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HALL SUBGROUPS OF ODD ORDER IN FINITE GROUPS

E. P. Vdovin and D. O. Revin∗ UDC 512.542.5

Key words: finite simple group, Hall subgroup, exceptional groups of Lie type.

We complete the description of Hall subgroups of odd order in finite simple groups initiated by
F. Gross, and as a consequence, bring to a close the study of odd order Hall subgroups in all
finite groups modulo classification of finite simple groups. In addition, it is proved that for every
set π of primes, an extension of an arbitrary Dπ-group by a Dπ-group is again a Dπ-group.
This result gives a partial answer to Question 3.62 posed by L. A. Shemetkov in the “Kourovka
Notebook.”

INTRODUCTION

Ph. Hall’s definition maintains that a finite group possesses property Eπ (in other words, it is an Eπ-
group) for some set π of primes if it contains a π-subgroup whose index is not divisible by the primes in
π. (Such is conventionally called a Hall π-subgroup.) If a group G contains a Hall π-subgroup, and all
of its Hall π-subgroups are conjugate, then G is called a Cπ-group. Finally, if G is a Cπ-group, and its
π-subgroups each is contained in some Hall π-subgroup, then G is said to possess property Dπ.

It is well known that, for every set π of primes, the class of all Eπ-groups is closed under normal
subgroups and homomorphic images. Consequently, if a finite group possesses a Hall π-subgroup then its
composition factors each also possess one. Traditionally, therefore, the problem of describing Hall subgroups
of finite groups which are close to simple ones takes center-stage in their study. For finite Chevalley groups,
a similar problem is pointed out, in particular, in [1].

We also know that property Cπ is inherited under extensions. The question if property Dπ is inherited
under extensions remains open. (Shemetkov brought it in [2] as Question 3.62.)

Descriptions of Hall subgroups of the symmetric groups are obtained in Hall [3] and in Thompson [4].
Hall subgroups of the sporadic groups and of the finite Lie-type groups, for the case where the characteristic
of a base field belongs to π, are described in Gross [5, 6] and in Revin [7, 8]. Due to Gross is also the
description of Hall π-subgroups of the classical groups of arbitrary characteristic p, if 2, p /∈ π (cf. [9]), and
of the groups GLn(ps) and Sp2n(ps) if 3, p /∈ π (cf. [6]).

The problem of describing finite groups with property Eπ and their Hall π-subgroups for the case where
2 /∈ π is of special interest, for the class of all Eπ-groups will be closed under extensions, as follows from the
main result of [10], which uses the classification of finite simple groups. In particular, Gross proved that
properties Eπ and Cπ are equivalent if 2 /∈ π. Therefore, for an arbitrary finite group to contain a Hall
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π-subgroup given some set π of odd primes, it is necessary and sufficient that its composition factors each
contain a Hall π-subgroup.

In the present article, we aim at providing a consistent description of Hall π-subgroups in all exceptional
groups of Lie type for the case where π does not contain 2 and the base field characteristic. Specifically,
we prove a theorem (cf. below) which generalizes Gross’ result in [9, Thms. 4.6 and 4.8], proved for the
classical groups.

THEOREM 1. Let G be a Lie-type group over a field of characteristic p, H be its Hall π-subgroup,
where 2, p /∈ π, r be the least prime in π ∩ π(G), and τ = π \ {r}. Then H contains a normal Abelian Hall
τ -subgroup.

With due regard for the results laid out above, the present inquiry completes the description of Hall
subgroups of odd order in finite simple groups, and as a consequence, brings to a close the study of all finite
Eπ-groups for any set π of odd primes modulo classification of finite simple groups.

In the final Sec. 5 we give a partial answer to Shemetkov’s question as to whether property Dπ is
inherited under extensions. Namely, we prove the following:

THEOREM 2. Let π be some set of odd primes. Then an extension of a Dπ-group by a Dπ-group is
again a Dπ-group.

1. THE BASIC NOTATION

The notation and definitions used in the article can be found in [11-13]. If G is a group then the
expressions H ≤ G and H � G mean that H is, respectively, a subgroup and a normal subgroup of G. An
index of H in G is denoted by |G : H|, and the normalizer of H in G — by NG(H). If the subgroup H

is normal in G then G/H is a factor group of G w.r.t. H. If M is a subset of the group G then 〈M〉 is
a subgroup generated by the set M , and |M | is the cardinality of M (or an element order, if one element
is taken instead of the set). Denote by CG(M) the centralizer of M in G, and by Z(G) the center of G.
Conjugation of an element x by an element y is labelled xy = y−1xy. By [x, y] = x−1xy we denote a
commutator of x and y, and by [A,B] the mutual commutant of subgroups A and B in G. For the groups
A and B, A × B, A ∗ B, and A i B stand for, respectively, a direct product, a central product, and a
semidirect product of A and B, where B is a normal subgroup. If A and B are subgroups of G such that
A � B then the factor B/A is called a section of the group G.

If n is some natural number then π(n) denotes a set of prime divisors of n. For a finite group G, we put
π(G) = π(|G|) by definition. A set of Sylow p-subgroups of the finite group G is denoted Sylp(G). For a
p-group G, Ωk(G) stands for the group 〈x | xpk

= e〉.
Let n be a natural number and ω some set of primes. Write ω′ to denote a set of all primes which do

not belong to ω. Write nω for a greatest integer t which divides n and is such that π(t) ⊆ ω. If ω consists
of one prime p, we use the expressions p′ and np instead of ω′ and nω, respectively. Letting r be a prime,
q a natural number, and (r, q) = 1, we define e(r, q) to be the least natural n such that qn ≡ 1 (mod r).
If ϕ is an homomorphism of the group G and g its element then Gϕ and gϕ are the respective images
of G and g under ϕ. Gϕ denotes a fixed-point set of G under the endomorphism ϕ. Let AutG be an
automorphism group of G. Denote by Φi(t) an ith cyclotomic polynomial. Recall that Φ1(t) = t − 1 and
Φn(t) = (tn − 1)/(

∏
i<n, i|n

Φi(t)).

