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ON THE BASE SIZE OF A TRANSITIVE GROUP WITH SOLVABLE POINT
STABILIZER?

E.P.Vdovin

We prove that the base size of a transitive gr@upith solvable point stabilizer and with trivial solvable
radical is not greater thaaprovided the same statement holds for the grou@@-@fiduced automorphisms of
each nonabelian composition factor@&f
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1 Introduction

The term “group” always means a “finite group”. We use symlfpls G andA < Gif Ais a
subgroup ofG, andA is a normal subgroup d&, respectively. IfQ is a (finite) set, then by Syr))
we denote the group of all permutationgbfWe also denote Sy, .. ., n}) by Sym),. GivenH < G
we denote byHg = N,cH? the core oH.

Let A, B be subgroups dB such thaB << A. ThenNg(A/B) := Ng(A) N Ng(B) is thenormalizer
of A/Bin G. If x € Ng(A/B), thenx induces an automorphism 8§ B by Ba— Bx'ax Thus there
exists a homomorphisiig(A/B) — Aut(A/B). The image ofNg(A/B) under this homomorphism is
denoted by Aw(A/B) and is called @roup of G-induced automorphisms of &

Assume thaG acts onQ. An elementx € Q is called aG-regular pointif |xG| = |G|, i.e., if the
G-orbit of x is regular. Define an action & on QX by

g :(is,....0) = (iag, ... 1kg).

If G acts faithfully and transitively o, then the minimak such thatQ* possesses &-regular
point is called thebase sizeof G and is denoted by Ba€g). For every naturaim the number of
G-regular orbits inQ™ is denoted by Re@, m) (this number equals 0 ih < Base()). If H is a
subgroup ofG andG acts on the se® of right cosets oH by right multiplications, thers/Hg acts
faithfully and transitively or2. In this case we denote Ba&/Hg) and RegG/Hg, m) by Base,(G)
and Reg (G, m) respectively. We also say that Bagé) is thebase size of G with respect to. H
Clearly, Basg(G) is the minimalk such that there exist, ..., x € GwithH* N ... N H* = Hg.
There are a lot of papers dedicated to this subject. It is gsijpte to mention all of them, since
the list of references would be much longer that the paper.m&mBtion the papers, whose results
are used in the present article. A.Seress in [8, Theorenpioied that the base size of a primitive
solvable permutation group is not greater than 4. In [4] i[pooved that in everyr-solvable group
G there exist elements, y € G such that the equalitidA N H* n HY = O,(G) holds, whereH is
a n-Hall subgroup ofG (see also [11]). V.l.Zenkov in [13] constructed an examdl@a @groupG
with a solvabler-Hall subgroupH such that the intersection of five subgroups conjugate tith
G is equal toO,(G), while the intersection of every four conjugatestbis greater that®,(G) (see
Example 9 below). In [12] it is proven that if, for every alni@gmple groupS possessing a solvable
n-Hall subgroupH, the inequalities Basg€S) < 5 and Reg(S, 5) > 5 hold, then for every grou@
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possessing a solvabteHall subgroupH the inequality Basg(G) < 5 holds. In the present paper we
prove the following

Theorem 1. Let G be a group and let
6=Gp<G1<Gy<...<G, =G Q)

be a composition series of G that is a refinement of a chiekseriAssume that for some k the
following condition(Orb-solv) holds: If G/G;i_; is nonabelian, then for every solvable subgroup T
of Autg(Gi/Gi_1) we have

Base (Auts(Gi/Gi-1)) < k and Reg; (Auts(Gi/Gi_1), k) > 5.
Then, for every maximal solvable subgroup S of G, we Bag®(G) < k.

The author of the paper insert Problem 17.41 of the “Kouraowiki&book” as follows.
Probleml. [9, Problem 17.41] Le$ be a solvable subgroup of a groGpwith S(G) = {e}.

(a) (L.Babai, A.J.Goodman, L.Pyber) Do there exist sevenugates o5 such that their intersec-
tion is trivial?

(b) Do there exist five conjugates 8fsuch that their intersection is trivial?

Theorem 1 reduces both parts of Problem 1 to the investigafi@almost simple groups. Notice
also that Theorem 1 generalizes the main result of [12] ifidhewing way.

Corollary 2. Let G be a group possessing a solvabiélall subgroup H. Assume that for ¥ 5
condition(Orb-solv) holds. TherBasg(G) < 5.

We prove the corollary in Section 3 of the paper.

