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PRONORMALITY OF HALL SUBGROUPS IN FINITE SIMPLE GROUPS

E. P. Vdovin and D. O. Revin UDC 512.542

Abstract: We prove that the Hall subgroups of finite simple groups are pronormal. Thus we obtain
an affirmative answer to Problem 17.45(a) of the Kourovka Notebook.
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Introduction

According to the definition by P. Hall, a subgroup H of a group G is called pronormal, if for every
g ∈ G the subgroups H and Hg are conjugate in 〈H,Hg〉. The classical examples of pronormal subgroups
are
• normal subgroups;
• maximal subgroups;
• Sylow subgroups of finite groups;
• Carter subgroups (i.e., nilpotent selfnormalizing subgroups) of finite solvable groups;
• Hall subgroups (i.e. subgroups whose order and index are coprime) of finite solvable groups.
The pronormality of subgroups in the last three cases follows from the conjugacy of Sylow, Carter,

and Hall subgroups in finite groups in corresponding classes. In [1, Theorem 9.2] the first author proved
that Carter subgroups in finite groups are conjugate. As a corollary it follows that Carter subgroups of
finite groups are pronormal.
In contrast with Carter subgroups, Hall subgroups in finite groups can be nonconjugate. The goal of

the authors is to find the classes of finite groups with pronormal Hall subgroups. In the present paper
the following result is obtained.

Theorem 1. The Hall subgroups of finite simple groups are pronormal.

The theorem gives an affirmative answer to Problem 17.45(a) from the Kourovka Notebook [2], and
it was announced by the authors in [3, Theorem 7.9]. This result is supposed to use for studying the
problem, whether Cπ is inherited by overgroups of π-Hall subgroups [2, Problem 17.44(a); 4, Conjecture 3;
5, Problems 2 and 3] (all definitions are given below).

1. Notation, Conventions, and Preliminary Results

The notation of the paper is standard.
If G is a finite group, H is a subgroup of G, and x is an element of G; then by Z(G), O∞(G), NG(H),

CG(H), and CG(x) we denote the center of G, the solvable radical of G, the normalizer of H in G, the
centralizer of H in G, and the centralizer of x in G respectively. Given groups A and B, by A ×B and
A ◦B we denote the direct product and the central product respectively. If A and B are subgroups of G,
then by 〈A,B〉 and [A,B] the subgroup generated by A ∪B and the mutual commutant of A and B are
denoted.
We often use the notation of [6]. In particular, by A : B, A˙B, and A .B we denote the split,

nonsplit, and arbitrary extensions of A by B respectively. Given a group G and a subgroup S of the
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symmetric group Symn, we denote the permutation wreath product of G and S by G � S (here n and the
embedding of S into Symn assumed known).

We write H prnG if H is a pronormal subgroup of G.

Throughout π denotes a set of primes. A natural number n with π(n) ⊆ π, is called a π-number,
while a group G with π(G) ⊆ π is called a π-group. The symbol nπ is used for the maximal π-number
dividing n. A subgroup H of G is called a π-Hall subgroup, if π(H) ⊆ π and π(|G : H|) ⊆ π′. The set of
all π-Hall subgroups of G we denote by Hallπ(G). A Hall subgroup is a π-Hall subgroup for some π.

According to [7] we say that G satisfies Eπ (or briefly G ∈ Eπ), if G possesses a π-Hall subgroup.
If, moreover, every two π-Hall subgroups are conjugate, then we say that G satisfies Cπ (G ∈ Cπ). If,
in addition, each π-subgroup of G lies in a π-Hall subgroup, then we say that G satisfies Dπ (G ∈ Dπ).
A group satisfying Eπ (Cπ, Dπ) we also call an Eπ-(Cπ-, Dπ-)group.

A finite group possessing a (sub)normal series such that all factors of the series are either π- or
π′-groups is called π-separable.

Lemma 2 [7, Lemma 1]. Let A be a normal subgroup of a finite group G. If G ∈ Eπ and H ∈
Hallπ(G), then A,G/A ∈ Eπ. Moreover, H ∩A ∈ Hallπ(A) and HA/A ∈ Hallπ(G/A).
Lemma 3 [8; 7, Corollary D5.2]. Every π-separable group satisfies Dπ.

Lemma 4. Let H be a subgroup of G, g ∈ G, y ∈ 〈H,Hg〉. If the subgroups Hy and Hg are
conjugate in 〈Hy,Hg〉, then H and Hg are conjugate in 〈H,Hg〉.
Proof. Let z ∈ 〈Hy,Hg〉, and Hyz = Hg. Then z ∈ 〈H,Hg〉 since 〈Hy,Hg〉 ≤ 〈H,Hg〉. Put

x = yz. Then x ∈ 〈H,Hg〉 and Hx = Hg. �
Lemma 5. Let H be a subgroup of a finite group G. Assume that H includes a pronormal (for

example, a Sylow) subgroup S of G. Then the following are equivalent:

(1) H prnG;

(2) H and Hg are conjugate in 〈H,Hg〉 for each g ∈ NG(S).
Proof. Clearly (1) ⇒ (2). We prove that (2) ⇒ (1). Assume (2). Choose an arbitrary g ∈ G.