The notation related to finite groups of Lie type is the same as in [12]. By a Chevalley group or Lie-type
group, unless specified otherwise, we mean both the universal Chevalley group and every one of its factors
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w.r.t. a subgroup in the center. In dealing with Chevalley groups, we denote by GF (q) a field of order q,
by p = charGF (q) its characteristic, and by GF (q)∗ the multiplicative group of GF (q). A Chevalley group
G which corresponds to a root system Φ over GF (q) is denoted Φ(q). And we call GF (q) the base field
of G. A Weyl group corresponding to Φ is denoted by W (Φ), and a Weyl group of a Lie-type group G —
by W (G). Twisted groups are denoted 2An(q2), 2Dn(q2), 2E6(q2), 3D4(q3), 2B2(q), 2G2(q), and 2F4(q),
and we say that the base field for G is GF (q), GF (q2), or GF (q3), which depends on the degree at q in a
group’s labelling. For all groups of Lie type, GF (q) is called a definition field. We say that an element x

in the Chevalley group Φ(q) is semisimple, if its order is coprime with p, and is unipotent if its order is the
degree of p. Similarly, a semisimple and a unipotent subgroups of Φ(q) are, respectively, one whose order
is coprime with p (p′-subgroups) and one whose order is the degree of p.

For a finite Lie-type group G, the group W(G) is defined as follows. If G is of normal type then we put
W(G) = W (G). If G is twisted and G1 is a normal-type group defining G, then we put W(G) = W (G1)
(cf. [12]).

If G is a finite Lie-type group with a definition field GF (q) of characteristic p, and G is not a Suzuki
or Ree group, then a p′-part of the order of G may be represented as f(q) for some polynomial f(t) ∈ Z[t].
Decompose the latter into irreducible (over Z) divisors f1(t), . . . , fk(t), which are “almost coprime,” in a
sense that values of different polynomials fi(q) and fj(q) share few prime divisors in common. Moreover,
these polynomials are all cyclotomic.

We also need data on the orders of exceptional universal groups of Lie type and on the possible common
divisors of the values for irreducible polynomials in q, into which the p′-part of the order of a Lie-type
group splits. A prime number r is said to be small for a finite Lie-type group G if there exist irreducible
polynomials fi(t) 6= fj(t), involved in the splitting of the p′-part of G, such that r divides (fi(q), fj(q));
otherwise, we say that r is large. Prime divisors of the order of the group W(G) (denoted W0 in [5]) are
called singular primes. Prime numbers are said to be non-singular if they are not singular. Necessary
information on the order of a p′-part, and also on small and singular primes for the exceptional Chevalley
groups which are not Suzuki or Ree, is contained in Table 1 (cf. below).

Note that every small prime is singular, whereas a singular prime may well be large. For instance, 5 for
the group E6(q) is singular, but if q − 1 is not divided by 5, then 5 will be large for E6(q). Further, for a
finite Lie-type group G and for some set π of primes, by ω(G) we denote a set of singular primes of G, by
τ(G) the set π \ ω(G), by ρ(G) a set of small primes of G, and by θ(G) the set π \ ρ(G). Sometimes we
merely use the symbols ω, τ , ρ, and θ, provided that there is clarity as to which group G is implied.

The main definitions and the basic results concerning linear algebraic groups are contained in [13].
Since below we confine ourselves to linear algebraic groups, the word ‘linear’, for brevity, will be omitted.
If G is an algebraic group, G0 denotes a component of the unity of G. We say that an algebraic group is
semisimple, if its radical is trivial, and is reductive if its unipotent radical is trivial. (In either case, an
algebraic group is not assumed connected.) It is well known that a connected semisimple algebraic group
is a central product of connected simple algebraic ones, and that a connected reductive algebraic group G

is the product of a torus S and a semisimple group M ; moreover, S = Z(G)0, M = [G, G], and S ∩M is
a finite group (cf. [13]). A torus is a connected diagonable (d-) group. The rank of a connected algebraic
group is the dimension of its maximal torus.

We recall how finite Lie-type groups and simple algebraic groups are connected. Let G be a connected
simple algebraic group, defined over an algebraically closed field of characteristic p > 0, and σ be an
endomorphism of G such that its fixed-point set Gσ is finite. Below, the endomorphism σ with this condition
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TABLE 1

Group p′(|G|) |W(G)| Possible small

numbers

G2(q) (q − 1)2(q + 1)2(q2 − q + 1)(q2 + q + 1) 12 2, 3

F4(q) (q − 1)4(q + 1)4(q2 + 1)2(q2 − q + 1)2× 27 · 32 2, 3

(q2 + q + 1)2(q4 + 1)(q4 − q2 + 1)

(q − 1)6(q + 1)4(q2 + 1)2(q2 + q + 1)3×
E6(q) (q2 − q + 1)2(q4 + q3 + q2 + q + 1)× 27 · 34 · 5 2, 3, 5

(q4 + 1)(q4 − q2 + 1)(q6 + q3 + 1)

(q − 1)7(q + 1)7(q2 + 1)2(q2 + q + 1)3×
(q2 − q + 1)3(q4 + 1)×
(q4 + q3 + q2 + q + 1)×

(q4 − q3 + q2 − q + 1)(q4 − q2 + 1)×
E7(q) (q6 − q3 + 1)(q6 + q3 + 1)× 210 · 34 · 5 · 7 2, 3, 5, 7

(q6 + q5 + q4 + q3 + q2 + q + 1)×
(q6 − q5 + q4 − q3 + q2 − q + 1)

(q − 1)8(q + 1)8(q2 + 1)4(q2 + q + 1)4×
(q2 − q + 1)4(q4 + 1)2(q4 − q2 + 1)2×

(q4 + q3 + q2 + q + 1)2×
(q4 − q3 + q2 − q + 1)2(q6 + q3 + 1)×

E8(q) (q6 + q5 + q4 + q3 + q2 + q + 1)× 214 · 35 · 52 · 7 2, 3, 5, 7

(q6 − q3 + 1)×
(q6 − q5 + q4 − q3 + q2 − q + 1)×

(q8 − q4 + 1)(q8 − q6 + q4 − q2 + 1)×
(q8 − q7 + q5 − q4 + q3 − q + 1)×
(q8 + q7 − q5 − q4 − q3 + q + 1)

(q − 1)2(q + 1)2(q2 − q + 1)2×
3D4(q

3) (q2 + q + 1)2(q4 − q2 + 1) 26 · 3 2, 3

(q − 1)4(q + 1)6(q2 + q + 1)2(q2 + 1)2×
2E6(q

2) (q2 − q + 1)3(q4 + 1)×
(q4 − q3 + q2 − q + 1)× 27 · 34 · 5 2, 3, 5

(q4 − q2 + 1)(q6 − q3 + 1)

is referred to as the Frobenius automorphism, even though it may not coincide with classical Frobenius’.
Note that σ is an automorphism, if G is treated as an abstract group, and σ is an endomorphism if G is
treated as an algebraic one. In the general case σ has the form qσ0, where q denotes raising to the qth
power, q = pα, and σ0 is a graph automorphism of order 1, 2, or 3. Op′(Gσ) is then a Lie-type group
over a finite field of characteristic p, and every group of Lie type (normal or twisted) can be obtained as
stated. The group Gσ coincides with a group of inner-diagonal automorphisms of the group K = Op′(Gσ),
which we denote by K̂. If G is one-connected then Gσ = Op′(Gσ) is a universal group. The rank of a finite
Lie-type group Op′(Gσ), where G is a connected simple algebraic group, is called the rank of G.