We remark that recently it was proved by T.C.Burness, M.¥bkeck, E.O’Brien, A.Shalev, R.A.Wil-
son, etc that if5 is a primitive almost simple group and the action is not stadgdtherG has the base
size at most 7, answering a conjecture of Peter Cameron 2$@md the bibliography thereafter).
In light of Theorem 1, these results seem to be relevant tduiso of Problem 1 in finite almost
simple groups. Nevertheless they cannot be applied imnedgisince arbitrary solvable subgroup of
a symmetric group or of a classical group may lie in a maxirabbsoup giving a standard action.

2 Notation and preliminary results

By |G| we denote the cardinality @. By A : B we denote a split extension of a grofy a groupB.
For a groups and a subgrou of Sym, by G: M we always denote the permutation wreath product.
We identifyG : M with the natural split extensiolg x ... x G,) : M, whereG; ~ ... ~ G, ~ G and
M permutesG,, . .., G,. Given groupG, we denote by5(G) the maximal normal solvable subgroup
of G. We denote bye the identity element o&. A groupG is calledalmost simplef there exists a
nonabelian simple groulp such that Inn() < G < Aut(L).

The following statement is evident.

Lemma 3. If S is a maximal solvable subgroup of G, theg(8)) = S.



Lemmad4. [10, Lemma 1.2] et H be a normal subgroup of a group G, and (&yH)/(B/H) be a
composition factor of GH.
ThenAutg(A/B) =~ Autg,((A/H)/(B/H)).

Lemmab. Let S be a maximal solvable subgroup of G and let N be a norniigrsup of G contain-
ing S(G). Then N((NN'S)=NNS.

Proof. Assume that the claim is false aflis a counterexample of minimal order. Assume that
S(G) # {e} and consider the natural homomorphism

G - G/S(G).

ClearlyS is a maximal solvable subgroup 6fandS(G) = S(G) = {e}. Moreover,G| < |G|. Since
G is a counterexample of minimal order it follows thd$(N N'S) = NN S. Now S(G) lies in bothN
andS, henceNy(N N S) is a complete preimage &ig(NN'S) = NN'S, and soNy(NN'S) = NN S.
ThusS(G) = {e}.

SetM = Ng(NN'S),L = NN\(NN'S) = Nn M. In view of [5, Proposition 3]N NS # {e}, so
S(M) > SNN # {e} andM is a proper subgroup @&. ClearlyS < M, so the maximality o& implies
S(M) < S. MoreoverL is normal inM. SoLS(M) is normal inM. Since|M| < |G|, we obtain

Nisay(S N LS(M))) = SN LS(M) = (S N L)S(M) < S.

Now suppose thate L. We haveNNS < L < N, soLNnS = NNS. By constructionL = Ny(LNS),
soLNS < L. MoreoverL < M, hencex normalizesS(M), and sox normalizes § N L)S(M) =
Nisim)(S N LS(M))), in particular,x € S. ThusL = SN N andG is not a counterexample. O

Assume that a grou@ possesses a normal subgrdupatisfying the following conditions:
(C1) there exists a nonabelian simple graupuch thafl ~ L; x...xLgandL; ~ ...~ L, ~L;
(C2) the subgroupk,, ..., Ly are conjugate i1;

(C3) Cq(T) = {e}.

By [6, Satz 12.5, p. 695 acting by conjugation ol permuted.,, ..., Ly. Condition (C2) implies
that Ng(L1), ..., Ng(Lk) are conjugate ir65. It follows thatG acts on the right cosets di(L,) by
right multiplication, letp : G — Sym, be the corresponding permutation representation. Theracti
by right multiplication ofG on the right cosets dfig(L;) coincides with the action by conjugation of
G onthe seflL,..., L}, andGp is a transitive subgroup of SymBy [6, Hauptsatz 1.4, p. 413] there
exists a monomorphism

¢ G — (Ng(L1) X ... x Ng(L)) : (Gp) = Ns(L1) ¢ (Gp) = M.

SinceCg(L;) is a normal subgroup ds (L), it follows thatCg(L1) X. . .xCgs(Lk) is @ normal subgroup
of M. Consider the natural homomorphism

WM — M/(Cgs(Ly) X ...xCgs(Ly)).
Denoting Aug(Li) = Ng(L;j)/Cs(Li) by A; we obtain a homomorphism
oy :G — (AL x...xA): (Gp) = A (Gp) =: G.