Notice that S, Sg ≤ 〈H,Hg〉. Since S is pronormal, there exists y ∈ 〈S, Sg〉 ≤ 〈H,Hg〉 such that Sgy = S.
In particular, gy ∈ NG(S). In view of (2), the subgroups H and Hgy are conjugate in 〈H,Hgy〉. Then
Hy

−1
and Hg are conjugate in 〈Hy−1 ,Hg〉. Now H and Hg are conjugate in 〈H,Hg〉 by Lemma 4. �
Lemma 6. Let : G→ G1 be a homomorphism of groups, H ≤ G. If H prnG, then H prnG.
Proof. Clear. �

Lemma 7. Let G be a finite group and let G1, . . . , Gn be normal subgroups of G such that
[Gi, Gj ] = 1 for i �= j and G = G1 . . . Gn. Assume that for each i = 1, . . . , n a pronormal subgroup Hi
of Gi is chosen, and H = 〈H1, . . . ,Hn〉. Then H prnG.
Proof. Choose an arbitrary g ∈ G. Then g = g1 . . . gn for some g1 ∈ G1, . . . , gn ∈ Gn. Since Hi is

pronormal in Gi for each i = 1, . . . , n, there exist xi ∈
〈
Hi,H

gi
i

〉
such that Hxii = H

gi
i . Since [Gi, Gj ] = 1

for i �= j, we have Hgi = Hgii for each i = 1, . . . , n. The same arguments imply Hxii = Hxi , where
x = x1 . . . xn. Clearly,

x ∈ 〈Hi,Hgii | i = 1, . . . , n
〉
=
〈
Hi,H

g
i | i = 1, . . . , n

〉
= 〈H,Hg〉.

Further,

Hg =
〈
H
g
i | i = 1, . . . , n

〉
=
〈
H
gi
i | i = 1, . . . , n

〉
=
〈
Hxii | i = 1, . . . , n

〉

=
〈
Hxi | i = 1, . . . , n

〉
= Hx. �
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Lemma 8. Let G be a finite group, H ∈ Hallπ(G), A � G, and G = HA. If (H ∩ A) prnA, then
H prnG.

Proof. By Lemma 2, H ∩ A is a π-Hall subgroup of A. Let (H ∩ A) prnA. Choose an arbitrary
g ∈ G and show that Hx = Hg for some x ∈ 〈H,Hg〉.
Since G = HA, there exist h ∈ H and a ∈ A such that g = ha. Since (H ∩ A) prnA, there exists

y ∈ 〈H ∩A,Ha ∩A〉 such that Hy ∩A = Ha ∩A. In view of
y ∈ 〈H ∩A,Ha ∩A〉 ≤ 〈H,Ha〉 = 〈H,Hha〉 = 〈H,Hg〉,

and Lemma 4 we need to consider the case H = Hy. In particular,

H ∩A = Ha ∩A = Hg ∩A.
Now H, Hg, and g are included in NG(H ∩A). Since G = HA, we have G = ANG(H ∩A). Notice that

NG(H ∩A)/NA(H ∩A) = NG(H ∩A)/(A ∩NG(H ∩A)) � ANG(H ∩A)/A = G/A
is a π-group. Consider the normal series

NG(H ∩A) � NA(H ∩A) � H ∩A � 1
of NG(H ∩ A). Each factor of the series is either a π- or π′-group, and so NG(H ∩ A) is π-separable.
Therefore, the subgroup 〈H,Hg〉 of NG(H ∩ A) is π-separable as well, and in particular 〈H,Hg〉 ∈ Dπ
by Lemma 3. Thus the π-Hall subgroups H and Hg are conjugate in 〈H,Hg〉. �
The next lemma gives a sufficient condition for the treatment of Lemma 6 in case when H is a Hall

subgroup of G.

Lemma 9. Let X be a class of finite groups close under subgroups such that X ⊆ Cπ. Let G be
a finite group, H ∈ Hallπ(G), A � G, and let : G→ G/A be the natural homomorphism. Assume also
that A ∈ X. Then H prnG if and only if H prnG.
Proof. The implication ⇒ holds by Lemma 6.
We prove ⇐. Take g ∈ G. We need to show that Hx = Hg for some x ∈ 〈H,Hg〉. Since H prnG,

there exists y ∈ 〈H,Hg〉 such that HyA = HgA. By Lemma 4 we may replace H by Hy and so we may
assume that HA = HgA.
Consider M = 〈H ∩ A,Hg ∩ A〉. Since M ≤ A, A ∈ X and X is closed under subgroups, we have

M ∈ X ⊆ Cπ. Further H∩A,Hg∩A ∈ Hallπ(A) by Lemma 2, andM ≤ A. So H∩A,Hg∩A ∈ Hallπ(M).
Hence Ha ∩ A = Hg ∩ A for some a ∈ M . Since M ≤ 〈H,Hg〉, by Lemma 4 we may replace H by Ha,
and so we may assume that H ∩ A = Hg ∩ A. In such case g ∈ NG(H ∩ A) and H,Hg ≤ NG(H ∩ A).
Since A ∈ Cπ by the Frattini argument, G = ANG(H ∩A). Now

NG(H ∩A)/NA(H ∩A) = NG(H ∩A)/(A ∩NG(H ∩A)) � ANG(H ∩A)/A = G/A = G.
As we noted above H = H

g
, so the isomorphism implies that HNA(H ∩ A) = HgNA(H ∩ A). Denote

the last subgroup by B for brevity. Then B is π-separable and H,Hg ≤ B. Moreover, 〈H,Hg〉 is also
π-separable as a subgroup of the π-separable group B. In particular, by Lemma 3

〈H,Hg〉 ∈ Dπ and H,Hg ∈ Hallπ(〈H,Hg〉),
whence H and Hg are conjugate in 〈H,Hg〉. �
Let G be a finite group and 1π(G) = {p1, . . . , pn}. Following [7] we say that G has a Sylow tower of

type1) (p1, . . . , pn), if G possesses the normal series

G = G0 > G1 > · · · > Gn = 1
such that each section Gi−1/Gi is isomorphic to a Sylow pi-subgroup of G.

