
Siberian Mathematical Journal, Vol. 41, No. 2, 2000, p. 246-251

E. P. Vdovin1

Large Normal Nilpotent Subgroups of Finite Groups

December 18, 1998
Introduction. Let Ψ be some property of groups that is inherited by all subgroups

(for example, commutativity, nilpotence, solvability, etc.). Then the natural question arises:
How small is a normal Ψ-subgroup in an arbitrary finite group G? We state it more precisely
as the following

Question. Given a finite group G with a Ψ-subgroup of index n, is it true that G has
a normal Ψ-subgroup whose index is bounded by some function f(n)?

Clearly, for every property Ψ inherited by subgroups, it suffices to take the function n! as
f(n). In the article [1], Babai, Goodman, and Pyber addressed this question in the case when
the property Ψ is cyclicity or solvability. In particular, they proved, modulo the classification
of finite simple groups, that if a finite group G has a solvable subgroup of index n then G has
a normal solvable subgroup of index at most nc for some absolute constant c [1, Theorem
2.13]. In the same article, they posed the question of validity of a similar assertion in the case
when the property Ψ is commutativity or nilpotence.

In the present article, we give a positive answer to this question in the case when the prop-
erty Ψ is nilpotence. Clearly, the theorem on existence of a large normal solvable subgroup
in an arbitrary finite group reduces solution of a similar problem for nilpotent groups to
finding a large normal nilpotent subgroup in an arbitrary finite solvable group. Therefore,
throughout the article we mainly deal with solvable groups and only at the end we prove, as
a corollary, the theorem for an arbitrary finite group.

The question of existence of a large normal subgroup in a solvable finite group was
discussed in many articles. Probably, for the first time it was raised in the two articles [2, 3]
by Burnside in which he proved solvability of a group of order pαqβ (p and q are prime
numbers) and existence in such a group (with minor exceptions) of a normal p-subgroup of
order greater than pαq−β. Much more later V. S. Monakhov [4] found a gap in Burnside’s
proof, repaired it, and clarified the statement, providing an exact description for all possible
exceptions. In [4], Burnside’s theorem was generalized to the case of a solvable group whose
order is pαm with pα > m and GCD(pα,m)=1.

¿From this viewpoint, the main theorem of the present article (as stated below) is a max-
imally possible generalization in this direction.

The notations and definitions we use in the article can be found in [5]. If G is a group
then H ≤ G means that H is a subgroup of G and H E G means that H is a normal
subgroup of G. The index of a subgroup H in G is denoted by |G : H|. If H is a normal
subgroup of G then G/H is the factor-group of G by H. By G = AnB we mean a semidirect
product of groups A and B in which B is a normal subgroup. If M is a subset of a group
G then 〈M〉 is the subgroup generated by M ; we let |M | stand for the cardinality of M (or
the order of an element if we have a single element rather than a set). By CG(M) we mean
the centralizer of a set M in a group G; CG(G) = ζ(G) is the center of G. Conjugation of
an element x by an element y in a group G is written as xy = y−1xy. The Fitting subgroup
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of a group G is denoted by F (G) and the Frattini subgroup of G, by Φ(G). If x and y are
two elements of a group G then [x, y] = x−1xy is the commutator of x and y; [G,G] = G′ is
the derived subgroup of G. The exponent of a group G is denoted by exp(G).

Given a finite group G, we denote by Op(G) the largest normal p-subgroup of G and by
ip(G), the minimal number k such that the intersection of k Sylow p-subgroups of G equals
Op(G).

Given a vector space V , we denote by GL(V ) the group of all invertible transformations
of V ; GL(n, q) is the group of all invertible matrices over a finite filed Fq of order q. A sub-
group G of the group GL(n, q) is called semisimple if its order is coprime to q = pα and
unipotent if its order is a power of p.

If ϕ is a homomorphism of a group G and g is an element of G then Gϕ and gϕ are
the images of G and g under ϕ. The automorphism group of a group G is denoted by
Aut(G).
The Main Theorem Let G be a nontrivial finite solvable group. If G has a nilpotent
subgroup of index n then |G : F (G)| < n5.

1. Available results.
Lemma 1 [5, Theorem 5.3.3] If G is a group of order pm and |G : Φ(G)| = pr then
the order of CAut(G)(G/Φ(G)) divides p(m−r)r.
Corollary Let G be a finite p-group. If the order of an automorphism α of G does not
divide p and α acts trivially on G/Φ(G) then α centralizes G.
Proof Let α be a nontrivial automorphism whose order does not divide p. Then by Lemma
1 α does not belong to CAut(G)(G/Φ(G)).