Let T be some σ-invariant torus of the connected simple algebraic group G. In what follows, by a
torus of Gσ [resp., of Op′(Gσ)] we mean a group Tσ [resp., Tσ ∩ Op′(Gσ)]. If T is maximal then Tσ [resp.,
Tσ ∩ Op′(Gσ)] is called a maximal torus. It is well known that there exists a one-to-one correspondence
between different classes of maximal tori of Gσ (for groups of non-twisted type) and classes of conjugate
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elements of its Weyl group W (see, e.g., [14]). If Tw(q) is a maximal torus corresponding to an element
w ∈ W then |Tw(q)| = f(q), where f(t) is a characteristic polynomial of w. (For detailed information on the
classes of conjugate elements of the Weyl group, their characteristic polynomials, and on the centralizers of
different elements in Weyl groups for all simple Lie algebras, we ask the reader to consult [15].)

Let G be some finite Lie-type group defined over a field GF (q). Then there exists an algebraic group
G such that G = Op′(Gσ). If G is universal then G can be taken to be one-connected, and so the latter
is unique up to isomorphism. If R = Rσ, where R is some connected reductive σ-invariant subgroup of
maximal rank in G, then we define N(R) to be (NG(R))σ. Note that generally N(R) 6= NG(R), and yet
N(R) ≤ NG(R). If T is a Cartan subgroup in G then N(T ) = N is a monomial subgroup of G. For the
case where T = Tw(q) is some maximal torus of G, the group N(T ) (denoted Nw(T ) in [15]) is isomorphic
to a certain subgroup of N . Generally, N(R)/R is isomorphic to a section of the Weyl group W (G).

2. AUXILIARIES

The lemma below is well known.

LEMMA 1. Let G be a finite group and A its normal subgroup. If H is some Hall π-subgroup of G

then H ∩A is a Hall π-subgroup of A and HA/A is one in G/A. In particular, property Eπ is inherited by
normal subgroups also under homomorphisms.

From [5, 10], it follows that for the case where 2 /∈ π, properties Eπ and Cπ are equivalent and are
inherited under extensions. Therefore, under Secs. 2 and 3 below, we assume that all the Lie-type groups
under examination are universal.

LEMMA 2. Let G be a universal Lie-type group with a definition field GF (q) of characteristic p and
R be its Sylow r-subgroup, where 3 < r 6= p. Then there exists a maximal torus H such that R ≤ NG(H)
and Z(R) ≤ H.

Proof. The fact that R ≤ NG(H) is well known (see, e.g., [1, Sec. 1.2a]). Moreover, from [1,
Secs. 1.3b,e], it follows that R ∩H is a maximal Abelian subgroup of R; consequently, Z(R) ≤ H.

The next lemma is applicable to the case where π is freed of 2 and p.

LEMMA 3. Let G = Gσ be a finite universal group of Lie type over a field of characteristic p, π be
a set of primes without 2 and p, |π ∩ π(G)| > 2, H be a Hall π-subgroup of G, r the greatest prime in
π ∩ π(G), R a Sylow r-subgroup of H, and A = Z(R). Then:

(1) A � H;
(2) CG(A) is a connected reductive subgroup of maximal rank in G;
(3) C = (CG(A))σ contains a Sylow r-subgroup of G, H ≤ N(C), and, moreover, C0 = Op′(C) is an

Eπ-group;
(4) H/CH(A) is a section of the Weyl group W (G).
Proof. (1) From [10, Thm. B], it follows that A is a normal Abelian r-subgroup of H.
(2) Since |π∩π(G)| > 2 and r is greatest in π∩π(G), we have r > 3, and by Lemma 2, A is contained in

some maximal torus T of the group G. A proof that CG(A) is a connected reductive subgroup of maximal
rank in G is the same as in [16, Thms. 2.2 and 2.10]. Moreover, it is clear that the group CG(A) is
σ-invariant.

(3) and (4) are obvious. The lemma is proved.
(Note that all possible structures of C in all finite Lie-type groups are described in [14, 17-19].)

In dealing with finite groups of Lie type we need some data on Hall π-subgroups in the Weyl groups.
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LEMMA 4. Let Φ be a root system of exceptional type (i.e., E6, E7, E8, F4, or G2) and let 2 /∈ π,
where π is some set of primes. Then W (Φ) is an Eπ-group if and only if |π ∩ π(W (Φ))| 6 1.

Proof. It suffices to show that if W (Φ) is an Eπ-group then |π ∩ π(W (Φ))| 6 1. For the case where
Φ = F4 or Φ = G2, the statement is obvious since 3 is a unique odd prime which divides |W (Φ)|.

Let Φ = E6. It is known that the unique non-Abelian composition factor of W (E6) is isomorphic to
PSp4(3). Since property Eπ is inherited by all composition factors, the fact that W (E6) is an Eπ-group
implies that PSp4(3) is also an Eπ-group. Obviously, π(W (E6)) = π(PSp4(3)); hence, π ∩ π(W (E6)) =
π ∩ π(PSp4(3)). In view of [7], PSp4(3) is not an E{3,5}-group. From which the conclusion of the lemma
follows immediately for E6.

The unique non-Abelian composition factor of W (E7) is isomorphic to Sp6(2), and the one of W (E8)
to PΩ+

8 (2). Furthermore, π(Sp6(2)) = π(W (E7)) and π(PΩ+
8 (2)) = π(W (E8)). By [9], the groups Sp6(2)

and PΩ+
8 (2) do not contain non-trivial Hall π-subgroups, yielding the result for the present case.

LEMMA 5 [5, Lemma 2.3(2)]. Let G be some Lie-type group with definition field GF (q) and r be an
odd prime dividing q − 1. Then the monomial subgroup N of G contains a Sylow r-subgroup of G.

LEMMA 6. [1, (1.13)]. Let G = Gσ be some universal Lie-type group with definition field GF (q), r

be the rank of G, G contain a maximal torus T = T σ of order (q + 1)r, and s be an odd prime dividing
q + 1. Then N(T ) contains a Sylow s-subgroup of G.

3. HALL SUBGROUPS OF FINITE EXCEPTIONAL
GROUPS OF LIE TYPE

In the present section we deal with Hall π-subgroups of all exceptional Lie-type groups, subject to the
condition that 2, p /∈ π.

