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ON THE BASE SIZE OF A TRANSITIVE GROUP WITH SOLVABLE POINT
STABILIZER1

E. P. Vdovin

We prove that the base size of a transitive groupG with solvable point stabilizer and with trivial solvable
radical is not greater thank provided the same statement holds for the group ofG-induced automorphisms of
each nonabelian composition factor ofG.
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1 Introduction

The term “group” always means a “finite group”. We use symbolsA 6 G and A P G if A is a
subgroup ofG, andA is a normal subgroup ofG, respectively. IfΩ is a (finite) set, then by Sym(Ω)
we denote the group of all permutations ofΩ. We also denote Sym({1, . . . , n}) by Symn. GivenH 6 G
we denote byHG = ∩g∈GHg the core ofH.

Let A, B be subgroups ofG such thatB P A. ThenNG(A/B) := NG(A) ∩ NG(B) is thenormalizer
of A/B in G. If x ∈ NG(A/B), thenx induces an automorphism ofA/B by Ba 7→ Bx−1ax. Thus there
exists a homomorphismNG(A/B)→ Aut(A/B). The image ofNG(A/B) under this homomorphism is
denoted by AutG(A/B) and is called agroup of G-induced automorphisms of A/B.

Assume thatG acts onΩ. An elementx ∈ Ω is called aG-regular pointif |xG| = |G|, i.e., if the
G-orbit of x is regular. Define an action ofG onΩk by

g : (i1, . . . , ik) 7→ (i1g, . . . , ikg).

If G acts faithfully and transitively onΩ, then the minimalk such thatΩk possesses aG-regular
point is called thebase sizeof G and is denoted by Base(G). For every naturalm the number of
G-regular orbits inΩm is denoted by Reg(G,m) (this number equals 0 ifm < Base(G)). If H is a
subgroup ofG andG acts on the setΩ of right cosets ofH by right multiplications, thenG/HG acts
faithfully and transitively onΩ. In this case we denote Base(G/HG) and Reg(G/HG,m) by BaseH(G)
and RegH(G,m) respectively. We also say that BaseH(G) is thebase size of G with respect to H.
Clearly, BaseH(G) is the minimalk such that there existx1, . . . , xk ∈ G with Hx1 ∩ . . . ∩ Hxk = HG.

There are a lot of papers dedicated to this subject. It is impossible to mention all of them, since
the list of references would be much longer that the paper. Wemention the papers, whose results
are used in the present article. A.Seress in [8, Theorem 1.1]proved that the base size of a primitive
solvable permutation group is not greater than 4. In [4] S.Dolfi proved that in everyπ-solvable group
G there exist elementsx, y ∈ G such that the equalityH ∩ Hx ∩ Hy

= Oπ(G) holds, whereH is
a π-Hall subgroup ofG (see also [11]). V.I.Zenkov in [13] constructed an example of a groupG
with a solvableπ-Hall subgroupH such that the intersection of five subgroups conjugate withH in
G is equal toOπ(G), while the intersection of every four conjugates ofH is greater thanOπ(G) (see
Example 9 below). In [12] it is proven that if, for every almost simple groupS possessing a solvable
π-Hall subgroupH, the inequalities BaseH(S) 6 5 and RegH(S, 5) > 5 hold, then for every groupG
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2004 Balzan prize in mathematics.
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possessing a solvableπ-Hall subgroupH the inequality BaseH(G) 6 5 holds. In the present paper we
prove the following

Theorem 1. Let G be a group and let

{e} = G0 < G1 < G2 < . . . < Gn = G (1)

be a composition series of G that is a refinement of a chief series. Assume that for some k the
following condition(Orb-solv) holds: If Gi/Gi−1 is nonabelian, then for every solvable subgroup T
of AutG(Gi/Gi−1) we have

BaseT(AutG(Gi/Gi−1)) 6 k and RegT(AutG(Gi/Gi−1), k) > 5.

Then, for every maximal solvable subgroup S of G, we haveBaseS(G) 6 k.

The author of the paper insert Problem 17.41 of the “Kourovkanotebook” as follows.

Problem1. [9, Problem 17.41] LetS be a solvable subgroup of a groupG with S(G) = {e}.

(a) (L.Babai, A.J.Goodman, L.Pyber) Do there exist seven conjugates ofS such that their intersec-
tion is trivial?

(b) Do there exist five conjugates ofS such that their intersection is trivial?

Theorem 1 reduces both parts of Problem 1 to the investigation of almost simple groups. Notice
also that Theorem 1 generalizes the main result of [12] in thefollowing way.

Corollary 2. Let G be a group possessing a solvableπ-Hall subgroup H. Assume that for k= 5
condition(Orb-solv) holds. ThenBaseH(G) 6 5.

We prove the corollary in Section 3 of the paper.
We remark that recently it was proved by T.C.Burness, M.W.Liebeck, E.O’Brien, A.Shalev, R.A.Wil-

son, etc that ifG is a primitive almost simple group and the action is not standard, thenG has the base
size at most 7, answering a conjecture of Peter Cameron (see [2] and the bibliography thereafter).
In light of Theorem 1, these results seem to be relevant to a solution of Problem 1 in finite almost
simple groups. Nevertheless they cannot be applied immediately since arbitrary solvable subgroup of
a symmetric group or of a classical group may lie in a maximal subgroup giving a standard action.