As C(T) = {€}, the kernel ofp o  is equal toCg(Ly,..., L) = {€}, i.e.,¢ o is a monomorphism
and we identifyG and subgroups d& with their images undep o y.
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Lemma6. Assume that G possesses a normal subgroup T satisfyingiomsdC1), (C2), and (C3)
Assume also that @ is solvable. Consider the monomorphigne y defined above. Then the
followings hold:

(a) there exists a maximal solvable subgroup S of G such thatS3T ;

(b) if we choose a maximal solvable subgroup S of G such that G T, thenG possesses a
maximal solvable subgroup suchthat X S andG = ST.

Proof. (a) Consider a minimal subgrowy of G such thatG = MT. ClearlyM N T is normal inM
and is included in the Frattini subgrodgM) of M. OtherwiseM possesses a proper subgrddp
such thatM;(M N T) = M and soG = M, T, a contradiction with the minimality of1. Since®(M)
is nilpotent andM/(M N T) is solvable, it follows thaM is solvable. LetS be a maximal solvable
subgroup ofs containingM, thenG = ST.

(b) Condition (C2) implies\ = Autg(Li) = Autg(L;) = Autg(L,) for alli. Since L, L;] = {e} for
i # JandG = ST, we obtain that

A = Autg(Li) = Ns(Li)/Cs(Li) = Ns(L)T/Cs(L),

and soA /L; =~ Ns(Li)/(Ns(Li) N LiCs(L))) is solvable. Therefor&/(L; x ... x L) = (A1/L1) ¢ (Gp)
is solvable. Consided = S N T and denote byr; the natural projectiom; x ... x Ly — L;. Put
Hi = H™. Clearly,H < Hy x ... x H. If x € SandL} = L;, thenH* = Hj, sinceH is normal in
S. HenceS normalizesH; x ... x Hy, and by the maximality o6 we haveS > H; x ... X Hy, i.e.,
H = Hy x...x Hy. Clearly

NT(H) = NL1><...><Lk(Hl X... X Hk) = NLl(Hl) X... X NLk(Hk)-

By Lemma 5 we hav®t(H) = H, soN,(H;) = Hj fori = 1,...,k. AsNs(L;) < Nu(H), it follows
thatA is equal toN (Hi)Li andNx (H;) is solvable. We obtain that

Ap % ... x A= (Nay(Hp) X ... x Na (HO)T = Nagexa(H)T

andNa,x.xa (H) IS so_lvable. Sinc6 = (A X...xA)S, and sinces normalizedH, it follows thatS
lies inNg(H), and sdG = Ng(H)T. MoreoverNg(H) = Na,x«xa(H) is solvable, therefore there exists
a maximal solvable subgrodof G, containingNg(H). Thus we obtain the# < SandG=ST. ©

Let G be a subgroup of SymA partitionP; LI P, LI... U Py of {1,...,n} is called almsymmetric
partition for G, if only the identity element oG fixes the partition, i.e. the equalify;x = P; for
all j =1,...,mimpliesx = e. Clearly for everyG the partitionP; = {1},P, = {2},...,P, = {n}is
asymmetric.

Lemma?7. [8, Theorem 1.2] et G be a solvable subgroup 8§m,. Then there exists an asymmetric
partition P, LU P, L ... LUPy={1,...,nfwithm< 5.

Lemma 8. Let G be a group and let M be a solvable subgrouf®gi,. Assume that there exists k
such that for every maximal solvable subgroup T of G the iakiigs

Base(G) < kand Reg-(G,k) =s>5

hold. Then for every maximal solvable subgroup S oMGwe haveBase (G M) < k.



Proof. We haveG: M = (G; X...xGp) : M. MoreoverS(G: M) = S(G;) X ... x S(Gy), since
Cu(G: x...x Gy) = {€}). Assume by contradiction th&: M is a counterexample to the lemma with
|G ¢ M| minimal. Then clearh6(G: M) = {e}, i.e.,S(G) = {e}, otherwise we substitue by G/S(G)
and proceed by induction.