Lemma 2 [5, Theorem 5.3.2] If G is a finite p-group then Φ(G) = [G,G]Gp.
Corollary If G is a finite p-group then G/Φ(G) is an elementary abelian group.
Proof Since [G,G] ≤ Φ(G), the group G/Φ(G) is abelian. Moreover, each element g of G
raised to the power p belongs to Φ(G).
Lemma 3 [5, Theorem 5.2.4] If G is a finite group then the following properties are
equivalent:

(i) the group G is nilpotent;
(ii) the group G is a direct product of its Sylow subgroups.

Corollary Let G be a finite group and B a normal p-subgroup of G. Suppose that G
contains an element α whose order does not divide p and which does not centralize B. Then
G is not nilpotent.
Proof The group 〈α,B〉 cannot be represented as a direct product of its Sylow subgroups;
therefore, it is not nilpotent. In consequence, the whole group G is not nilpotent.
Lemma 4 [5, Theorem 5.4.4] If G is a solvable group and F is the Fitting subgroup
of G then CG(F ) = ζ(F ).
Lemma 5 [6, Theorem 1.6] If G is a nilpotent subgroup of GL(V ) whose order is
coprime to the characteristic of the field over which the finite vector space V is defined, then
|G| ≤ |V |β/2, where β = log 32/ log 9.
Lemma 6 [7] The inequality ip(G) ≤ 3 holds for every finite solvable group G.
Corollary Let P be a Sylow p-subgroup of a finite nontrivial solvable group G and Op(G) =
{e}. Then |G : P |2 > |P |.
Proof In view of Lemma 6, there are three Sylow p-subgroups P1, P2, and P3 such that
P1∩P2∩P3 = {e}. Since G is not a p-group, the inequality |G| > |P1|·|P2|

|P1∩P2| holds. Furthermore,
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since P1 ∩ P2 ∩ P3 = {e}, we have |P1 ∩ P2| · |P3| < |G|. Thus,

|G| > |P1| · |P2|
|P1 ∩ P2|

>
|P1| · |P2 · |P3| · |P1 ∩ P2|

|G| · |P1 ∩ P2|
=
|P1|3

|G|
.

Therefore, |G|2 > |P1|3, and |G : P1|2 > |P1| by Lagrange’s theorem [5, Theorem 1.3.6].
Remark The claim of Lemma 6 is proved in [8] for all finite groups. However, the proof of
this fact in the general case essentially uses the classification of finite simple groups.

2. Proof of the main theorem. In this section we prove the main theorem we have
stated in the Introduction.

Let H be a nilpotent subgroup of G such that |G : H| = n. Consider N = F (G). In view
of Lemma 3, N = P1 × · · · × Pk where Pi are Sylow pi-subgroups of N .

Consider the homomorphism ϕ : G → G/Φ(N) = G, henceforth denoting the images of
elements and sets under this homomorphism by overlining the letters signifying them.

Lagrange’s theorem implies |G : N | = |G : N | and |G : H| ≤ |G : H|; therefore, to prove
the main theorem, it suffices to show that |G : N | < |G : H|5.

By the Corollary to Lemma 2, the group N can be represented as N = P1 × · · · × Pk,
where |Pi| = pni

i and exp(Pi) = pi, i.e., as a direct product of elementary abelian groups.
Thus, each Pi may be regarded as a vector space of dimension ni over the field Fpi

. Since
N E G, we may consider the homomorphisms ϕi : G → GL(ni, pi), i = 1, . . . , k. These
homomorphisms induce homomorphisms ϕi : G → GL(ni, pi) and ϕi : G/N → GL(ni, pi)
which we denote by the same letters to simplify notation. Let N1 be a subgroup of N
invariant under conjugation by some element x of G. The element x acts unipotently on N1

if for every i the image of x under ϕi acts unipotently on N1∩Pi. If we take as N1 the whole
group N then we say that x acts unipotently. By analogy we define the notion of unipotent
action on the subgroup N1 for the elements x̄ ∈ G and x ∈ G/N . A subgroup U of G acts
unipotently on a subgroup N1 of N if each element of U acts unipotently on N1 (surely, N1

is assumed invariant under conjugation by the group U). In the case when N1 coincides with
N , we say that the group U acts unipotently. We define unipotent action for subgroups of
the groups G and G/N in the same way as for elements.

With the above notations, the following holds:
Lemma 7 Let U be a normal subgroup of G which acts unipotently. Then U ≤ N , and so
U ≤ N and G/N lacks nontrivial normal subgroups that act unipotently.
Proof We may assume that N ≤ U : otherwise the group NU is normal in G and acts
unipotently.

Suppose that U 6= N and V/N is a minimal characteristic subgroup of U/N . Then
V E G and V/N is a p-group. Let P be a Sylow p-subgroup of V . Then V = P ·

∏
pi 6=p Pi.