2 Notation and preliminary results

By |G| we denote the cardinality ofG. By A : B we denote a split extension of a groupA by a groupB.
For a groupG and a subgroupM of Symn by G ≀M we always denote the permutation wreath product.
We identifyG ≀ M with the natural split extension (G1 × . . . ×Gn) : M, whereG1 ≃ . . . ≃ Gn ≃ G and
M permutesG1, . . . ,Gn. Given groupG, we denote byS(G) the maximal normal solvable subgroup
of G. We denote bye the identity element ofG. A groupG is calledalmost simpleif there exists a
nonabelian simple groupL such that Inn(L) 6 G 6 Aut(L).

The following statement is evident.

Lemma 3. If S is a maximal solvable subgroup of G, then NG(S) = S .
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Lemma 4. [10, Lemma 1.2]Let H be a normal subgroup of a group G, and let(A/H)/(B/H) be a
composition factor of G/H.

ThenAutG(A/B) ≃ AutG/H((A/H)/(B/H)).

Lemma 5. Let S be a maximal solvable subgroup of G and let N be a normal subgroup of G contain-
ing S(G). Then NN(N ∩ S) = N ∩ S .

Proof. Assume that the claim is false andG is a counterexample of minimal order. Assume that
S(G) , {e} and consider the natural homomorphism

: G→ G/S(G).

ClearlyS is a maximal solvable subgroup ofG andS(G) = S(G) = {e}. Moreover,|G| < |G|. Since
G is a counterexample of minimal order it follows thatNN(N∩S) = N∩S. Now S(G) lies in bothN
andS, henceNN(N ∩ S) is a complete preimage ofNN(N ∩ S) = N ∩ S, and soNN(N ∩ S) = N ∩ S.
ThusS(G) = {e}.

SetM = NG(N ∩ S), L = NN(N ∩ S) = N ∩ M. In view of [5, Proposition 3],N ∩ S , {e}, so
S(M) > S∩N , {e} andM is a proper subgroup ofG. ClearlyS 6 M, so the maximality ofS implies
S(M) 6 S. MoreoverL is normal inM. SoLS(M) is normal inM. Since|M| < |G|, we obtain

NLS(M)(S ∩ LS(M))) = S ∩ LS(M) = (S ∩ L)S(M) 6 S.

Now suppose thatx ∈ L. We haveN∩S 6 L 6 N, soL∩S = N∩S. By construction,L = NN(L∩S),
so L ∩ S P L. MoreoverL 6 M, hencex normalizesS(M), and sox normalizes (S ∩ L)S(M) =
NLS(M)(S ∩ LS(M))), in particular,x ∈ S. ThusL = S ∩ N andG is not a counterexample. �

Assume that a groupG possesses a normal subgroupT satisfying the following conditions:

(C1) there exists a nonabelian simple groupL such thatT ≃ L1 × . . . × Lk andL1 ≃ . . . ≃ Lk ≃ L;

(C2) the subgroupsL1, . . . , Lk are conjugate inG;

(C3) CG(T) = {e}.

By [6, Satz 12.5, p. 69],G acting by conjugation onT permutesL1, . . . , Lk. Condition (C2) implies
that NG(L1), . . . ,NG(Lk) are conjugate inG. It follows thatG acts on the right cosets ofNG(L1) by
right multiplication, letρ : G → Symk be the corresponding permutation representation. The action
by right multiplication ofG on the right cosets ofNG(L1) coincides with the action by conjugation of
G on the set{L1, . . . , Lk}, andGρ is a transitive subgroup of Symk. By [6, Hauptsatz 1.4, p. 413] there
exists a monomorphism

ϕ : G→ (NG(L1) × . . . × NG(Lk)) : (Gρ) = NG(L1) ≀ (Gρ) = M.

SinceCG(Li) is a normal subgroup ofNG(Li), it follows thatCG(L1)×. . .×CG(Lk) is a normal subgroup
of M. Consider the natural homomorphism

ψ : M → M/(CG(L1) × . . . ×CG(Lk)).

Denoting AutG(Li) = NG(Li)/CG(Li) by Ai we obtain a homomorphism

ϕ ◦ ψ : G→ (A1 × . . . × Ak) : (Gρ) ≃ A1 ≀ (Gρ) =: G.

As CG(T) = {e}, the kernel ofϕ ◦ ψ is equal toCG(L1, . . . , Lk) = {e}, i.e.,ϕ ◦ ψ is a monomorphism
and we identifyG and subgroups ofG with their images underϕ ◦ ψ.
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Lemma 6. Assume that G possesses a normal subgroup T satisfying conditions(C1), (C2), and (C3).
Assume also that G/T is solvable. Consider the monomorphismϕ ◦ ψ defined above. Then the
followings hold:

(a) there exists a maximal solvable subgroup S of G such that G= S T;

(b) if we choose a maximal solvable subgroup S of G such that G= S T, thenG possesses a
maximal solvable subgroupS such that S6 S andG = S T.