SinceG:M is a counterexample to the lemma, there exists a maximalgsubgrou® of G:M
such that for everyy, ..., X« € Gt M we haveS“ N ...NS* # {g}. Itis clear thatG; X...x G,)S =
G ! M, otherwise consider the imageof S under the natural homomorphisB: M — M. We
obtain that G; x ... x G,)S = G!'S < G M, so we substitut& : M by G : S and proceed by
induction. The minimality of : M implies also thatV is transitive, otherwise we would obtain that
G!M < (G My) X (Gt My), whereM; < Sym,,, M, < Sym,_,,,, and proceed by induction. Indeed
denote the projections &@: M ontoG: M; andG M, by m; andxr; respectively. Up to renumbering
we may suppose th&: M; = (G X ... X Gy) : My andG: M, = (Gyy1 X ... X Gp) : M,. Denote
Gy X...xGybyE; andGp,y X ... X Gy by E;. SinceG! M = (G; x... x G,)S, E; < Ker(rp),
andE; < Ker(ry), it follows that G : M)n; = Ei(Sx;) (we identify Ejx; with E;, sinceEjr; ~ E;). By

induction for each € {1, 2} there exist elements;, ..., X; of E;(Sx;) such that
(Sﬂ'i)xl’i Nn...N (Sﬂ'i)xk’i = {e}. (2)
SinceGn; = E;j(Sx;), we may assume thadj, ..., X are inE;. Considerx; = X1X12,..., X =

X1 Xk 2. Since (2) is true for every we have
SNn...NnSX* ={e,

andG is not a counterexample.

Considel. = SN (G; x... x G,) and denote by; the natural projectiofs; X ... x G, — G;. Put
Li = L. ClearlyL < Ly x...xL,. If xe SandG = Gj, thenL* = L;, sinceL is normal inS. Hence
S normalized; x ... x L, and by the maximality o6 we haveL = L; x ... X L,.

ClearlyNg,x. xc,(L1X...XLn) = Ng,(L1)X...XNg,(L,). By Lemma 5 we obtain thg, . «c,(L1X
...XLp) =Lix...xL, henceNg (Li) = L fori = 1,...,n. Denote byQ; the setf{L* | x € G;}, then
G; acts onQ; by conjugation. Sinc®&g (Li) = L;, it follows thatL; is the point stabilizer under this
action. Sef2 = Q; x ... x Q,. For everyx € G: M and for everyi we havelL.X < G; for somej. We
show that

if LY < GjthenL e LJ.G", i.e., there existg € G; such that.| = L. (3)
Since G1 X ... xGy) : M = (G x ... x Gy)S, it follows that there exists € S with G© = G;. We
also havel® = L;, sinceL is normal inS. ThusL) = Lf’lx. Nowsix=g;-...-gn-h, whereg € G

fori = 1,...,nandh € M. SinceM permutes thé&;-s, it follows that for every = 1,...,n, either
G'N G; = {e}, or h centralizesG;. Thus we obtain thaltf’lx = L{. SoG: M acts by conjugation
onQ andS is the stabilizer of the pointg, ..., L,). Therefore we need to show thaf possesses a
(G M)-regular orbit.

The conditions of the lemma imply that there ex@tregular pointsws, ..., ws € QX lying in
distinctG;-orbits. If we choosdy, = e h,,...,h, € M so thatG' = G;, thenw,...,w € QX are
Gi-regular points, and (3) implies that they are in disti@gbrbits. We sety; ; = wihj. By Lemma 7
there exists an asymmetric partiti® U P, LI Ps LI P, L Ps = {1,...,n} for M. Sinces > 5 we can
choosew = (wj,1,...,wi,n) SO thati; = ij if and only if t, j lie in the sameP;. Now we show that
w € QXis a (G M)-regular point. Indeed, considgr= (g: . . . gn)h, whereg; € G; fori = 1,...,nand
h e M, and assume thaig = w. It follows thatwh™ = w(g1...gn), i.€.

(wil,l’ s win,n)h_l = (wi(lh),:b L] wi(nh),n) = (wil,lgl’ cee win,ngn)-
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Thereforew; ,, j and w;;j are in the samé;-orbit, i.e. iy = ij. By construction,jh and j are
in the sameP,. Whenceh stabilizes the partitiofP; L P, LI P; LI P4, LI Ps andh = e. We obtain
that Wi, 1,...,wi.n) = (WiL191,- -, Wi, ngn). By construction,wij,,- is a Gj-regular point for every
j=1...,n,8091=...=gn =€ i.e.g = eandw € QXis a G M)-regular point. O