1)The parentheses in the notation (p1, . . . , pn) are used for an ordered set, apart from braces. For example,
the symmetric group Sym3 has a Sylow tower of type (2, 3), while the alternating group Alt4 has a Sylow tower of
type (3, 2).
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Lemma 10. Let G be a finite group, and let H be a Hall subgroup with a Sylow tower. Then
H prnG.

Proof. Take g ∈ G. We show that H and Hg are conjugate in 〈H,Hg〉. By [7, Theorem A1]
every two Hall subgroups of a finite groups having Sylow tower of the same type are conjugate. Since H
and Hg are two Hall subgroups of 〈H,Hg〉 having Sylow tower of the same type, H and Hg are conjugate
in 〈H,Hg〉. �
Lemma 11. Let G be a finite nonabelian simple group, let H be its Hall subgroup of order not

divisible either by 2 or 3. Then H has a Sylow tower.

Proof. In case 2 does not divide the order of H, the claim is proven in [9, Theorem B]. In case 3
does not divide the order of H, the claim follows from [10, Lemma 5.1 and Theorem 5.2]. �
The symmetric group and the alternating group of degree n we denote by Symn and Altn respectively.
The finite field containing q elements is denoted by Fq.

Given an odd number q, define ε(q) = (−1)(q−1)/2, i.e., ε(q) = 1, if q − 1 is divisible by 4, and
ε(q) = −1 otherwise. Without additional explanation we use the symbols ε and η to denote either an
element from {+1,−1} or the sign of the element.
Given a group of Lie type the order of the base field is always denoted by q (see [1], for example),

while its characteristic is denoted by p. Given a matrix group G the reduction modulo scalars is denoted
by PG.
Our notation for classical groups agrees with that of [11]. We recall the special notation that we

often use:
GL+n (q) = GLn(q) is the general linear group of degree n over Fq;
SL+n (q) = SLn(q) is the special linear group of degree n over Fq;
PGL+n (q) = PGLn(q) is the projective general linear group of degree n over Fq;
PSL+n (q) = PSLn(q) is the projective special linear group of degree n over Fq;
GL−n (q) = GUn(q) is the general unitary group of degree n over Fq2;
SL−n (q) = SUn(q) is the special unitary group of degree n over Fq2;
PSL−n (q) = PSUn(q) is the projective special unitary group of degree n over Fq2 ;
PGL−n (q) = PGUn(q) is the projective general unitary group of degree n over Fq2 ;
Spn(q) is the symplectic group of degree n over Fq;
PSpn(q) is the projective symplectic group of degree n over Fq.
The necessary facts about properties and structure of finite groups of Lie type can be found in [12–15],

the properties and structure of linear algebraic groups can be found in [12], and the results on connection
between the groups of Lie type and the linear algebraic groups can be found in [13–14]. The definitions
of Borel and Cartan subgroups, a parabolic subgroup, and a maximal torus in a finite group of Lie type
can be also found in [13–14].
We denote groups E6(q) and

2E6(q) by E
+
6 (q) and E

−
6 (q) respectively.

A Frobenius map of an algebraic group G is a surjective endomorphism σ : G→ G such that the set
of its stable points Gσ is finite. Each simple group of Lie type of a finite field F of characteristic p is
known to coincide with Op

′
(Gσ) for an appropriate linear algebraic group G over the algebraic closure

of F and a Frobenius map σ, where Op
′
(Gσ) is a subgroup of Gσ generated by all p-elements.

Let R be a closed σ-stable subgroup of an algebraic group G for a Frobenius map σ of G. Consider
the subgroups R = G∩R and N(G,R) = G∩NG(R), where G = Op

′
(Gσ). Notice that N(G,R) ≤ NG(R)

and N(G,R) �= NG(R) in general.
Lemma 12 [16, the Corollary of Theorems 1–3]. Let G be a finite nonabelian simple group and

S ∈ Syl2(G). Then NG(S) = S, except the following cases:
(1) G � J2, J3, Suz or HN and |NG(S) : S| = 3;
(2) G � 2G2(q) or J1 and NG(S) � 23.7.3 < Hol(23);
(3) G is a group of Lie type over a field of characteristic 2 and NG(S) is a Borel subgroup of G;
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(4) G � PSL2(q), where 3 < q ≡ ±3 (mod 8) and NG(S) � Alt4;
(5) G � Eη6 (q), η = ±, q is odd and NG(S) = S × C, where C is a nontrivial cyclic group of order

(q − η)2′/(q − η, 3)2′ ;
(6) G � PSp2m(q),m ≥ 2, q ≡ ±3 (mod 8), the factor groupNG(S)/S is isomorphic to an elementary

abelian 3-group of order 3t and t can be found from the 2-adic decomposition

m = 2s1 + · · ·+ 2st ,
where s1 > · · · > st ≥ 0;
(7) G � PSLηn(q), n ≥ 3, η = ±, q is odd,

NG(S) � S × C1 × · · · × Ct−1,
t can be found from a 2-adic decomposition

n = 2s1 + · · ·+ 2st ,
where s1 > · · · > st ≥ 0, and C1, . . . , Ct−2, Ct−1 are cyclic groups of orders (q − η)2′ , . . . , (q − η)2′ and
(q − η)2′/(q − η, n)2′ respectively.
Lemma 13 [7, Theorem A4; 17]. Let 2, 3 ∈ π. Then the list of all cases, when Symn possesses

a proper π-Hall subgroup is given in Table 1. In particular, each proper π-Hall subgroup of Symn is
maximal in Symn.