Since V acts unipotently, its image under each ϕi such that pi 6= p is the identity; hence,
P centralizes every Pi for which pi 6= p. In view of the Corollary to Lemma 1, the group P
centralizes each Pi with pi 6= p; i.e., it can be represented as a direct product of its Sylow
subgroups and is nilpotent by Lemma 3. We thus obtain a normal nilpotent subgroup of G
which does not lie in N . This contradicts the definition of N . The proof of the lemma is
complete.

Note that as a straightforward consequence we have CG(N) = ζ(N) = N . Moreover, N =
F (G). Indeed, N is a normal abelian subgroup. Since F (G) is nilpotent, by the Corollary
to Lemma 3 it acts unipotently on N and hence lies in N . Therefore, we may assume that
G = G and F (G) is a product of elementary abelian groups. For this reason, to lighten
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notation we henceforth omit the overline. This consequence means in fact that the following
holds:
Lemma 8 If G is a finite solvable group then F (G/Φ(F (G))) = F (G)/Φ(F (G)).
Lemma 9 Let H be a nilpotent subgroup of G and let N1 be a subgroup of N which is
invariant under conjugation by H; moreover, the action of H on N1 is not unipotent. Then
the group 〈H,N1〉 is not nilpotent.
Proof Indeed, suppose that the group 〈H,N1〉 is nilpotent. Then N1 is its normal subgroup
which is a direct product of elementary abelian groups. Therefore, the group 〈H,N1〉 acts on
N1 unipotently (by the Corollary to Lemma 3), and so the group H acts on N1 unipotently,
which contradicts the hypothesis. The proof of the lemma is over.

We continue the proof of the theorem. Let H1 be the subset of all elements of H that
act unipotently. Then H1 is a normal subgroup of H. Indeed, closure with respect to
inversion and conjugation is obvious; therefore, it suffices to check closure with respect to
multiplication. Let x, y ∈ H1 be arbitrary two elements. Then |xϕi| = pmi and |yϕi| = pli for
all i = 1, . . . , k. Since Hϕi is a nilpotent group, it can be represented as a direct product of
its Sylow subgroups. In particular, the product of any two pi-elements is again a pi-element;
i.e., |(xy)ϕi| = pni ; hence, the element xy acts unipotently for all i and belongs therefore to
H1.

The subgroup H ∩N is invariant under conjugation by H. Therefore, Lemma 9 implies
that H acts on H∩N unipotently. Since N is an elementary abelian group, we may consider
the factor-group N/(N ∩ H) = Q1 × · · · × Qk, where |Qi| = pmi

i and exp(Qi) = pi. By in-
variance of N ∩H under conjugation by H, we may consider the induced homomorphisms
φi : H → GL(mi, pi) = GL(Qi). For every i the group Hφi is nilpotent; therefore, it can be
represented as Ti × Ui, the direct product of its semisimple and unipotent parts. In view of
Lemma 5, |Ti| < |Qi|β. Demonstrate that |H/H1| ≤

∏
i |Ti| and, in consequence,

|H/H1| ≤ |N/(N ∩H)|β.(1)

Let x and y be two elements in H whose images in H/H1 differ. Then there is an i ∈
{1, . . . , k} such that xφiUi 6= yφiUi. Indeed, otherwise the element xy−1 acts unipotently
on N/(N ∩ H). Since this element acts unipotently also on N ∩ H, it acts unipotently on
the whole group N and belongs therefore to H1. This implies that the images of x and y
in the group H/H1 coincide, which contradicts the choice of these elements. To complete
the proof of inequality (1), we need the following simple lemma.
Lemma 10 Suppose that A is a finite set and ψi : A → Ai (i = 1, . . . , n) are mappings
such that, for arbitrary two distinct elements a and b in A, there is an i such that aψi 6= bψi.
Then |A| ≤ |A1| · . . . · |An|.
Proof By the hypothesis of the lemma, we can arrange an injective embedding of A into
the Cartesian product A1 × · · · × An by the following rule: a → (aψ1 , . . . , aψn). It follows
that |A| ≤ |A1 × · · · × An| = |A1| · . . . · |AN |, which completes the proof of the lemma.