3 Proof of the main theorem and the corollary

Proof of Theoreni. Assume that the claim is false afis a counterexample of minimal order. Fix
a maximal solvable subgroupof G with Basg(G) > k.
Assume thaB(G) # {e}. Then there exists a minimal elementary abelian normalrsupK of
G. Since elements from distinct minimal normal subgroupsoome, we may suppose that < K
and there existssuch thalG, = K, i.e., the composition series (1) is a refinement of a chisése
starting withK. In this case, if
G- G/K=G

is the natural homomorphism, then
8=G <G,1<...<G,=G

is a composition series @ that is a refinement of a chief series@f Moreover, for every nonabelian
Gi/Gi_1, Lemma 4 implies AW(Gi/Gi_1) ~ Aut(Gi/Gi_1). SinceG satisfieg(Orb-solv) for some
k, we obtain thaG satisfies(Orb-solv) for the samek. In view of the minimality ofG, there exist
X1, ..., X € G such that B _

S“Nn...nS*=5(G).
Now K < S(G), henceS(G) = S(G). ThereforeS*n...nS* = S(G), i.e.,Gis not a counterexample.

Thus we may assume th&(G) = {e}. Consider the generalized Fitting subgrdef{G) of G.
SinceS(G) = {e}, we obtain thaF*(G) = L; x... X Ly is a product of nonabelian simple groups and,
by [7, Theorem 9.8]Cs(F*(G)) = Z(F*(G)) = {€}. In particular,S(F*(G)S) = {e}. If F*(G)S # G,
then, in view of the minimality ofG, there existx, ..., X« € F*(G)S such thatS* n ... N S* =
S(F*(G)S) = {e}, i.e., G is not a counterexample. It follows th& = F*(G)S. Moreover, since
Li,..., L, are nonabelian simple, [6, Satz 12.5, p. 69] implies @aicting by conjugation, permutes
the elements ofL4, ..., L}

SetE; = (Lf) andE; = (L | L ¢ {L] | s€ S}). SinceF*(G) = L; x ... x Ly, we obtain that
F*(G) = E; x E,, whereE; andE; areS-invariant subgroups. By [6, Hilfssatz 9.6, p. 48] thereséexi
a homomorphisnG — G/Cg(E;) x G/Cg(E>), such that the image @ is a subdirect product of
G/Cs(E1) andG/Cg(E>), while the kernel is equal t68g(E;) N Cs(E2) = Co(F*(G)) = {e}. Denote
the projections ofs onto G/Cg(E;) andG/Cg(E,) by n; andn, respectively. Sinc& = F*(G)S,
E: < Ker(r,) andE;, < Ker(ry), it follows thatGr, = E;(Sry) andGr, = Ex(Snp) (we identify Ejr;
with E; SinceEim ~ Ei).

Suppose thaE; # F*(G). Then, by induction for eache {1, 2} there exist elementsy;, . .., X;
of Ej(Sr;) such that

(Sﬂ'i)xl’i Nn...N (Sﬂ'i)xk’i = {e}. 4)

SinceGn; = E;j(Sx;), we may assume thadj, ..., X are inEj. Considerx; = X1X12,..., X =
X1 Xk 2. Since (4) is true for everyand Kerfry) N Ker(r,) = {e}, we have

SMN...NnS* =g,



andG is not a counterexample.

ThereforeE; = F*(G) andS acts transitively oL, ..., L,}. Since Aug(L;) satisfieqOrb-solv)
for somek, we may assume that > 1. By Lemma 6 and by the discussion preceding it, we may
assume tha = (Ay X ... X Ay) : K = A1 1 K, whereA = Autg(Li), K = Gp < Sym, andp is the
permutation representation &f on the sefLy,...,L,}. SinceG = F*(G)S, we see thaK = Sp
is solvable. Lemma 8 (applied with = A) implies that Basg(G) < k for every maximal solvable
subgroups of G. This final contradiction completes the proof. |

Proof of Corollary2. Let G be a group satisfyingOrb-solv) for k = 5. Assume thaG possesses a
solvabler-Hall subgroupH. Consider the natural homomorphism

G - G/S(G).

SinceH is solvable, it follows that there exists a maximal solvalbegroupS of G with H < S. By
Theorem 1 there exist, X», X3, X1, X5 such that

S NS®NS®NS“NSS =S(G).