We adopt the notation of Lemma 3. Namely, let G be a finite exceptional universal group of Lie type
over a field of characteristic p and let |π ∩ π(G)| > 2 and 2, p /∈ π for a set π of primes. The case where
|π ∩ π(G)| 6 1 is trivial and so omitted. Assume that G possesses a non-trivial Hall π-subgroup H, r is
the greatest prime in π ∩ π(G), R is a Sylow r-subgroup of H, and A = Z(R). Let C = CG(A) be a
connected σ-invariant reductive subgroup of maximal rank in G, and C = Cσ. By a simple polynomial we
always mean some cyclotomic polynomial occurring in the decomposition of a p′-part of the order of G (cf.
Table 1).

We start to consider the Hall subgroups in G2(q).

LEMMA 7. Let G = G2(q). Then τ = π \ {3} and G contains a Hall π-subgroup if and only if the set
π satisfies one of the following conditions:

(1)∗ π ∩ π(G) ⊆ π(q ± 1) (here if 3 ∈ π then the Hall π-subgroup H is representable as S i T , where
T is a Hall τ -subgroup of some maximal torus of order (q ± 1)2, S is a Sylow 3-subgroup of G normalizing
this torus, and if 3 /∈ π then H = T );

(2) 3 /∈ π and π ∩ π(G) ⊆ π(q2 ± q + 1) (here, the Hall π-subgroup H is a Hall π-subgroup of some
maximal torus of order q2 ± q + 1).

In either case, the Hall π-subgroup of G satisfies the conclusion of Theorem 1.
Proof. Using Lemmas 5 and 6 it is not hard to show that if π satisfies one of (1), (2) then G contains

a Hall π-subgroup. We argue for the converse.
∗Hereinafter, in every item we assume that if the sign + (−) is taken in place of ± then + (−) should be taken in place

of ±, and − (+) — in place of ∓.
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The unique singular prime for G is 3. Hence r is a non-singular prime. Consequently, the Sylow r-
subgroup R of G is Abelian (cf. [5, Thm. 2.4]). By Lemma 2, therefore, the group R = A lies in some
maximal torus T of G. Moreover, r divides the value of some simple polynomial, that is, q − 1, q + 1,
q2 − q + 1, or q2 + q + 1. Since A = R belongs to Z(C), from [17, Table 4, p. 138], it follows that C is a
maximal torus of order (q − 1)2, (q + 1)2, q2 − q + 1, or q2 + q + 1, respectively.

First let 3 ∈ π. Then either q ≡ 1 (mod 3) or q ≡ −1 (mod 3). If q ≡ 1 (mod 3), then C is a Cartan
subgroup, since H contains a Sylow 3-subgroup of G. If s ∈ τ ∩ π(G), then q ≡ 1 (mod s), since H contains
a Sylow s-subgroup. Hence π ∩ π(G) ⊆ π(q − 1). If q ≡ −1 (mod 3) then C is a torus of order (q + 1)2.
Again, for any prime s ∈ τ ∩ π(G), the fact that H contains a Sylow s-subgroup of G implies that q + 1 is
divided by s. Hence π ⊆ π(q + 1).

If 3 /∈ π, then H = CH(A), since H/CH(A) is a section of the Weyl group by Lemma 3; hence, H/CH(A)
is a trivial group. Consequently, H is contained in some maximal torus C of G. Thus π ∩ π(G) ⊆ π(C) for
some maximal torus C whose order is equal to (q ± 1)2 or to q2 ± q + 1.

We continue to consider the Hall subgroups in F4(q).

LEMMA 8. Let G = F4(q). Then τ = π \ {3} and G contains a Hall π-subgroup if and only if the set
π satisfies one of the following:

(1) π ∩ π(G) ⊆ π(q ± 1) (here if 3 ∈ π then the Hall π-subgroup H is representable as S i T , where T

is a Hall τ -subgroup of some maximal torus of order (q ± 1)4, S ∈ Syl3(G), and if 3 /∈ π then H = T );
(2) 3 /∈ π and π∩π(G) is contained in one of the sets π(q2± q +1), π(q2 +1), π(q4 +1), or π(q4− q2 +1)

(here, the Hall π-subgroup H is Abelian and lies in some maximal torus of order (q2 ± q + 1)2, (q2 + 1)2,
q4 + 1, or q4 − q2 + 1, respectively).

In either case, the Hall π-subgroup of G satisfies the conclusion of Theorem 1.
Proof. As in the case of G2(q), establishing the sufficiency of (1) and (2) is a simple matter. We argue

for the necessity.
For G, there is a unique singular prime — 3. Consequently, r is a non-singular prime. Hence the Sylow

r-subgroup R of G is Abelian and R = A. In view of Lemma 3, the factor group H/CH(A) is isomorphic to
a section of the Weyl group; so, the index |H : CH(A)| is the degree of 3 and does not exceed 9. Moreover,
r divides some simple polynomial of G, and R = A ≤ Z(C). From [17, Table 2, p. 133], it follows that C

is a maximal torus of order (q ± 1)4, (q2 ± q + 1)2, q4 + 1, or q4 − q2 + 1.
If 3 /∈ π then the Hall π-subgroup is Abelian and π ∩ π(G) ⊆ π(C) for some C.
Let 3 ∈ π and q ≡ 1 (mod 3). Then the Hall π-subgroup H contains a Sylow 3-subgroup of G and belongs

to N(C). Among the above-mentioned maximal tori, there is a unique one for which N(C) contains a Sylow
3-subgroup of G — this is a torus of order (q−1)4 (a Cartan subgroup); consequently, π∩π(G) ⊆ π(q−1) and
H = S iT , where T is a Hall τ -subgroup of both the Cartan subgroup and the group G, and S ∈ Syl3(G).

If 3 ∈ π and q ≡ −1 (mod 3), then the unique maximal torus C for which N(C) contains a Sylow
3-subgroup of G is one of order (q + 1)4. Thus π ∩ π(G) ⊆ π(q + 1) and H = S i T , where T is a Hall
τ -subgroup of both the torus at hand and the group G, and S ∈ Syl3(G).

We proceed to the Hall subgroups of E6(q).