To finish the proof of inequality (1), observe that there are mappings of the elements
of the group H/H1 into the cosets of the subgroups Ui in the groups Hφi which satisfy
the hypothesis of the lemma. Therefore, |H/H1| ≤

∏
i |Hφi : Ui| =

∏
i |Ti|, and inequality

(1) is proven.
We now validate the inequality

|G/N : H1N/N |2 > |H1N/N | = |H1/(H ∩N)|.(2)

4



To this end, we consider the group Ci = CG(
∏

j 6=i Pj)/N . Since CG(N) = N , we have
Ci ∩ 〈Cj|j 6= i〉 = {e}. Furthermore, it is clear that each group Ci is normal in G/N , and we
can hence consider the subgroup C = C1 × · · · × Ck of the group G/N . Since the group H1

acts unipotently (and is itself nilpotent), the factor-group H1N/N ∼= H1/(H∩N) (obviously,
H∩N = H1∩N) can be represented as a direct product of its Sylow pi-subgroups: H1N/N =
Hp1 × · · · ×Hpk

. It follows from the proof of Lemma 7 that Hpi
≤ Ci.

Next, since Ci E G/N , there are no nontrivial normal pi-subgroups in Ci. Otherwise
the largest of these subgroups is automorphism admissible and hence is a nontrivial normal
subgroup of G/N acting unipotently. This contradicts Lemma 7. Thus, the Corollary to
Lemma 6 implies that |Ci : Hpi

|2 > |Hpi
|. Combining these inequalities for all i, we obtain

|G/N : H1N/N |2 ≥ |C : H1N/N |2 > |H1N/N | = |H1/(H ∩N)|,

completing the proof of (2).
To finish the proof of the main theorem, we need two equalities that are easy consequences

of Lagrange’s theorem:

|G : H| = |G : HN | · |HN : H| 1→= |G/N : HN/N | · |N/(N ∩H)|.(3)

Here in step 1 we use the fact that every element of HN can be written as n · h, with
n ∈ N and h ∈ H. Therefore, every coset of H can be written as nH for some n ∈ N ,
and coincidence of two cosets n1H and n2H means that n−1

2 n1 ∈ H ∩ N . In consequence,
|NH : H| = |N : (N ∩H)| = |N/(N ∩H)| (the group N is abelian). Next,

|G/N : H1N/N | = |G/N : HN/N | · |HN/H1N |

2→= |G/N : NH/N | · |H/H1| = |G/N : H1N/N |.(4)

Here the proof of step 2 bases on the fact that H ∩ N = H1 ∩ N and, in consequence,
|HN/H1N | = |HN/N : H1N/N | = |H/(H ∩N)|/|H1/(H1 ∩N)| = |H|/|H1| = |H/H1|.

Now, we derive the final estimate:

|G : N | = |G/N : HN/N | · |HN/N : H1N/N | · |H1N/N |

= |G/N : HN/N | · |H/H1| · |H1N/N |
3→< |G/N : HN/N | · |N/(N ∩H)|β · |G/N : H1N/N |2

4→= |G/N : HN/N | · |N/(N ∩H)|β · |G/N : HN/N |2 · |H/H1|2

5→< |G/N : HN/N |3 · |N/(N ∩H)|β · |N/(N ∩H)|2β

6→≤ |G/N : HN/N |3 · |N/(N ∩H)|3β < |G : H|5.

Here step 3 is obtained by applying (1) and (2) to the second and third factors respectively.
Step 4 results from applying (4) to the last factor. Step 5 follows again from (1). Finally,
step 6 ensues from (3) and the inequality |G/N : HN/N | ≥ 1 which follows from the fact
that 3 < 3β < 5. The proof of the theorem is over.

3. Corollary. As a corollary to the main theorem, we obtain a general answer to
the question we raised in the beginning of the article.
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Theorem 1 Let G be a finite group. If G has a nilpotent subgroup of index n then it has
a normal nilpotent subgroup of index at most nc for some absolute constant c.
Proof By [1, Theorem 2.13] the group G has a normal solvable subgroup R of index at
most nc1 for some absolute constant c1. Let H be a nilpotent subgroup of index n appearing
in the hypothesis of the theorem. Then R∩H is a nilpotent subgroup of index at most n in
R. By the Main Theorem, |R : F (R)| < n5. Since the Fitting subgroup is characteristic, it
is normal in G and |G : F (R)| < nc1+5. The proof of the theorem is over.
Remark We proved the Main Theorem without appealing to the classification of finite simple
groups. The proof of Theorem 2.13 in [1] leans essentially on the theorem of classification of
finite simple groups. Using the proof of Theorem 2.13 in [1], we can obtain an estimate for
the constant c1 (in the proof of Theorem 1):

c1 ≤
β + 1

1− α
+

2

(1− α) log2 60
.

Here the constants α and β are defined as follows:
α < 1 is an absolute constant such that the inequality |N | ≤ |G|α holds for every finite

nonabelian simple group G and every nilpotent subgroup N of G;
β is an absolute constant such that the inequality |Out(G)| ≤ |G|β holds for every finite

nonabelian simple group G.
It was shown in [9] that we can take 1

2
as α; β can be taken to be 1

2
as well. Thus,

the constant c in Theorem 1 is at most 9.
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