Table 1. π-Hall subgroups
in symmetric groups

n π ∩ π(Symn) H ∈ Hallπ(Symn)
simple π((n − 1)!) Symn−1
7 {2, 3} Sym3× Sym4
8 {2, 3} Sym4 �Sym2

Lemma 14 [18, Theorem 4.1]. Let G be either one of 26 sporadic groups or the Tits group. Assume
that π contains both 2 and 3. Then G possesses a proper π-Hall subgroup H if and only if one of the
conditions on G and π ∩ π(G) from Table 2 holds. In the table the structure of H is also given.

Table 2. π-Hall subgroups
in sporadic groups, case 2, 3 ∈ π
G π ∩ π(G) Structure H
M11 {2, 3} 32 : Q8.2{2, 3, 5} Alt6 .2
M22 {2, 3, 5} 24 : Alt6
M23 {2, 3} 24 : (3×Alt4) : 2{2, 3, 5} 24 : Alt6{2, 3, 5} 24 : (3×Alt5) : 2{2, 3, 5, 7} L3(4) : 22{2, 3, 5, 7} 24 : Alt7{2, 3, 5, 7, 11} M22
M24 {2, 3, 5} 26 : 3̇ Sym6
J1 {2, 3} 2×Alt4{2, 3, 5} 2×Alt5{2, 3, 7} 23 : 7 : 3
J4 {2, 3, 5} 211 : (26 : 3̇ Sym6)
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Lemma 15 [19, Theorem 3.3]. Let G be a finite group of Lie type over a field of characteristic
p ∈ π. If H is a π-Hall subgroup of G, then either H is included in a Borel subgroup or H is a parabolic
subgroup of G.

Lemma 16 [20, Lemma 3.1]. Let G � PSL2(q) � PSLη2(q) � PSp2(q), where q is a power of an
odd prime p, and set ε = ε(q). Assume that 2, 3 ∈ π and p �∈ π. Then G ∈ Eπ if and only if one of the
cases from Table 3 holds.

Table 3. π-Hall subgroups H of
PSL2(q), 2, 3 ∈ π, p �∈ π

π ∩ π(G) H Conditions
⊆ π(q − ε) Dq−ε —
{2, 3} Alt4 (q2 − 1){2,3} = 24
{2, 3} Sym4 (q2 − 1){2,3} = 48
{2, 3, 5} Alt5 (q

2 − 1){2,3,5} = 120

Lemma 17 [20, Lemma 3.2]. Assume that G = GLη2(q), where q is a power of a prime p, P : G →
G/Z(G) = PGLη2(q) is the natural homomorphism, and let ε = ε(q). Assume also that 2, 3 ∈ π and
p �∈ π. A subgroup H of G is a π-Hall subgroup if and only if one of the following holds:
(1) π ∩ π(G) ⊆ π(q − ε), PH is a π-Hall subgroup of the dihedral group D2(q−ε) of order 2(q − ε)

of PG;
(2) π ∩ π(G) = {2, 3}, (q2 − 1){2,3} = 24, PH � Sym4.
Moreover every two π-Hall subgroups of G, satisfying the same statement (1) or (2), are conjugate.

Lemma 18 [20, Lemma 4.3]. Let G∗ = SLηn(q) be a special linear or unitary group with the base
field Fq of characteristic p, and let n ≥ 2. Assume that 2, 3 ∈ π and p �∈ π. Suppose that G∗ ∈ Eπ and
H∗ is a π-Hall subgroup of G∗. Then for G∗, H∗ and π one of the following holds:
(1) n = 2 and for groups G = G∗/Z(G∗) and H = H∗Z(G∗)/Z(G∗) the conditions from Table 3

hold.
(2) Either q ≡ η (mod 12), or n = 3 and q ≡ η (mod 4); Symn satisfies Eπ, π∩π(G∗) ⊆ π(q−η)∪π(n!)

and if r ∈ (π ∩ π(n!)) \ π(q − η), then |G∗|r = |Symn |r; H∗ is included in
M = L ∩G∗ � Zn−1 . Symn,

where L = Z � Symn ≤ GLηn(q) and Z = GLη1(q) is a cyclic group of order q − η.
(3) n = 2m+ k, where k ∈ {0, 1}, m ≥ 1, q ≡ −η (mod 3), π ∩ π(G∗) ⊆ π(q2 − 1), both Symm and

GLη2(q) satisfy Eπ
2); H∗ is included in

M = L ∩G∗ � (GLη2(q) ◦ · · · ◦GLη2(q)︸ ︷︷ ︸
m times

)
. Symm ◦Z,

where L = GLη2(q) � Symm×Z ≤ GLn(q) and Z is a cyclic group of order q − η if k = 1, and Z = 1 if
k = 0. A subgroup H∗, acting by conjugation on the set of factors of type GLη2(q) in the central product

GLη2(q) ◦ · · · ◦GLη2(q)︸ ︷︷ ︸
m times

, (1)

has at most two orbits. The intersection of H∗ with each factor GLη2(q) in (1) is a π-Hall subgroup
of GLη2(q). All intersections of H

∗ with factors from the same orbit satisfy to the same statement (1)
or (2) in Lemma 17.