Proof. (a) Consider a minimal subgroupM of G such thatG = MT. ClearlyM ∩ T is normal inM
and is included in the Frattini subgroupΦ(M) of M. OtherwiseM possesses a proper subgroupM1

such thatM1(M ∩ T) = M and soG = M1T, a contradiction with the minimality ofM. SinceΦ(M)
is nilpotent andM/(M ∩ T) is solvable, it follows thatM is solvable. LetS be a maximal solvable
subgroup ofG containingM, thenG = S T.

(b) Condition (C2) impliesAi = AutG(Li) = AutG(Li) ≃ AutG(L1) for all i. Since [Li , L j] = {e} for
i , j andG = S T, we obtain that

Ai = AutG(Li) = NG(Li)/CG(Li) = NS(Li)T/CG(Li),

and soAi/Li ≃ NS(Li)/(NS(Li) ∩ LiCG(Li)) is solvable. ThereforeG/(L1 × . . . × Lk) ≃ (A1/L1) ≀ (Gρ)
is solvable. ConsiderH = S ∩ T and denote byπi the natural projectionL1 × . . . × Lk → Li . Put
Hi = Hπi . Clearly,H 6 H1 × . . . × Hk. If x ∈ S andLx

i = L j, thenHx
i = H j, sinceH is normal in

S. HenceS normalizesH1 × . . . × Hk, and by the maximality ofS we haveS > H1 × . . . × Hk, i.e.,
H = H1 × . . . × Hk. Clearly

NT(H) = NL1×...×Lk(H1 × . . . × Hk) = NL1(H1) × . . . × NLk(Hk).

By Lemma 5 we haveNT(H) = H, soNLi (Hi) = Hi for i = 1, . . . , k. As NS(Li) 6 NAi (Hi), it follows
thatAi is equal toNAi (Hi)Li andNAi (Hi) is solvable. We obtain that

A1 × . . . × Ak = (NA1(H1) × . . . × NAk(Hk))T = NA1×...×Ak(H)T

andNA1×...×Ak(H) is solvable. SinceG = (A1 × . . . × Ak)S, and sinceS normalizesH, it follows thatS
lies inNG(H), and soG = NG(H)T. MoreoverNG(H) = NA1×...×Ak(H) is solvable, therefore there exists
a maximal solvable subgroupS of G, containingNG(H). Thus we obtain thatS 6 S andG = S T. �

Let G be a subgroup of Symn. A partitionP1 ⊔ P2 ⊔ . . .⊔ Pm of {1, . . . , n} is called anasymmetric
partition for G, if only the identity element ofG fixes the partition, i.e. the equalityP j x = P j for
all j = 1, . . . ,m implies x = e. Clearly for everyG the partitionP1 = {1},P2 = {2}, . . . ,Pn = {n} is
asymmetric.

Lemma 7. [8, Theorem 1.2]Let G be a solvable subgroup ofSymn. Then there exists an asymmetric
partition P1 ⊔ P2 ⊔ . . . ⊔ Pm = {1, . . . , n} with m6 5.

Lemma 8. Let G be a group and let M be a solvable subgroup ofSymn. Assume that there exists k
such that for every maximal solvable subgroup T of G the inequalities

BaseT(G) 6 k and RegT(G, k) = s> 5

hold. Then for every maximal solvable subgroup S of G≀ M we haveBaseS(G ≀ M) 6 k.
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Proof. We haveG ≀ M = (G1 × . . . ×Gn) : M. MoreoverS(G ≀ M) = S(G1) × . . . × S(Gn), since
CM(G1 × . . . ×Gn) = {e}. Assume by contradiction thatG ≀ M is a counterexample to the lemma with
|G ≀ M| minimal. Then clearlyS(G ≀ M) = {e}, i.e.,S(G) = {e}, otherwise we substituteG by G/S(G)
and proceed by induction.

SinceG≀M is a counterexample to the lemma, there exists a maximal solvable subgroupS of G≀M
such that for everyx1, . . . , xk ∈ G ≀M we haveSx1 ∩ . . .∩Sxk , {e}. It is clear that (G1 × . . .×Gn)S =
G ≀ M, otherwise consider the imageS of S under the natural homomorphismG ≀ M → M. We
obtain that (G1 × . . . × Gn)S = G ≀ S < G ≀ M, so we substituteG ≀ M by G ≀ S and proceed by
induction. The minimality ofG ≀ M implies also thatM is transitive, otherwise we would obtain that
G ≀ M 6 (G ≀ M1) × (G ≀ M2), whereM1 6 Symm, M2 6 Symn−m, and proceed by induction. Indeed
denote the projections ofG ≀M ontoG ≀ M1 andG ≀M2 by π1 andπ2 respectively. Up to renumbering
we may suppose thatG ≀ M1 = (G1 × . . . × Gm) : M1 andG ≀ M2 = (Gm+1 × . . . × Gn) : M2. Denote
G1 × . . . × Gm by E1 andGm+1 × . . . × Gn by E2. SinceG ≀ M = (G1 × . . . × Gn)S, E1 6 Ker(π2),
andE2 6 Ker(π1), it follows that (G ≀ M)πi = Ei(Sπi) (we identifyEiπi with Ei, sinceEiπi ≃ Ei). By
induction for eachi ∈ {1, 2} there exist elementsx1,i , . . . , xk,i of Ei(Sπi) such that