LEMMA 9. Let G = E6(q). Then θ = θ(G) = π \ ρ and G contains a Hall π-subgroup if and only if π

satisfies one of the following:
(1) π∩π(G) ⊆ π(q−1) and |π ∩ ρ| 6 1 (here if π∩ρ = {s} then the Hall π-subgroup of G is represented

as S i T , where S ∈ Syls(G), T is a Hall θ-subgroup of some maximal torus of order (q − 1)6, and if
π ∩ ρ = ∅ then H = T );
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(2) π ∩ π(G) ⊆ π(q + 1) (here if 3 ∈ π then the Hall π-subgroup of G is represented as S i T , where T

is a Hall θ-subgroup of a maximal torus of order (q − 1)2(q + 1)4, S ∈ Syl3(G), and if 3 /∈ π then H = T );
(3) π∩π(G) is a subset in one of the sets π(q6 +q3 +1), π(q2 +1), π(q2±q+1), π(q4−q2 +1), π(q4 +1),

or π(q4 + q3 + q2 + q + 1) and π ∩ ρ = ∅ (here, the Hall π-subgroup of G is Abelian and lies in some torus).
In all of the three cases above, every Hall π-subgroup of G satisfies the conclusion of Theorem 1.
Proof. It is not hard to verify that if π satisfies one of (1), (2) then G contains a Hall π-subgroup. We

argue for the converse.
By Lemma 3, the factor H/CH(A) is isomorphic to a section of the Weyl group. Since 2 /∈ π, |H/CH(A)|

can be divided only by 3 or 5. First assume that π∩π(G) contains at least one non-singular prime r. Then
r is non-singular, the Sylow r-subgroup R is Abelian, and R = A 6 Z(C). By [17, pp. 111-126], one of the
following conditions holds:

(1) C is a maximal torus of order q6 + q3 + 1, (q2 + 1)2(q − 1)2, (q2 − q + 1)2(q2 + q + 1), (q2 + q + 1)3,
(q4 − q2 + 1)(q − 1)(q + 1), (q − 1)6, (q4 + 1)(q − 1)(q + 1), (q4 − q2 + 1)(q2 + q + 1), or (q + 1)4(q − 1)2;

(2) C contains a subgroup S∗A1(q) of index at most 2, where S is a torus of order (q−1)(q4+q3+q2+q+1).
Let 3 ∈ π. Then H contains a Sylow 3-subgroup of G, in which case q ≡ 1 (mod 3) or q ≡ −1 (mod 3).
First let q ≡ 1 (mod 3). The unique maximal torus C for which N(C) contains a Sylow 3-subgroup is

a Cartan subgroup. Thus |C| = (q − 1)6 holds. Then H/CH(R) is a subgroup of the Weyl group W (G),
and every prime s ∈ π ∩ π(G) divides q − 1. If 3 ∈ π, 5 /∈ π, and G contains a Hall π-subgroup then
π∩π(G) ⊆ π(q−1). If 5 ∈ π, then 5 divides q−1, since otherwise H would not contain a Sylow 5-subgroup
of G. On the other hand, if 3, 5 ∈ π and π ∩ π(G) ⊆ π(q − 1) then H/CH(R) is a Hall {3, 5}-subgroup of
W (E6), which is a contradiction with Lemma 4. Hence if 3, 5 ∈ π and π ∩ π(G) ⊆ π(q − 1) then G is not
an Eπ-group.

Next let q ≡ −1 (mod 3). Since H contains a Sylow 3-subgroup, the group CH(R) lies in a torus of order
(q−1)2(q+1)4. And there exists a subgroup M of G which contains a subgroup A2(q2)∗2A2(q2)∗S of index
3, where S is a torus of order (q − 1)2. In addition, M contains a Sylow 3-subgroup of G and a maximal
torus of order (q − 1)2(q + 1)4. If s is some non-singular prime in π ∩ π(G), then s divides q + 1, since H

is a Hall group. Lastly, if 5 ∈ π ∩ π(G), then the Sylow 5-subgroup of G lies in H, in which case 5 divides
q + 1. Moreover, 5 is a large prime and C contains a Sylow 5-subgroup of G; therefore, G contains a Hall
π-subgroup. Thus if 3 ∈ π, q ≡ −1 (mod 3), and G contains a Hall π-subgroup, then π ∩ π(G) ⊆ π(q + 1).

At the moment assume that 3 /∈ π but 5 ∈ π. Then either q ≡ 1 (mod 5), or q ≡ −1 (mod 5), or q2 ≡
−1(mod 5). An argument similar to the above shows that G contains a Hall π-subgroup iff: π∩π(G) ⊆ (q−1)
in the first case, π ∩π(G) ⊆ (q +1) in the second case, and π ∩π(G) ⊆ (q2 +1) in the third. Again we note
that H satisfies the conclusion of Theorem 1 in all of the cases envisaged.

If 3, 5 /∈ π then the Hall π-subgroup H is Abelian and lies either in one of the above-mentioned maximal
tori or in a torus S of order (q − 1)(q4 + q3 + q2 + q + 1), whence the lemma.

Suppose that π∩π(G) is freed of non-singular primes. Hence the Hall π-subgroup H is a {3, 5}-subgroup.
By Lemma 3, C contains a Sylow 5-subgroup of G. There are three cases to consider.

Case 1. Let q ≡ 1 (mod 5). Then C contains a subgroup C0 = Op′(C) which is isomorphic either to
A5(q) or to D5(q). By Lemma 3, H ∩ C0 is a Hall {3, 5}-subgroup of C0. From [9, Thms. 4.1 and 4.4], it
follows that C0 does not contain a {3, 5}-subgroup.

Case 2. Let q ≡ −1 (mod 5). Then the Sylow 5-subgroup is Abelian and lies in a maximal torus C of
order (q + 1)4(q − 1)2. Consequently, the Sylow 3-subgroup belongs to N(C), and we are back in the case
treated above.
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Case 3. Let q2 ≡ −1 (mod 5). Then the Sylow 5-subgroup is again Abelian and lies in a maximal torus
C of order (q2 + 1)2(q − 1)2. Consequently, the Sylow 3-subgroup belongs to N(C), which is false.

We pass to the Hall π-subgroups of E7(q).

LEMMA 10. Let G = E7(q). Then θ = θ(G) = π \ ρ and G contains a Hall π-subgroup if and only if
π satisfies one of the following:

(1) π∩π(G) ⊆ π(q±1) and |π ∩ ρ| 6 1 (here if π∩ρ = {s} then the Hall π-subgroup of G is represented
as S i T , where S ∈ Syls(G), T is a Hall θ-subgroup of some maximal torus of order (q ± 1)7, and if
π ∩ ρ = ∅ then H = T );

(2) π∩π(G) is a subset in one of the sets π(q2+1), π(q2±q+1), π(q4−q2+1), π(q4+1), π(q4±q3+q2±q+1),
π(q6± q3 +1), or π(q6± q5 + q4± q3 + q2± q +1) and π∩ ρ = ∅ (here, the Hall π-subgroup of G is Abelian
and lies in some torus).