2)By Lemma 16 conditions GLη2(q) ∈ Eπ and q ≡ −η (mod 3) mean that q ≡ −η (mod r) for all odd primes
r ∈ π(q2 − 1) ∩ π.
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(4) n = 4, π ∩ π(G∗) = {2, 3, 5}, q ≡ 5η (mod 8), (q + η)3 = 3, (q2 + 1)5 = 5 and H∗ � 4 . 24 . Alt6.
(5) n = 11, π ∩ π(G∗) = {2, 3}, (q2 − 1){2,3} = 24, q ≡ −η (mod 3), q ≡ η (mod 4), H∗ is included

in M = L ∩G∗, where L is a subgroup of G∗ of type ((GLη2(q) � Sym4
) ⊥ (GLη1(q) � Sym3

))
and

H∗ = (((Z ◦ 2 . Sym4) � Sym4)× (Z � Sym3)) ∩G,
where Z is a Sylow 2-subgroup of a cyclic group of order q − η.
Lemma 19 [20, Lemma 4.4]. Let G∗ = Sp2n(q) be a symplectic group over a field Fq of character-

istic p. Assume that 2, 3 ∈ π and p �∈ π. Suppose that G∗ ∈ Eπ and H∗ ∈ Hallπ(G). Then both Symn
and SL2(q) satisfy Eπ and π ∩ π(G∗) ⊆ π(q2 − 1). Moreover H∗ is a π-Hall subgroup of

M = Sp2(q) � Symn � (SL2(q)× · · · × SL2(q)︸ ︷︷ ︸
n times

) : Symn ≤ G∗.

Lemma 20 [20, Lemma 7.3]. Let G = Eη6 (q), where q is a power of a prime p, and ε = ε(q). Assume
that 2, 3 ∈ π and p �∈ π. Suppose that G possesses a π-Hall subgroup H. Then π ∩ π(G) ⊆ π(q − ε) and
one of the following holds:
(1) η = ε, 5 ∈ π and H is a π-Hall subgroup of M = ((q − η)6.W (E6))/(3, q − η);
(2) η = −ε and H is a π-Hall subgroup of M = (q2 − 1)2(q + η)2.W (F4).

2. Proof of Theorem 1

Let G be a finite simple group andH ∈ Hallπ(G). We show thatH prnG, and so we prove Theorem 1.
By Lemmas 10 and 11 we may assume that 2, 3 ∈ π. Let S ∈ Syl2(H) ⊆ Syl2(G) and g ∈ NG(S) be
arbitrary. By Lemma 5 it is enough to prove that H and Hg are conjugate in 〈H,Hg〉. If NG(S) = S,
then this statement is true: g ∈ NG(S) = S ≤ H, and so Hg = H. Therefore we may assume that one
of the exceptional cases (1)–(7) from Lemma 12 holds, and H is a proper π-Hall subgroup of G.
We consider cases (1)–(7) from Lemma 12, proving a series of auxiliary lemmas. In order to unify

the notation in the lemmas with the already introduced notation we say that (�) holds, if
(a) G is a finite simple group;
(b) 2, 3 ∈ π;
(c) H ∈ Hallπ(G) and H < G;
(d) S ∈ Syl2(H) ⊆ Syl2(G);
(e) g ∈ NG(S).
The following lemma is immediate from Lemma 14.

Lemma 21. Assume that (�) holds. If G � J2, J3, Suz or HN , then G does not possesses proper
π-Hall subgroups.

Thus if case (1) of Lemma 12 holds, then by Lemma 5 H prnG.

Lemma 22. Assume that (�) holds. Then the following hold:
(1) If G � 2G2(q), then G possesses no proper π-Hall subgroup.
(2) If G � J1, then one of the following holds:
(a) H � 2×Alt4 and H possesses a Sylow tower;
(b) H � 23 : 7 : 3 and H possesses a Sylow tower;
(c) H � 2×Alt5 and H is maximal in G.

(3) If G � J1, then H is conjugate with Hg by an element from 〈H,Hg〉.
Proof. Statement (1) follows from [19, Theorem 1.2], since 3 ∈ π and 3 is the characteristic of the

base field for 2G2(q). Lemma 14 implies the structure of H in (2); moreover, it is clear that in cases (a)
and (b) the subgroup has a Sylow tower. In case (c) H is maximal in view of [6]. Statement (3) follows
from (2), Lemma 10, and pronormality of maximal subgroups. �
Thus Lemmas 5 and 22 imply that H prnG, if (2) of Lemma 12 holds.
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Lemma 23. Assume that (�) holds, and G is a group of Lie type over a field of characteristic 2.
Then S is a maximal unipotent subgroup, NG(S) is a Borel subgroup of G, and one of the following
holds:
(1) H lies in a Borel subgroup and has a Sylow tower;
(2) H is parabolic and includes NG(S).
In both cases H is conjugate with Hg by an element from 〈H,Hg〉.
Proof. In view of Lemma 15, the structure of Borel subgroups and the fact that every parabolic

subgroup includes a Borel subgroup we see that either (1) or (2) holds. By Lemma 10 we conclude that
H is conjugate with Hg by an element from 〈H,Hg〉, if (1) holds. If (2) holds, then the final claim is
evident since g ∈ H. �
Thus if (3) of Lemma 12 holds, then H prnG.