(Sπi)
x1,i ∩ . . . ∩ (Sπi)

xk,i = {e}. (2)

SinceGπi = Ei(Sπi), we may assume thatx1,i , . . . , xk,i are inEi. Considerx1 = x1,1x1,2, . . . , xk =

xk,1xk,2. Since (2) is true for everyi, we have

Sx1 ∩ . . . ∩ Sxk = {e},

andG is not a counterexample.
ConsiderL = S∩ (G1 × . . .×Gn) and denote byπi the natural projectionG1 × . . . ×Gn→ Gi. Put

Li = Lπi . ClearlyL 6 L1× . . .× Ln. If x ∈ S andGx
i = G j, thenLx

i = L j , sinceL is normal inS. Hence
S normalizesL1 × . . . × Ln and by the maximality ofS we haveL = L1 × . . . × Ln.

ClearlyNG1×...×Gn(L1×. . .×Ln) = NG1(L1)×. . .×NGn(Ln). By Lemma 5 we obtain thatNG1×...×Gn(L1×

. . . × Ln) = L1 × . . . × Ln, henceNGi (Li) = Li for i = 1, . . . , n. Denote byΩi the set{Lx
i | x ∈ Gi}, then

Gi acts onΩi by conjugation. SinceNGi (Li) = Li , it follows thatLi is the point stabilizer under this
action. SetΩ = Ω1 × . . . × Ωn. For everyx ∈ G ≀ M and for everyi we haveLx

i 6 G j for somej. We
show that

if Lx
i 6 G j thenLx

i ∈ L
G j

j , i.e., there existsy ∈ G j such thatLyj = Lx
i . (3)

Since (G1 × . . . × Gn) : M = (G1 × . . . × Gn)S, it follows that there existss ∈ S with Gs
i = G j. We

also haveLs
i = L j , sinceL is normal inS. ThusLx

i = Ls−1x
j . Now s−1x = g1 · . . . · gn · h, wheregi ∈ Gi

for i = 1, . . . , n andh ∈ M. SinceM permutes theGi-s, it follows that for everyi = 1, . . . , n, either
Gh

i ∩ Gi = {e}, or h centralizesGi. Thus we obtain thatLs−1x
j = L

g j

j . SoG ≀ M acts by conjugation
onΩ andS is the stabilizer of the point (L1, . . . , Ln). Therefore we need to show thatΩk possesses a
(G ≀ M)-regular orbit.

The conditions of the lemma imply that there existG1-regular pointsω1, . . . , ωs ∈ Ω
k
1 lying in

distinctG1-orbits. If we chooseh1 = e, h2, . . . , hn ∈ M so thatGhi
1 = Gi, thenωhi

1 , . . . , ω
hi
s ∈ Ω

k
i are

Gi-regular points, and (3) implies that they are in distinctGi-orbits. We setωi, j = ω
hj

i . By Lemma 7
there exists an asymmetric partitionP1 ⊔ P2 ⊔ P3 ⊔ P4 ⊔ P5 = {1, . . . , n} for M. Sinces > 5 we can
chooseω = (ωi1,1, . . . , ωin,n) so thati t = i j if and only if t, j lie in the samePl . Now we show that
ω ∈ Ωk is a (G ≀M)-regular point. Indeed, considerg = (g1 . . . gn)h, wheregi ∈ Gi for i = 1, . . . , n and
h ∈ M, and assume thatωg = ω. It follows thatωh−1

= ω(g1 . . . gn), i.e.

(ωi1,1, . . . , ωin,n)h
−1
= (ωi(1h),1, . . . , ωi(nh),n) = (ωi1,1g1, . . . , ωin,ngn).
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Thereforeωi( jh), j andωi j , j are in the sameG j-orbit, i.e. i( jh) = i j. By construction,jh and j are
in the samePl. Whenceh stabilizes the partitionP1 ⊔ P2 ⊔ P3 ⊔ P4 ⊔ P5 andh = e. We obtain
that (ωi1,1, . . . , ωin,n) = (ωi1,1g1, . . . , ωin,ngn). By construction,ωi j , j is a G j-regular point for every
j = 1, . . . , n, sog1 = . . . = gn = e, i.e. g = e andω ∈ Ωk is a (G ≀ M)-regular point. �

3 Proof of the main theorem and the corollary

Proof of Theorem1. Assume that the claim is false andG is a counterexample of minimal order. Fix
a maximal solvable subgroupS of G with BaseS(G) > k.