ThenceH* N He N H* N H* N H*% < SG) andH NnH NnH NH NnH® = {g. Consider
H N S(G) = K. As S(G) is normal inG, we obtain thaK is an-Hall subgroup ofS(G). In view
of [4, Theorem 1.3] or [11, Theorem 1.3] there exisy € S(G) such thakK N KX N KY = O,(S(G)).
As O,(G) is a normalr-subgroup ofG andH is a solvabler-Hall subgroup, we ged,(G) < H and
O,(G) is solvable. Therefor®,(G) < S(G) andO,(G) < O,(S). ThusO,(G) = O,(S). Therefore
there exisiy, yo, ys, ya, ys Such thak¥: N K2 N K» N K¥ N K¥% = O,(G). Denote byM; the complete

preimage oH " inG,fori = 1,2, 3,4,5. SinceKY andS(G) N H* arer-Hall subgroup of5(G) and
sinceS(G) is solvable, there existg € S(G) with

K = (S(G) N HX)? = S(G) N H*2.
Clearlyﬁ% A" and so
H2 N ... .nH%% C S(G).

HenceH 2 N ... N H*%% = K1 N...N K = O,G). |

4 Final notes

In this final section we consider two natural problems relatéh the main subject of the paper.
Problem2. GivenH < G, how to find a lower bound for BagéG)?
Problem3. Is it possible to remove condition Rg@\uts(Gi, Gi-1), k) > 5?

Consider Problem 2 first. Assume tl@asacts faithfully and transitively of2, and Base®) = k > 1.
Consider &-regular point fg, . .., wy) € Q. Clearlyw; # w; fori # j. Hence we obtain

Gl = [(W1, ..., w)G| < Q- (1Q = 1) - ... (IQ - k+ 1) < |Q. (5)
Now consideH < G such thatH is not normal inG and assume that Bag§) = k. Inequality (5)

implies|G/Hg| < |G : HI¥, and so
H/Hg| <G : H[%. (6)
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Inequality (6) gives us the lower bound for Ba$8). Namely,
Base(G) > min{k | |G : H|* > |H/Hgl}. (7)

Theorem 2.13 from [1] implies that there exists a constaoich that every finite group possessing
a solvable subgroup of indexpossesses a normal solvable subgroup of index at nio€onjecture
6.6 from the same paper asserts that 7. Therefore (6) implies that part (a) of Problem 17.41 from
the “Kourovka notebook” is a strengthen of the original Gatjre 6.6 from [1].

Now we discuss Problem 3. First we show that the conditionsegs(Gi, Gi_1),Kk) > 5 is
essential. The following example is given by V.l.Zenkov 113].

Example9. ConsiderG = Sym;:Sym, andS = Sym,:Sym,. It is evident that Al§ is the unique
nonabelian composition factor & (however there are two nonabelian composition factors @eem
phic to Alts). It is also easy to see, that for every solvable subgrbugf Sym. = Aut(Alts) we
have Basg(Symy) < 4. In this case we have Rgg, (Sym;, 4) = 1 and the lemma from [13] implies
that Basg(G) = 5.

The next example obtained in [12] shows that there existdraast simple groufis possessing a
solvable subgroup with Basg(G) = 5.

ExamplelO. ConsideiG = Sym; andS = Sym,: Sym,. Then Basg(G) = 5. Also notice that in [12]
the inequality Reg(G, 5) > 12 is proven. Furthermoii&| < |G : S|? and so in this case Bag&) is
greater than the lower bound given by (7).

We show that ik > 6, then we can guarantee that R6ts(Gi/Gi-1),K) > 5. More precisely,
the following lemma holds.

Lemma 11. Let G be a transitive permutation group acting @n= {1, ..., n} and let the stabilizer S
of 1 be solvable. Assume thatkmaxBase(), 6}. ThenReg@G, k) > 5.

We start with a technical result.

Lemma 12. Let G be a transitive subgroup 8ym,. DenoteQ = {1,...,n}. Let H be the stabilizer
of1in G.

@ (Lip...,ik)and(d, jo,..., jk) are in the same G-orbit if and only (i, ..., ix) and(jo, ..., jk)
are in the same H-orbit;

(b) every G-orbit ofQ* contains an elemerttl, iy, . . ., iy);
(c) (L iy, ..., Iy is a G-regular point if and only ifi,, . . ., ix) is an H-regular point;
(d) the number of G-orbits i®* is equal to the number of H-orbits (& \ {1})<*;

Proof. (a) Evident.

(b) Follows from the fact th&® is transitive.