Lemma 24. Assume that (�) holds, G = PSL2(q), q ≡ ±3 (mod 8), and q > 3. Then one of the
following holds:
(1) H is a π-Hall subgroup in a dihedral group of order q − ε, where ε = ε(q) = (−1)(q−1)/2, and it

has a Sylow tower;
(2) H � Alt4 and H has a Sylow tower;
(3) H � Alt5 and H includes NG(S) � Alt4. In particular, Hg = H.
In any case H is conjugate with Hg by an element from 〈H,Hg〉.
Proof. Conditions q ≡ ±3 (mod 8) and q > 3, and Lemma 16 imply the structure of H. Moreover,

if either H is included in a dihedral subgroup, or H � Alt4, then it clearly has a Sylow tower. Assume
that H � Alt5. Then Alt4 = NH(S) ≤ NG(S) � Alt4, and so NH(S) = NG(S). Using (1)–(3) and
Lemma 10, we obtain the final conclusion. �
Thus we have shown that if (4) of Lemma 12 holds, then H prnG.
Lemma 24 implies also the following statement that is extensively used for consideration of items (6)

and (7) in Lemma 12.

Lemma 25. Let 2, 3 ∈ π, q be a power of an odd prime p �∈ π, G∗ ∈ {PSL2(q), PGLη2(q), SL2(q),
GLη2(q)

}
, and H∗ ∈ Hallπ(G∗). Then H∗ prnG∗.

Proof. If G∗ = PSL2(q) and S∗ ∈ Syl2(H∗) ⊆ Syl2(G∗), then by Lemma 12 either NG∗(S∗) = S∗
or G∗ satisfies the conditions of Lemma 24. In both cases H∗ is pronormal.
Now let G∗ = PGLη2(q) and let A∗ = PSL

η
2(q) � PSL2(q) be a normal subgroup of index 2 in G∗. As

we have already shown, H∗ ∩A∗ prnA∗ and G∗ = A∗H∗. Using Lemma 8 we conclude that H∗ prnG∗.
Assume finally that G∗ is isomorphic to either SL2(q) or GLη2(q). Choose in Lemma 9 the class of all

2-groups as X. Then this lemma and the above arguments imply H∗ prnG∗. �
Consider (5) of Lemma 12.

Lemma 26. Assume that (�) holds and G = Eη6 (q), where q is a prime of p �∈ π. Denote ε(q) by ε.
Then
(1) G includes an S-invariant maximal torus T such that

|T | =
{
(q − ε)6/(3, q − ε), if η = ε,
(q − ε)4(q + ε)2, if η = −ε,

moreover H ≤ NG(T ) and NG(T ) is an extension of T by a π-group;
(2) NG(T ) includes NG(S);
(3) H and Hg are conjugate subgroups in 〈H,Hg〉.
Proof. (1) The existence of an S-invariant torus T follows from [12, Theorem 4.10.2]. In view of

[10, Lemma 3.10] such a torus is unique up to conjugation and NG(T ) = N(G,T ). Moreover by [10,
Lemma 3.11] the order of T equals (q − ε)6/(3, q − ε), if ε = η, and it equals (q − ε)4(q + ε)2, if ε = −η.
8



Since G ∈ Eπ and 2, 3 ∈ π, while p �∈ π, by Lemma 20 we see that H lies in NG(T ) for some such
a torus T and NG(T )/T is a π-group.
(2) Since H ≤ NG(T ) and 3 ∈ π, NG(T ) includes a Sylow 3-subgroup of G. So it follows by [10,

Lemma 3.13] that NG(S) ≤ NG(T ).
(3) In view of (2) of the lemma we remain to prove that H prnNG(T ). By (1), NG(T ) is an extension

of an abelian group T by a π-group, and in particular NG(T ) = HT . Now, by Lemma 8, H prnNG(T ). �
Therefore, if (5) of Lemma 12 holds, then H prnG.
In the next lemma we consider (6) and, partially, (7) of Lemma 12. We need to recall the notion

of fundamental subgroup which was introduced in [21]. We use the notion in simple linear, unitary, and
symplectic groups in odd characteristic only, and their central extensions. Recall that if G is one of these
groups, X+ is a long root subgroup of G, and X− is the opposite root subgroup, then each G-conjugate
of 〈X+,X−〉 � SL2(q) is called a fundamental subgroup. If S ∈ Syl2(G), then by FunG(S) the set of
all fundamental subgroups K of G such that K ∩ S ∈ Syl2(K) is denoted. FunG(S) is known to be an
inclusion-maximal S-invariant set of pairwise commuting fundamental subgroups of G (see [21]).

Lemma 27. Assume that (�) holds and G is isomorphic to either PSLηn(q) or PSpn(q), where n > 2.
Let Δ = FunG(S) and suppose that Δ is H-invariant (i.e. H ≤ NG(Δ) in the notation of [21]). Then H
and Hg are conjugate in 〈H,Hg〉.
Proof. Let m = [n/2]. Then |Δ| = m.
In view of [11, Propositions 4.1.4, 4.2.9, and 4.2.10] the stabilizer NG(Δ) in G of Δ coincides with

the image in G of a subgroup M of either SLηn(q) or Spn(q), where M is defined in the following way. If
G = PSLηn(q), then

M = L ∩ SLηn(q) �
(
GLη2(q) ◦ · · · ◦GLη2(q)︸ ︷︷ ︸

m times

)
. Symm ◦Z.