Assume thatS(G) , {e}. Then there exists a minimal elementary abelian normal subgroupK of
G. Since elements from distinct minimal normal subgroups commute, we may suppose thatG1 6 K
and there existsl such thatGl = K, i.e., the composition series (1) is a refinement of a chief series
starting withK. In this case, if

: G→ G/K = G

is the natural homomorphism, then

{ē} = Gl < Gl+1 < . . . < Gn = G

is a composition series ofG that is a refinement of a chief series ofG. Moreover, for every nonabelian
Gi/Gi−1, Lemma 4 implies AutG(Gi/Gi−1) ≃ AutG(Gi/Gi−1). SinceG satisfies(Orb-solv) for some
k, we obtain thatG satisfies(Orb-solv) for the samek. In view of the minimality ofG, there exist
x1, . . . , xk ∈ G such that

S
x̄1
∩ . . . ∩ S

x̄k
= S(G).

Now K 6 S(G), henceS(G) = S(G). ThereforeSx1∩. . .∩Sxk = S(G), i.e.,G is not a counterexample.
Thus we may assume thatS(G) = {e}. Consider the generalized Fitting subgroupF∗(G) of G.

SinceS(G) = {e}, we obtain thatF∗(G) = L1 × . . .× Ln is a product of nonabelian simple groups and,
by [7, Theorem 9.8],CG(F∗(G)) = Z(F∗(G)) = {e}. In particular,S(F∗(G)S) = {e}. If F∗(G)S , G,
then, in view of the minimality ofG, there existx1, . . . , xk ∈ F∗(G)S such thatSx1 ∩ . . . ∩ Sxk =

S(F∗(G)S) = {e}, i.e., G is not a counterexample. It follows thatG = F∗(G)S. Moreover, since
L1, . . . , Ln are nonabelian simple, [6, Satz 12.5, p. 69] implies thatG, acting by conjugation, permutes
the elements of{L1, . . . , Ln}.

SetE1 := 〈LS
1 〉 andE2 = 〈Li | Li < {Ls

1 | s ∈ S}〉. SinceF∗(G) = L1 × . . . × Ln, we obtain that
F∗(G) = E1× E2, whereE1 andE2 areS-invariant subgroups. By [6, Hilfssatz 9.6, p. 48] there exists
a homomorphismG → G/CG(E1) × G/CG(E2), such that the image ofG is a subdirect product of
G/CG(E1) andG/CG(E2), while the kernel is equal toCG(E1) ∩ CG(E2) = CG(F∗(G)) = {e}. Denote
the projections ofG ontoG/CG(E1) andG/CG(E2) by π1 andπ2 respectively. SinceG = F∗(G)S,
E1 6 Ker(π2) andE2 6 Ker(π1), it follows thatGπ1 = E1(Sπ1) andGπ2 = E2(Sπ2) (we identifyEiπi

with Ei sinceEiπi ≃ Ei).
Suppose thatE1 , F∗(G). Then, by induction for eachi ∈ {1, 2} there exist elementsx1,i , . . . , xk,i

of Ei(Sπi) such that
(Sπi)

x1,i ∩ . . . ∩ (Sπi)
xk,i = {e}. (4)

SinceGπi = Ei(Sπi), we may assume thatx1,i , . . . , xk,i are inEi. Considerx1 = x1,1x1,2, . . . , xk =

xk,1xk,2. Since (4) is true for everyi and Ker(π1) ∩ Ker(π2) = {e}, we have

Sx1 ∩ . . . ∩ Sxk = {e},
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andG is not a counterexample.
ThereforeE1 = F∗(G) andS acts transitively on{L1, . . . , Ln}. Since AutG(L1) satisfies(Orb-solv)

for somek, we may assume thatn > 1. By Lemma 6 and by the discussion preceding it, we may
assume thatG = (A1 × . . . × An) : K = A1 ≀ K, whereAi = AutG(Li), K = Gρ 6 Symn andρ is the
permutation representation ofG on the set{L1, . . . , Ln}. SinceG = F∗(G)S, we see thatK = Sρ
is solvable. Lemma 8 (applied withG = A) implies that BaseS(G) 6 k for every maximal solvable
subgroupS of G. This final contradiction completes the proof. �

Proof of Corollary2. Let G be a group satisfying(Orb-solv) for k = 5. Assume thatG possesses a
solvableπ-Hall subgroupH. Consider the natural homomorphism

: G→ G/S(G).

SinceH is solvable, it follows that there exists a maximal solvablesubgroupS of G with H 6 S. By
Theorem 1 there existx1, x2, x3, x4, x5 such that

Sx1 ∩ Sx2 ∩ Sx3 ∩ Sx4 ∩ Sx5 = S(G).

ThenceHx1 ∩ Hx2 ∩ Hx3 ∩ Hx4 ∩ Hx5 6 S(G) and H
x̄1
∩ H

x̄2
∩ H

x̄3
∩ H

x̄4
∩ H

x̄5
= {ē}. Consider

H ∩ S(G) = K. As S(G) is normal inG, we obtain thatK is aπ-Hall subgroup ofS(G). In view
of [4, Theorem 1.3] or [11, Theorem 1.3] there existx, y ∈ S(G) such thatK ∩ Kx ∩ Ky

= Oπ(S(G)).
As Oπ(G) is a normalπ-subgroup ofG andH is a solvableπ-Hall subgroup, we getOπ(G) 6 H and
Oπ(G) is solvable. ThereforeOπ(G) 6 S(G) andOπ(G) 6 Oπ(S). ThusOπ(G) = Oπ(S). Therefore
there existy1, y2, y3, y4, y5 such thatKy1 ∩Ky2 ∩Ky3 ∩Ky4 ∩Ky5 = Oπ(G). Denote byMi the complete
preimage ofH

x̄i
in G, for i = 1, 2, 3, 4, 5. SinceKyi andS(G) ∩ Hxi areπ-Hall subgroup ofS(G) and

sinceS(G) is solvable, there existszi ∈ S(G) with

Kyi = (S(G) ∩ Hxi )zi = S(G) ∩ Hxi zi .