In either case, the Hall π-subgroup of G satisfies the conclusion of Theorem 1.
Proof. Assume that π satisfies one of (1), (2). Using Lemmas 5 and 6, it is not hard to show that G

contains a Hall π-subgroup. Therefore it is sufficient to prove the converse statement.
By Lemma 3, the group H/CH(A) is isomorphic to a section of the Weyl group; consequently, |H/CH(A)|

is divisible only by 3, 5, or 7. First assume that π ∩ π(G) contains at least one non-singular prime. Then
r is non-singular, R = A, and Z(C) contains a Sylow r-subgroup of G. By [15; 19, Table 1], for C, one of
the following cases is realized:

(1) C is a maximal torus of order (q−1)7, (q+1)7, (q+1)(q6−q3+1), (q+1)(q6−q5+q4−q3+q2−q+1),
(q − 1)(q6 + q3 + 1), (q − 1)(q6 + q5 + q4 + q3 + q2 + q + 1), (q − 1)(q2 + q + 1)3, (q + 1)(q2 − q + 1)3,
(q + 1)(q2 − q + 1)(q4 − q2 + 1), (q− 1)(q2 + q + 1)(q4 − q2 + 1), or (q + 1)(q2 − q + 1)(q4 − q3 + q2 − q + 1);

(2) C contains a subgroup A1(q) ∗ S of index at most 2, where S is a torus of order (q2 ± 1)(q4 + 1) or
(q + 1)2(q4 − q3 + q2 − q + 1);

(3) C contains a subgroup A2(q) ∗ S whose index is equal to 1 or to 3, where S is a torus of order
(q − 1)(q4 + q3 + q2 + q + 1);

(4) C contains a subgroup A1(q) ∗ A1(q) ∗ S whose index is even and does not exceed 4, where S is a
torus of order (q − 1)(q2 + 1)2.

We treat all of these four cases singly. If the set π ∩ π(G) does not contain any singular prime then H

is Abelian and π ∩ π(G) ⊆ π(T ) for some torus T of G.
Suppose 3 ∈ π. Then either q ≡ 1 (mod 3) or q ≡ −1 (mod 3). First let q ≡ 1 (mod 3). Then C is

a Cartan subgroup, and every s, s ∈ π ∩ π(G), divides q − 1. H/CH(R) is a Hall π-subgroup in W (G);
consequently, 5, 7 /∈ π by Lemma 4. Thus π ∩ π(G) ⊆ π(q − 1), and the numbers 5 and 7 do not belong
to π.

Next let q ≡ −1 (mod 3). Then C is a maximal torus of order (q+1)7, and every s such that s ∈ π∩π(G)
divides q+1. By Lemma 6, the group N(C) contains a Sylow 3-subgroup of G of order 34 ·(q+1)73. Hence the
order of a Sylow 3-subgroup in the factor N(C)/C is equal to 34. Since N(C)/C is isomorphically embedded
in the Weyl group and the order of a Sylow 3-subgroup in W (E7) is 34, the Sylow 3-subgroup of N(C)/C

coincides with one in W (E7). If 5 or 7 belongs to π then N(C) contains a Sylow 5- or 7-subgroup of G.
The group H/CH(R) is a Hall π-subgroup in N(C)/C. As in the third case, the Sylow 5- and 7-subgroups
of N(C)/C coincide with those in W (E7). Then N(C)/C and hence W (E7) will possess a Hall π-subgroup
for the set π such that |π ∩ π(W (E7))| > 2, a contradiction with Lemma 4. Thus π ∩ π(G) ⊆ (q + 1) and
5, 7 /∈ π.

Now let 5 ∈ π but 3 /∈ π. Then one of the following cases holds: q ≡ 1 (mod 5), q ≡ −1 (mod 5), or
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q2 ≡ −1 (mod 5). The first two cases are treated in the same way as the above case where 3 ∈ π. Let
q2 ≡ −1 (mod 5). Then the Sylow 5-subgroup of G is Abelian and CH(A) lies in the group A1(q)∗A1(q)∗S,
where S is a torus of order (q − 1)(q2 + 1)2. Consequently, π ∩ π(G) ⊆ π(q2 + 1).

Lastly let 3, 5 /∈ π but 7 ∈ π. Then one of the following congruences is effected: q ≡ 1 (mod 7),
q ≡ −1 (mod 7), q2− q ≡ −1 (mod 7), or q2 + q ≡ −1 (mod 7). All of the three cases can be treated similarly
to the previous two — where 3 or 5 belongs to π.

At the moment assume that π∩π(G) is freed of non-singular primes. Then one of the sets {3, 5}, {3, 7},
or {5, 7} is contained in π.

Suppose 3, 5 ∈ π. If q2 ≡ −1 (mod 5) then the Sylow 5-subgroup of G is Abelian, and we are back in the
case treated above. Assume q ≡ 1 (mod 5). By Lemma 3, C contains a Sylow 5-subgroup of G. Therefore C

contains a subgroup C0 = Op′(C), which is isomorphic either to A7−k(q), where k 6 3, or to D7−k, where
k 6 2. By Lemma 3, H ∩ C0 is a Hall π-subgroup in the group C0. Theorem 4.9 in [9] implies that C0

should be an E{3,5}-group. Theorems 4.1 and 4.4 in [9] hold that C0 cannot be an E{3,5}-group in any of
the above-envisaged cases. Consequently, G is not an Eπ-group.

Let q ≡ −1 (mod 5). Again, by Lemma 3, C contains a Sylow 5-subgroup of G, but Table 1 in [19] shows
that such a subgroup C does not exist. Hence in this case, too, G does not enjoy property Eπ.

The remaining two cases can be treated similarly.
We embark on the Hall π-subgroups in E8(q).

LEMMA 11. Let G = E8(q). Then θ = θ(G) = π \ ρ and G contains a Hall π-subgroup if and only if
π satisfies one of the following:

(1) π∩π(G) ⊆ π(q±1) and |π ∩ ρ| 6 1 (here if π∩ρ = {s} then the Hall π-subgroup of G is represented
as S i T , where S ∈ Syls(G), T is a Hall θ-subgroup of some maximal torus of order (q ± 1)8, and if
π ∩ ρ = ∅ then H = T );

(2) π∩π(G) is a subset of one of the sets π(q2+1), π(q2±q+1), π(q4−q2+1), π(q4+1), π(q4±q3+q2±q+1),
π(q6±q3+1), π(q6±q5+q4±q3+q2±q+1, π(q8−q4+1), π(q8−q6+q4−q2+1), or π(q6±q7∓q5−q4±q3∓q+1)
and π ∩ ρ = ∅ (here, the Hall π-subgroup of G is Abelian and lies in some torus).