Moreover, L = GLη2(q) �Symm×Z ≤ GLηn(q), and Z is a cyclic group of order q−η if n is odd, and Z = 1
if n is even. If G = PSpn(q), then

M = Sp2(q) � Symm � (SL2(q)× · · · × SL2(q)︸ ︷︷ ︸
m times

) : Symm ≤ Spn(q).

Suppose that the action of NG(Δ) on Δ is denoted by

ρ : NG(Δ)→ Sym(Δ) � Symm .
By [21, Theorem 2], NG(Δ)

ρ = Sym(Δ). By Lemma 13 it follows that a π-Hall subgroup Hρ is either
maximal in Sym(Δ) or equal to Sym(Δ). In particular,

Hρ prnSym(Δ) and NSym(Δ)(H
ρ) = Hρ.

Since NG(S) ≤ NG(Δ) and g ∈ NG(S) there exists an element y ∈ 〈H,Hg〉 such that (Hg)ρ = (Hy)ρ. So
(gy−1)ρ ∈ NSym(Δ)(Hρ) = Hρ.

Denote by A the kernel of ρ. The structure of NG(Δ) implies that if : A→ A/O∞(A) is a natural
homomorphism, then A possesses a normal subgroup isomorphic to

PSL2(q)× · · · × PSL2(q)︸ ︷︷ ︸
m times

,

and index of the subgroup in A is a 2-power. By Lemmas 7–9 (we take the class of solvable groups as X)
and Lemma 25 we conclude that π-Hall subgroups of A are pronormal. Now the π-Hall subgroups of HA

are pronormal by Lemma 8. Moreover, gy−1 ∈ HA since (gy−1)ρ ∈ Hρ. Therefore Hz = Hgy−1 for some
z ∈ 〈H,Hgy−1〉 ≤ 〈H,Hg〉. Let x = zy. Then Hx = Hg and x ∈ 〈H,Hg〉. �
Thus, if either (6) of Lemma 12 holds or (7) of the same lemma holds and for the preimage H∗ ≤

G∗ = SLη(q) of H statement (3) of Lemma 18 holds, then H prnG. Notice also that if (7) of Lemma 12
and (1) of Lemma 18 hold, then H prnG by Lemma 25.
The next lemma allows us to exclude also the case, when (7) of Lemma 12 and (4) of Lemma 18

hold.
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Lemma 28. Let G = PSLη4(q), where q is odd. Then NG(S) = S.

Proof. The claim follows by Lemma 12 since the 2-adic expansion of 4 has only one unit. �
In case, when (7) of Lemma 12 and (2) of Lemma 18 hold, H normalizes a maximal torus of order

(q − η)n−1/(n, q − η) of G = PSLηn(q). We consider this case as (5) of Lemma 12 in the next lemma.
Lemma 29. Assume that (�) holds and G = PSLηn(q), where q is a power of a prime p �∈ π. Suppose

also that q ≡ η (mod 4) and there exists a maximal H-invariant torus T of order (q − η)n−1/(n, q − η).
Then
(1) NG(T ) = N(G,T );
(2) NG(T )/T � Symn;
(3) NG(T ) includes NG(S);
(4) H and Hg are conjugate in 〈H,Hg〉.
Proof. (1) follows from [10, Lemma 3.10], since T is invariant under a given Sylow 2-subgroup S

of G.
(2) Since NG(T ) = N(G,T ), the factor group NG(T )/T = N(G,T )/T is isomorphic to Symn (this

factor group lies in the Weyl group of G, which is isomorphic to Symn; on the other hand, a subgroup of
type T.Symn lies in G and so in NG(T )).
(3) Since H ≤ NG(T ) and 3 ∈ π, NG(T ) includes a Sylow 3-subgroup of G. So, by [10, Lemma 3.13],

NG(S) ≤ NG(T ).
(4) By (3) of the lemma we have to prove that H prnNG(T ). By (2) of the lemma, NG(T ) is an

extension of an abelian group T by Symn. Consider the natural epimorphism : NG(T )→ NG(T )/T �
Symn. By [20, Lemma 2.1(a)], H is a π-Hall subgroup of Symn. Since by 2, 3 ∈ π and Lemma 13 each
π-Hall subgroup is either maximal in Symn or equal to Symn, we have H prnNG(T ). Taking the class of
all abelian groups as X in Lemma 9 we see that H prnNG(T ). �
Thus we have considered all possible cases, except the case, when (7) of Lemma 12 holds, G =

PSLη11(q), and for the preimage H
∗ ≤ SLη11(q) of H statement (5) of Lemma 18 holds. In particular the

following is true.

Lemma 30. Let 2, 3 ∈ π and let q be a power of a prime p �∈ π. Then π-Hall subgroups in PSLηn(q),
PGLηn(q), SL

η
n(q), and GL

η
n(q) for n ≤ 4 and n = 8 are pronormal.