ClearlyH
x̄i
= H

x̄i z̄i
and so

Hx1z1 ∩ . . . ∩ Hx5z5 ⊆ S(G).

HenceHx1z1 ∩ . . . ∩ Hx5z5 = Ky1 ∩ . . . ∩ Ky5 = Oπ(G). �

4 Final notes

In this final section we consider two natural problems related with the main subject of the paper.

Problem2. GivenH 6 G, how to find a lower bound for BaseH(G)?

Problem3. Is it possible to remove condition RegS(AutG(Gi ,Gi−1), k) > 5?

Consider Problem 2 first. Assume thatG acts faithfully and transitively onΩ, and Base(G) = k > 1.
Consider aG-regular point (ω1, . . . , ωk) ∈ Ωk. Clearlyωi , ω j for i , j. Hence we obtain

|G| = |(ω1, . . . , ωk)G| 6 |Ω| · (|Ω| − 1) · . . . · (|Ω| − k+ 1) < |Ω|k. (5)

Now considerH 6 G such thatH is not normal inG and assume that BaseH(G) = k. Inequality (5)
implies |G/HG| < |G : H|k, and so

|H/HG| < |G : H|k−1. (6)
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Inequality (6) gives us the lower bound for BaseH(G). Namely,

BaseH(G) > min{k | |G : H|k−1 > |H/HG|}. (7)

Theorem 2.13 from [1] implies that there exists a constantc such that every finite group possessing
a solvable subgroup of indexn possesses a normal solvable subgroup of index at mostnc. Conjecture
6.6 from the same paper asserts thatc 6 7. Therefore (6) implies that part (a) of Problem 17.41 from
the “Kourovka notebook” is a strengthen of the original Conjecture 6.6 from [1].

Now we discuss Problem 3. First we show that the condition RegS(AutG(Gi ,Gi−1), k) > 5 is
essential. The following example is given by V.I.Zenkov in [13].

Example9. ConsiderG = Sym5 ≀Sym2 andS = Sym4 ≀Sym2. It is evident that Alt5 is the unique
nonabelian composition factor ofG (however there are two nonabelian composition factors isomor-
phic to Alt5). It is also easy to see, that for every solvable subgroupT of Sym5 = Aut(Alt5) we
have BaseT(Sym5) 6 4. In this case we have RegSym4

(Sym5, 4) = 1 and the lemma from [13] implies
that BaseS(G) = 5.

The next example obtained in [12] shows that there exists an almost simple groupG possessing a
solvable subgroupS with BaseS(G) = 5.

Example10. ConsiderG = Sym8 andS = Sym4 ≀Sym2. Then BaseS(G) = 5. Also notice that in [12]
the inequality RegS(G, 5) > 12 is proven. Furthermore|S| < |G : S|2 and so in this case BaseS(G) is
greater than the lower bound given by (7).

We show that ifk > 6, then we can guarantee that RegS(AutG(Gi/Gi−1), k) > 5. More precisely,
the following lemma holds.

Lemma 11. Let G be a transitive permutation group acting onΩ = {1, . . . , n} and let the stabilizer S
of 1 be solvable. Assume that k= max{Base(G), 6}. ThenReg(G, k) > 5.

We start with a technical result.

Lemma 12. Let G be a transitive subgroup ofSymn. DenoteΩ = {1, . . . , n}. Let H be the stabilizer
of 1 in G.

(a) (1, i2, . . . , ik) and(1, j2, . . . , jk) are in the same G-orbit if and only if(i2, . . . , ik) and( j2, . . . , jk)
are in the same H-orbit;

(b) every G-orbit ofΩk contains an element(1, i2, . . . , ik);

(c) (1, i2, . . . , ik) is a G-regular point if and only if(i2, . . . , ik) is an H-regular point;

(d) the number of G-orbits inΩk is equal to the number of H-orbits in(Ω \ {1})k−1;

Proof. (a) Evident.
(b) Follows from the fact thatG is transitive.
(c) If (1, i2, . . . , ik) is aG-regular point, then (1, i2, . . . , ik)g = (1, i2, . . . , ik) impliesg = e. Assume

that h ∈ H is chosen so that (i2, . . . , ik)h = (i2, . . . , ik). SinceH is the stabilizer of 1, it follows
that (1, i2, . . . , ik)h = (1, i2, . . . , ik), henceh = e and (i2, . . . , ik) is anH-regular point. Conversely, if
(i2, . . . , ik) is anH-regular point and (1, i2, . . . , ik)g = (1, i2, . . . , ik), we obtaing ∈ H, and (i2, . . . , ik)g =
(i2, . . . , ik), henceg = eand (1, i2, . . . , ik) is aG-regular point.