(©) If (1,ip,...,1x) is aG-regular point, then (i,,...,ix)g = (1,is,...,Ix) Impliesg = e. Assume
thath € H is chosen so that4...,ix)h = (i,...,ik). SinceH is the stabilizer of 1, it follows
that (1ip,...,ikh = (L,i,...,1x), henceh = eand {,,...,Ix) is anH-regular point. Conversely, if
(ip,...,Ix) isanH-regular pointand (l,...,ixg = (L,i5,...,ik), we obtaing € H,and (5, .. ., ik)g =
(ip,...,Ix), henceg = eand (1i,,...,Ix) is aG-regular point.

(d) Clear from (a), (b) and (c). O



Proof of Lemmall. In view of Lemma 12, we have th& acts on® = Q \ {1} and the number of
G-regular orbits or¥ is equal to the number @-regular orbits or®* . Thus we need to prove
that Reg§, k — 1) > 5, whereS acts on®. Sincek > Base(5), Lemma 12 (c) implies that there exist
61, ...,01 € ®such thatdy, ..., 1) is anS-regular point in@**,

ConsiderA = {64, ...,6k_1}, letT be the setwise stabilizerafin S, i.e., T = {xe S| Ax= A} It
is clear that @y, . .., 6x-1)-) is anS-regular point for every- € Sym,_,. Moreover ifo, € Sym,_,,
then @y, . .., Ok-1)-) @and P, . . ., 6-1)-) are in the sam8-orbit if and only if there existx € T such
that @i, . . ., O-1)0)* = (01r, . - ., O-1):). Consider the restriction homomorphigm T — Sym().
Since 0y, ...,6«1) is anS-regular point (and so &-regular point), it follows thakKer(y) = {€}, i.e.,

@ is injective.

Assume thak > 9 first. Consider an asymmetric partiti®nL P, LIP3 LIP4LIPs = {61, 05, ..., 6k 1}
for T# (the existence of the partition follows by Lemma 7). Withtmss of generality we may assume
that|Py| > |P2| > |Ps| > |P4| > |Ps|. Sincek > 9 (and sd{f1,6,,...,0¢1}| > 8) it follows that either
[P1] > 3, or|P4| = |[P2| = |Ps| = 2.

If |P,] > 3, then, up to renumbering, we may assume thal,, 83 € P;. In this case for every
distincto, T € Sym, we have that,, 62, 035, 64 . . ., Ok-1) and Q1r, 027, O3, b4, . . ., O_1) @re in distinct
T¢-orbits, thus these points are in distifciorbits, and so in distincd-orbits. So Red§, k — 1) >
| Sym;| = 6 in this case.

If |P1] = |P,| = |P3| = 2, then, up to renumbering, we may assume éhat € P,, 63,60, € P,, and
0s, 06 € P3. In this case for every distinet, 7 € Sym((1, 2}) x Sym(3, 4}) x Sym((5, 6}) we have that

(0105 O25, 0355 Oar, O5r, O, O7 . . ., Ok1) @ND @11, O2r, O3, Oar, 051, 050, 07 . . ., O_1)

are in distinctT¥-orbits, thus these points are in distifictorbits, and so in distinc-orbits. So
Reg, k- 1) > | Sym(1, 2}) x Sym(3, 4}) x Sym(5, 6})| = 8 in this case.

Now assume that & k < 8. Denote by= the subsef(6y,, ..., 0k-1) | o € Sym_,} of AL
ThenT¢ acts on= and every point oE is T#-regular. Moreovelg| = | Sym_, | = (k- 1)!. We also
have thall ¥ is a solvable subgroup of Sym. It is immediate (from [3], for example), th&t¥| < 24
fork =6,|T¢ < 72 fork = 7, and|T¥| < 144 fork = 8. Now the number of ¥-orbits onZ is equal
to &% and direct computations show that this number is at least 5. O

At the end of the paper we show, how R€G, k) can be applied for the computational purposes.
If we have a grouis and a maximal solvable subgro8mf G, then Theorem 1 gives us an idea, how
to find Baseg(G), or, at least, how to find an upper bound for B4&). However, for computation
purposes it is also important to find the basé&okith respect t&, i.e., elementgq, . . ., X such that
S Nn...NnS* = Sg. In general it is computationally very hard to find these edata and we can
suggest just a probabilistic approach in this directionnd@e byQ the set of right cosets @ in G.

If one knows that Reg(G, k) > sand|G : S| = || = n, then|Q¥| = n¥, while QX possesses at least
SiG/Sg| regular points. So the probability thatandomly chosen elements framform a base oG
with respect t& is not less than

S-1G/Sel _ s
E= > .
nk nk—l
The final lemma allows to obtain a lower bound for B8} k) in a particular case.