Proof. For PSLηn(q) the lemma is immediate from Lemma 18. For PGL
η
n(q) the claim follows from

Lemma 8 since ∣∣PGLηn(q) : PSL
η
n(q)
∣∣ = (n, q − η)

divides n and so it is a π-number. Finally, SLηn(q) and GL
η
n(q) are extensions of abelian groups by

PSLηn(q) and PGL
η
n(q). The claim of the lemma follows from above arguments and Lemma 9. �

Consider the remaining case. We need

Lemma 31. Let G∗ = SLη11(q), let q be odd, and S∗ ∈ Syl2(G∗). Put Δ = FunG(S∗). Then
(1) |Δ| = 5 and S∗ acting on Δ has exactly two orbits: Γ of order 4 and Γ0 of order 1;
(2) Γ are Γ0 NG∗(S

∗)-invariant;
(3) if Γ′ is an S∗-invariant set of pairwise commuting fundamental subgroups of G∗ such that |Γ′| = 4,

then Γ′ = Γ.
Proof. Denote by ρ the action of NG∗(Δ) on Δ. According to [21, Theorem 2]

NG∗(Δ)
ρ = Sym(Δ) � Sym5 .

Sρ is a Sylow 2-subgroup of Sym5 and so it has two orbits on Δ: one orbit of length 4 and the other of
length 1. This implies (1). Statement (2) follows from the fact that S∗ and Δ are NG∗(S∗)-invariant.
Finally, Γ′ is included in Δ, since Δ is a unique maximal S∗-invariant set of pairwise commuting funda-
mental subgroup. So Γ′ is a union of some orbits of S∗ on Δ and by (1) equals Γ. �
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Lemma 32. Let G∗ = SLη11(q) be a special linear or unitary group and let V be its natural module
equipped with a trivial or unitary form respectively. Assume that H∗ ∈ Hallπ(G∗), where π ∩ π(G∗) =
{2, 3}, and suppose that H∗ lies in a subgroup of type

L =
((
GLη2(q) � Sym4

)× (GLη1(q) � Sym3
)) ∩G∗.

Let S∗ ∈ Syl2(H∗) ⊆ Syl2(G∗) and g∗ ∈ NG∗(S∗). Then
(1) H∗ leaves invariant the set Γ′ = {K1,K2,K3,K4} consisting from pairwise commuting funda-

mental subgroups;

(2) Γ′ is NG∗(S∗)-invariant;
(3) if Vi = [Ki, V ] and U =

∑
Vi, then U is invariant under both H

∗ and NG∗(S∗);
(4) the stabilizer M in G∗ of U is a subgroup with pronormal π-Hall subgroups;
(5) H∗ prnG∗.

Proof. Consider the subgroup
(
GLη2(q) � Sym4

) ∩G∗ of

L =
((
GLη2(q) � Sym4

)× (GLη1(q) � Sym3
)) ∩G∗,

and in the base of the wreath product consider the distinct normal subgroups K1,K2,K3,K4 isomorphic
to SL2(q). Clearly, Ki �∈ G∗ and Ki �∈ L for all i = 1, 2, 3, 4. Moreover, the set Γ′ = {K1,K2,K3,K4}
is L-invariant and so is H∗-invariant. Statement (1) is proven. (2) follows from Lemma 31. Notice that
Vi can be considered as the natural module for Ki; therefore, dim(Vi) = 2 and Vi ∩ Vj = 0 for i �= j.
In particular, dim(U) = 8. Since Γ′ is invariant under both H∗ and NG∗(S∗), the set {V1, V2, V3, V4}
and so the subspace U are also invariant under H∗ and NG∗(S∗). Thus (3) is proven. If η = +,
then the stabilizer M of U is an extension of a p-group by a central product GL8(q) ◦ GL3(3) (see [11,
Proposition 4.1.17]), and by Lemmas 30, 7, and 9 we conclude that π-Hall subgroups ofM are pronormal.
If η = −, then M is isomorphic to a central product GU8(q) ◦ GU3(q) (see [11, Proposition 4.1.4]), and
applying again Lemmas 30 and 7, we obtain (4). In view of (3), H∗ and every g∗ ∈ NG∗(S∗) are included
in M . Now from (4) and Lemma 5 we conclude that H∗ prnG∗. �

We continue the proof of the theorem and consider the remaining case. Assume that (7) of Lemma 12
holds, G = PSLη11(q), and for the preimage H

∗ ≤ SLη11(q) of H statement (5) of Lemma 18 holds. By
Lemma 32 we have H∗ prnSLη11(q). Applying Lemma 6 we conclude the proof of Theorem 1. �

Conclusion

In connection with the proof of Theorem 1 we make a short remark. The proof is naturally divided
into the two cases. The first case is that when a Hall subgroup H of a finite simple group G has odd
order (equivalently, even index). The proof in this case is reduced to application of the Hall theorem [7,
Theorem A1] (Lemma 10) and the Gross theorem [9, Theorem B] (Lemma 11). In the second case, when
a Hall subgroup H has even order (equivalently, odd index), the technique is absolutely different. We
use the fact that H includes a Sylow 2-subgroup S of G, and so, by Lemma 5, we need to check that
H and Hg are conjugate in 〈H,Hg〉 only for those g, that normalize S. Then we apply the structure of
normalizers of Sylow 2-subgroups in finite simple groups obtained by A. S. Kondrat′ev (Lemma 12). This
technique could be probably applied in a more general situation, For example, the following conjecture
is of interest.

Conjecture 1. The subgroups of odd index are pronormal in finite simple groups.

By Lemma 5, Conjecture 1 holds for all finite simple groups possessing a self-normalizing Sylow
2-subgroup (for example, according to the Kondrat′ev theorem (Lemma 12) in the alternating groups of
degree greater than 5, in orthogonal groups, and in the most classes of sporadic and exceptional groups).
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