(d) Clear from (a), (b) and (c). �
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Proof of Lemma11. In view of Lemma 12, we have thatS acts onΘ = Ω \ {1} and the number of
G-regular orbits onΩk is equal to the number ofS-regular orbits onΘk−1. Thus we need to prove
that Reg(S, k− 1) > 5, whereS acts onΘ. Sincek > Base(G), Lemma 12 (c) implies that there exist
θ1, . . . , θk−1 ∈ Θ such that (θ1, . . . , θk−1) is anS-regular point inΘk−1.

Consider∆ = {θ1, . . . , θk−1}, let T be the setwise stabilizer of∆ in S, i.e.,T = {x ∈ S | ∆x = ∆}. It
is clear that (θ1σ, . . . , θ(k−1)σ) is anS-regular point for everyσ ∈ Symk−1. Moreover ifσ, τ ∈ Symk−1,
then (θ1σ, . . . , θ(k−1)σ) and (θ1τ, . . . , θ(k−1)τ) are in the sameS-orbit if and only if there existsx ∈ T such
that (θ1σ, . . . , θ(k−1)σ)x

= (θ1τ, . . . , θ(k−1)τ). Consider the restriction homomorphismϕ : T → Sym(∆).
Since (θ1, . . . , θk−1) is anS-regular point (and so aT-regular point), it follows thatKer(ϕ) = {e}, i.e.,
ϕ is injective.

Assume thatk > 9 first. Consider an asymmetric partitionP1⊔P2⊔P3⊔P4⊔P5 = {θ1, θ2, . . . , θk−1}

for Tϕ (the existence of the partition follows by Lemma 7). Withoutloss of generality we may assume
that |P1| > |P2| > |P3| > |P4| > |P5|. Sincek > 9 (and so|{θ1, θ2, . . . , θk−1}| > 8) it follows that either
|P1| > 3, or |P1| = |P2| = |P3| = 2.

If |P1| > 3, then, up to renumbering, we may assume thatθ1, θ2, θ3 ∈ P1. In this case for every
distinctσ, τ ∈ Sym3 we have that (θ1σ, θ2σ, θ3σ, θ4 . . . , θk−1) and (θ1τ, θ2τ, θ3τ, θ4, . . . , θk−1) are in distinct
Tϕ-orbits, thus these points are in distinctT-orbits, and so in distinctS-orbits. So Reg(S, k − 1) >
|Sym3 | = 6 in this case.

If |P1| = |P2| = |P3| = 2, then, up to renumbering, we may assume thatθ1, θ2 ∈ P1, θ3, θ4 ∈ P2, and
θ5, θ6 ∈ P3. In this case for every distinctσ, τ ∈ Sym({1, 2}) × Sym({3, 4}) × Sym({5, 6}) we have that

(θ1σ, θ2σ, θ3σ, θ4σ, θ5σ, θ6σ, θ7 . . . , θk−1) and (θ1τ, θ2τ, θ3τ, θ4τ, θ5τ, θ6τ, θ7 . . . , θk−1)

are in distinctTϕ-orbits, thus these points are in distinctT-orbits, and so in distinctS-orbits. So
Reg(S, k− 1) > |Sym({1, 2}) × Sym({3, 4}) × Sym({5, 6})| = 8 in this case.

Now assume that 66 k 6 8. Denote byΞ the subset{(θ1σ, . . . , θ(k−1)σ) | σ ∈ Symk−1} of ∆k−1.
ThenTϕ acts onΞ and every point ofΞ is Tϕ-regular. Moreover|Ξ| = |Symk−1 | = (k − 1)!. We also
have thatTϕ is a solvable subgroup of Symk−1. It is immediate (from [3], for example), that|Tϕ| 6 24
for k = 6, |Tϕ| 6 72 for k = 7, and|Tϕ| 6 144 fork = 8. Now the number ofTϕ-orbits onΞ is equal
to (k−1)!

|Tϕ|
and direct computations show that this number is at least 5. �

At the end of the paper we show, how RegS(G, k) can be applied for the computational purposes.
If we have a groupG and a maximal solvable subgroupS of G, then Theorem 1 gives us an idea, how
to find BaseS(G), or, at least, how to find an upper bound for BaseS(G). However, for computation
purposes it is also important to find the base ofG with respect toS, i.e., elementsx1, . . . , xk such that
Sx1 ∩ . . . ∩ Sxk = SG. In general it is computationally very hard to find these elements and we can
suggest just a probabilistic approach in this direction. Denote byΩ the set of right cosets ofS in G.
If one knows that RegS(G, k) > s and |G : S| = |Ω| = n, then|Ωk| = nk, whileΩk possesses at least
s|G/SG| regular points. So the probability thatk randomly chosen elements fromΩ form a base ofG
with respect toS is not less than

ε =
s · |G/SG|

nk
>

s
nk−1

.

The final lemma allows to obtain a lower bound for RegS(G, k) in a particular case.