Lemma 13. Let G be a group and let M be a solvable subgrou®gim,. Assume that there exists k
such that for every maximal solvable subgroup T of G the iakiigs

Basg(G) < kand Reg-(G,k) =s>5

hold. Then for every maximal solvable subgroup S oMGwe haveReg;(G: M, k) > s.
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Proof. In the proof we preserve the notation from the proof of Lemm#&8sume that the claim is
false andG : M is a counterexample witls : M| minimal. ThenG: M possesses a maximal solvable
subgroupS with Reg;(G ¢ M,k) < s. The minimality of|G : M| implies thatS(G) = {e} (and so
S(G: M) = {e}),andG ' M = (G; X ... x G)S. SinceG: M is a minimal counterexample we also
obtain thatM is transitive. Indeed, assume titis not transitive, s@&!M < (GtM;)x(G:M,), where
M; < Sym, andM; < Sym,_,,.. Up to renumbering we may suppose tGaM; = (G, x...xGp) : M;
andG:M; = (Gyy1 X ... X Gy) : M. DenoteG; x ... x Gy by E; andGy,,1 X... X G, by E,. Consider
the projectiong; andnr, of Gt M ontoG: M; andG: M; respectively. Sinc&:M = (G; x...xG,)S,
E: < Ker(rp), andE, < Ker(ry), it follows that G M)n; = Ei(Sn;) (we identify Ejx; with E;
sinceEjnrj ~ E;). By induction for each € {1, 2} there exists at least (G : M)-regular orbits with
representatives

(SXits---»SXkit) - (SHis -+ -5 S Kis)-

As we noted in the proof of Lemma 8, we may assume #hate E; for | = 1,....k i = 1,2,
j=1,...,s Ifwedenotex 1 ;- X; by X j, thenforeachj = 1,..., swe obtainthat$ % j,..., S X;)
is an G:M)-regular point. Clearly,$x j,...,SX;j)and S x,...., S %) are in distinct G: M)-orbits
for j #1.

ThusM is transitive andc: M = (G; x ... x G,)S. Recall that symbolg,,..., L, Q4,...,Qn,
Quwjfori =1...,8]=1...,n Py, Py Ps P4, Ps are defined in the proof of Lemma 8. In the

proof of Lemma 8 we have shown that a paint (wi, 1, . . ., wj,n) chosen so that = i if and only
if t, j are in the sam®, is a (G ¢ M)-regular point. Ifs > 5, then for eachh = 1,..., swe can choose
w' = (Wi 1,...,wi,n) SO thati; = ij if and only ift, j are in the sam®, andi ¢ {i4,...,i,}. Now (3)

implies thatw?, . . ., w® are in distinct G : M)-orbits, soG: M is not a counterexample. Thags= 5.

Considerw = (wi, 1, - - -, Wi, n) ando = (wj, 1, . . ., wj,n), and assume thai andé are in the same
(G M)-orbit. Therefore there exists= g; .. .gnh, whereg; € G; andh € M, such thatwg = 6. The
equalitywg = 6 can be written as

(wil,lgl’ SRRE) win,ngn) = (wj(lh),l’ SR w](nh),n)-

Thus for everyt = 1,. .., nthe equalityw; 1g: = wj,« holds, and (3) implies that = ju. Moreover,
wi j is aG;j-regular point for every, j, sog; = efort=1,...,n,i.e.,g = h € M. Thus we obtain that

w andg are in the same3: M)-orbit if and only if
there exish € M such that;, ; = Wiyt fort=1,...,n. (8)

Now assume thab and@ are chosen so that
iy = is (respectivelyj; = ) if and only ift, sare in the samé,, 9)

in particularw andé are G M)-regular points. It andé are in the same&3 M)-orbit, then (8) and
(9) imply thath permutesP;, P,, P3, P4, Ps. Since the order of a solvable subgroup of Sysnot
greater than 24, we obtain that there exist at least BSym, |/24) points satisfying (9) and lying in
distinct (G : M)-orbits. |

We remark that the results in [2] and in the preceding paperslatained by using probabilistic
methods. In particular, given almost simple grdapvith nonstandard action, it is shown that the
probability fork (wherek > Base()) randomly chosen points to form the base tends to|Gaends
to infinity.

The author is grateful to the referee for careful considenaif the paper and valuable comments.
In particular, the referees’ suggestions allows to simphe proof of Corollary 2.
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