.