In both cases, the Hall π-subgroup of G satisfies the conclusion of Theorem 1.
Proof. If π satisfies one of (1), (2) then it is not hard to see that G contains a Hall π-subgroup, and so

we need only prove the converse statement.
First assume that π ∩ π(G) contains at least one non-singular prime. Then r is non-singular and

R = A ≤ Z(C). In view of [15; 19, Table 1], one of the following statements holds:
(1) C is a maximal torus of order (q − 1)8, (q + 1)8, (q2 + 1)4, (q2 + q + 1)4, (q2 − q + 1)4, (q4 + 1)2,

(q4 − q2 + 1)2, (q4 + q3 + q2 + q + 1)2, (q4 − q3 + q2 − q + 1)2, q8 − q4 + 1, q8 − q6 + q4 − q2 + 1,
q8−q7 +q5−q4 +q3−q+1, q8 +q7−q5−q4−q3 +q+1, (q−1)(q+1)(q6−q3 +1), (q2−q+1)(q6−q3 +1),
or (q − 1)(q + 1)(q6 − q5 + q4 − q3 + q2 − q + 1).

(2) C contains a subgroup A1(q) ∗ S of index at most 2, where S is a torus of order (q− 1)(q6 + q3 + 1)
or (q − 1)(q6 + q5 + q4 + q3 + q2 + q + 1).

If the set π ∩ π(G) is freed of singular primes then the Hall π-subgroup H is Abelian and lies in one of
the above-mentioned tori.

Next suppose π ∩ ω(G) 6= ∅. All instances admit a uniform treatment, and so we dwell on just the
case where 3 ∈ π and q ≡ −1 (mod 3). Here, C is a maximal torus of order (q + 1)8; consequently,
π ∩ π(G) ⊆ π(q + 1). If 5 or 7 belongs to π then N(C) will contain a Sylow 5- or 7-subgroup of G by
Lemma 6. Therefore a Sylow 5- or 7-subgroup of N(C)/C coincides with one in W (E8). Which is also true
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for a Sylow 3-subgroup of N(C)/C. H/CH(R) is a Hall π-subgroup of N(C)/C, and hence of W (E8). The
latter enjoys property Eπ iff |π ∩ π(W (E8))| 6 1, and so G is not an Eπ-group.

The case where π ∩ π(G) is freed of non-singular primes can be treated in the same way as was the
relevant case for E7(q).

We pass to the Hall π-subgroups in 3D4(q3).

LEMMA 12. Let G = 3D4(q3). Then θ = θ(G) = π \ {3} and G contains a Hall π-subgroup if and
only if π satisfies one of the following conditions:

(1) π ∩ π(G) ⊆ π(q ± 1); here if 3 ∈ π then the Hall π-subgroup of G is represented as S i T , where T

is a Hall θ-subgroup of some maximal torus of order (q ± 1)2(q2 ∓ q + 1), S ∈ Syl3(G), and if 3 /∈ π then
H = T ;

(2) π ∩ π(G) is a subset of one of the sets π(q2 ± q + 1) or π(q4 − q2 + 1) and 3 /∈ π; here, the Hall
π-subgroup of G is Abelian and lies in some torus.

In both cases, the Hall π-subgroup of G satisfies the conclusion of Theorem 1.
Proof. Let π ∩ π(G) ⊆ π(q − 1). Since N contains a Sylow 3-subgroup of G, G enjoys property Eπ by

Lemma 5 in this instance.
Let π∩π(G) ⊆ π(q +1). There exists a subgroup M of G which contains a subgroup of index 3 equal to

S ∗ 2A2(q2), where S is a torus of order q2 − q + 1. Let C be a maximal torus of order (q + 1)2(q2 − q + 1).
It is clear that C ≤ M . Moreover, the Sylow 3-subgroup of Op′(M) = 2A2(q2) lies in N(C) by Lemma 6.
Therefore the Sylow 3-subgroup of M also lies in N(C). On the other hand, the Sylow 3-subgroup of M

coincides with one in G, and N(C) then contains a Sylow 3-subgroup of G. Thus N(C) contains a Hall
π-subgroup of G. It is not hard to verify that if π satisfies one of (1), (2) then G also contains a Hall
π-subgroup. We argue for the converse.

Since 3 is the unique singular prime for G, r is a non-singular prime. Consequently, R = A ≤ Z(C).
Table 7 in [17, p. 140] shows that C coincides with a maximal torus of order (q−1)2(q2+q+1), (q+1)2(q2−
q+1), (q2−q+1)2, (q2+q+1)2, or q4−q2+1. If 3 /∈ π then the Hall π-subgroup is Abelian and lies in some
maximal torus, mentioned above. If 3 ∈ π then either q ≡ 1 (mod 3) or q ≡ −1 (mod 3). Let q ≡ 1 (mod 3).
Then C is a Cartan subgroup, its order is equal to (q − 1)2(q2 + q + 1), and π ∩ π(G) ⊆ π(q − 1). Let
q ≡ −1 (mod 3). Then C is a maximal torus of order (q + 1)2(q2 − q + 1) and π ∩ π(G) ⊆ π(q + 1).

We continue to treat the Hall π-subgroups of 2E6(q2).

LEMMA 13. Let G = 2E6(q2). Then θ = θ(G) = π \ ρ and G contains a Hall π-subgroup if and only
if π satisfies one of the following:

(1) π∩π(G) ⊆ π(q− 1); here if 3 ∈ π then the Hall π-subgroup of G is represented as S iT , where T is
a Hall θ-subgroup of some maximal torus of order (q − 1)4(q + 1)2, S ∈ Syl3(G), and if 3 /∈ π then H = T ;

(2) π∩π(G) ⊆ π(q +1) and |ρ ∩ π| 6 1; here if r ∈ π∩ρ then the Hall π-subgroup of G is represented as
S iT , where T is a Hall θ-subgroup of some maximal torus of order (q +1)6, S ∈ Sylr(G), and if π∩ρ = ∅
then H = T ;

(3) π∩π(G) is a subset in one of the sets π(q2+1), π(q2±q+1), π(q4−q2+1), π(q4+1), π(q4−q3+q2−q+1),
or π(q6 − q3 + 1) and π ∩ ρ = ∅; here, the Hall π-subgroup of G is Abelian and lies in some torus.