Lemma 13. Let G be a group and let M be a solvable subgroup ofSymn. Assume that there exists k
such that for every maximal solvable subgroup T of G the inequalities

BaseT(G) 6 k and RegT(G, k) = s> 5

hold. Then for every maximal solvable subgroup S of G≀ M we haveRegS(G ≀ M, k) > s.
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Proof. In the proof we preserve the notation from the proof of Lemma 8. Assume that the claim is
false andG ≀ M is a counterexample with|G ≀ M|minimal. ThenG ≀ M possesses a maximal solvable
subgroupS with RegS(G ≀ M, k) < s. The minimality of |G ≀ M| implies thatS(G) = {e} (and so
S(G ≀ M) = {e}), andG ≀ M = (G1 × . . . ×Gn)S. SinceG ≀ M is a minimal counterexample we also
obtain thatM is transitive. Indeed, assume thatM is not transitive, soG≀M 6 (G≀M1)×(G≀M2), where
M1 6 Symm andM2 6 Symn−m. Up to renumbering we may suppose thatG≀M1 = (G1× . . .×Gm) : M1

andG ≀M2 = (Gm+1× . . .×Gn) : M2. DenoteG1× . . .×Gm by E1 andGm+1× . . .×Gn by E2. Consider
the projectionsπ1 andπ2 of G ≀M ontoG ≀M1 andG ≀M2 respectively. SinceG ≀M = (G1× . . .×Gn)S,
E1 6 Ker(π2), and E2 6 Ker(π1), it follows that (G ≀ M)πi = Ei(Sπi) (we identify Eiπi with Ei

sinceEiπi ≃ Ei). By induction for eachi ∈ {1, 2} there exists at leasts (G ≀ M)-regular orbits with
representatives

(S x1,i,1, . . . ,S xk,i,1), . . . , (S x1,i,s, . . . ,S xk,i,s).

As we noted in the proof of Lemma 8, we may assume thatxl,i, j ∈ Ei for l = 1, . . . , k, i = 1, 2,
j = 1, . . . , s. If we denotexl,1, j · xl,2, j by xl, j, then for eachj = 1, . . . , swe obtain that (S x1, j, . . . ,S xk, j)
is an (G≀M)-regular point. Clearly, (S x1, j, . . . ,S xk, j) and (S x1,l, . . . ,S xk,l) are in distinct (G≀M)-orbits
for j , l.

ThusM is transitive andG ≀ M = (G1 × . . . × Gn)S. Recall that symbolsL1, . . . , Ln, Ω1, . . . ,Ωn,
Ω, ωi, j for i = 1, . . . , s, j = 1, . . . , n, P1,P2,P3,P4,P5 are defined in the proof of Lemma 8. In the
proof of Lemma 8 we have shown that a pointω = (ωi1,1, . . . , ωin,n) chosen so thati t = i j if and only
if t, j are in the samePl is a (G ≀ M)-regular point. Ifs > 5, then for eachi = 1, . . . , s we can choose
ωi
= (ωi1,1, . . . , ωin,n) so thati t = i j if and only if t, j are in the samePl andi < {i1, . . . , in}. Now (3)

implies thatω1, . . . , ωs are in distinct (G ≀ M)-orbits, soG ≀ M is not a counterexample. Thuss= 5.
Considerω = (ωi1,1, . . . , ωin,n) andθ = (ω j1,1, . . . , ω jn,n), and assume thatω andθ are in the same

(G ≀ M)-orbit. Therefore there existsg = g1 . . . gnh, wheregi ∈ Gi andh ∈ M, such thatωg = θ. The
equalityωg = θ can be written as

(ωi1,1g1, . . . , ωin,ngn) = (ω j(1h),1, . . . , ω j(nh),n).

Thus for everyt = 1, . . . , n the equalityωit ,tgt = ω j(th),t holds, and (3) implies thati t = j(th). Moreover,
ωi, j is aG j-regular point for everyi, j, sogt = e for t = 1, . . . , n, i.e.,g = h ∈ M. Thus we obtain that

ω andθ are in the same (G ≀ M)-orbit if and only if

there existh ∈ M such thatωit ,t = ω j(th),t for t = 1, . . . , n. (8)

Now assume thatω andθ are chosen so that

i t = is (respectivelyj t = js) if and only if t, sare in the samePl , (9)

in particular,ω andθ are (G ≀M)-regular points. Ifω andθ are in the same (G ≀M)-orbit, then (8) and
(9) imply thath permutesP1,P2,P3,P4,P5. Since the order of a solvable subgroup of Sym5 is not
greater than 24, we obtain that there exist at least 5 (= |Sym5 |/24) points satisfying (9) and lying in
distinct (G ≀ M)-orbits. �

We remark that the results in [2] and in the preceding papers are obtained by using probabilistic
methods. In particular, given almost simple groupG with nonstandard action, it is shown that the
probability fork (wherek > Base(G)) randomly chosen points to form the base tends to 1 as|G| tends
to infinity.

The author is grateful to the referee for careful consideration of the paper and valuable comments.
In particular, the referees’ suggestions allows to simplify the proof of Corollary 2.
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