The statement of Theorem 1 is satisfied for the Hall π-subgroup of G in all of these three cases.
Proof. As before, if π satisfies one of (1)-(3) then G contains a Hall π-subgroup. We argue for the

converse.
Assume, first, that π contains at least one non-singular prime. Then r is non-singular and R = A ≤

Z(C). The group C coincides with a maximal torus of order (q+1)6, (q−1)4(q+1)2, (q2+q+1)2(q2−q+1),
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(q+1)2(q2+1)2, (q2−q+1)3, (q−1)(q+1)(q4+1), (q−1)(q+1)(q4−q3+q2−q+1), (q2−q+1)(q4−q2+1),
or q6 − q3 + 1.

If 3, 5 /∈ π then the Hall π-subgroup is Abelian and belongs to one of the above-mentioned tori.
Suppose 3 ∈ π. Let q ≡ 1 (mod 3). Then C is a Cartan subgroup, its order is equal to (q − 1)4(q + 1)2,

and hence π ∩ π(G) ⊆ π(q − 1). Let q ≡ −1 (mod 3). Then C is a maximal torus of order (q + 1)6 and
π ∩ π(G) ⊆ π(q + 1). By Lemma 6, N(C) contains a Sylow s-subgroup of G for any s ∈ π(q + 1). Since the
Sylow 3- and 5-subgroups of N(C)/C coincide with those in W (E6), and G contains a Hall π-subgroup, we
have π ∩ ρ = {3}. The case where 5 ∈ π can be treated similarly.

Now let π∩π(G) = {3, 5}. Then C contains a Sylow 5-subgroup of G. If q ≡ 1 (mod 5) or q2 ≡ −1 (mod 5)
then the Sylow 5-subgroup of G is Abelian and lies in a torus of order (q− 1)4(q + 1)2 or (q + 1)2(q2 + 1)2,
respectively. In the former case q − 1 is divided by 3 and the group N(C) does not contain a Sylow
3-subgroup of G in the latter case. Therefore G is not an Eπ-group.

If q ≡ −1 (mod 5) then the group Op′(C) = C0 coincides with one of the following: 2A4(q2), 2A4(q2) ∗
A1(q), 2A5(q2), 2D5(q2), or 2A5(q2) ∗ A1(q). By Lemma 3, C0 ∩H is a Hall {3, 5}-subgroup of C0. From
[9, Thms. 4.2 and 4.3], it follows that C0 is not an E{3,5}-group. Consequently, G is not an Eπ-group in
the present case, too.

Lemmas 7-13 can be combined to yield the following:

THEOREM 3. Let G be a finite exceptional Lie-type group with a definition field GF (q) of character-
istic p which is not a Suzuki or Ree group. Let π be a set of primes such that 2, p /∈ π and |π ∩ π(G)| > 2,
ρ be a set of small primes for G, r be the least prime in π ∩ π(G), and τ = π \ {r}. Then G has property
Eπ if and only if, for some cyclotomic polynomial Φi(t) involved in the decomposition of a p′-part of the
order of G, π satisfies one of the following conditions:

(1) π ∩ ρ = ∅ and π ∩ π(G) ⊆ π(Φi(q)); here, the Hall π-subgroup is Abelian;
(2) π ∩ ρ = {r}, π ∩ π(G) ⊆ π(Φi(q)), and i = e(r, q); here there exists a maximal torus H such that H

contains a Hall τ -subgroup of G and N(H) contains a Hall π-subgroup of G.
We end to treat the Hall π-subgroups of Suzuki and Ree groups.

LEMMA 14. Let G be a Suzuki or Ree group, p be the characteristic of a definition field for G, π be
a set of primes such that |π ∩ π(G)| > 2, 2, p /∈ π, and θ = θ(G) = π \ {3}. Then G possesses property Eπ

if and only if one of the following conditions is satisfied:
(1) G = 2B2(q) and π ∩ π(G) is contained in one of the sets π(q − 1) or π(q ±

√
2q + 1); here, the

Hall π-subgroup of G is Abelian and is contained in some maximal torus of order q − 1 or q ±
√

2q + 1,
respectively;

(2) G = 2G2(q) and π ∩ π(G) is contained in one of the sets π(q ± 1) or π(q ±
√

3q + 1); here, the
Hall π-subgroup of G is Abelian and is contained in some maximal torus of order q ± 1 or q ±

√
3q + 1,

respectively;
(3) G = 2F4(q) and π ∩ π(G) is contained in one of the sets π(q2 − 1), π(q ±

√
2q + 1), π(q2 + 1),

π(q2 ± q
√

2q ∓
√

2q − 1), or π(q2 ± q
√

2q + q ±
√

2q + 1); here if 3 ∈ π then H = S i T , where T is an
Abelian Hall θ-subgroup of 2F4(q), S ∈ Syl3(2F4(q)), and if 3 /∈ π then H = T .

The statement of Theorem 1 is satisfied for the Hall π-subgroup of G in all of these three cases.
Proof. Groups 2B2(q) and 2G2(q) were treated in [20] and [21], respectively, and so we refrain from

comments in presenting the structure of Hall π-subgroups in these. The Hall π-subgroups of odd order in
Tits groups were studied in [5], and so for groups 2F4(q), we put q > 2.

If 3 /∈ π then the Hall π-subgroup of 2F4(q) is Abelian and lies in some maximal torus. If 3 ∈ π then C

19



is a maximal torus of 2F4(q) of order (q2− 1)2. By Lemma 2, N(C) contains a Sylow 3-subgroup of 2F4(q).
Hence π ∩ π(2F4(q)) ⊆ π(q2 − 1), and 2F4(q) then satisfies the conclusion of Theorem 1.

4. HALL SUBGROUPS OF ODD ORDER
IN FINITE GROUPS OF LIE TYPE

In this section we prove the theorem which combines Theorem 3 and the results of [9].

THEOREM 4. Let G be a finite Lie-type group with a definition field GF (q) of characteristic p which
is not a Suzuki or Ree group. Let π be a set of primes such that 2, p /∈ π and |π ∩ π(G)| > 2, ρ a set of
small primes, r the least prime in π ∩ π(G), and τ = π \ {r}. Then G possesses property Eπ if and only
if, for some cyclotomic polynomial Φi(t) involved in the decomposition of a p′-part of the order of G, π

satisfies one of the following:
(1) π ∩ ρ = ∅ and π ∩ π(G) ⊆ π(Φi(q)); here, the Hall π-subgroup is Abelian and lies in some torus;
(2) π ∩ ρ = {r}, π ∩ π(G) ⊆ π(Φi(q)), and i = e(r, q); here there exists a maximal torus H such that H

contains a Hall τ -subgroup of G and N(H) contains a Hall π-subgroup of G;
(3) π ∩ ρ = ∅, τ ∩ π(G) ⊆ π(Φi(q)), and |G|r = |W |r = |N(T )/T |r, where T = Z(CG(A)) is a maximal

torus and A a Hall τ -subgroup of G; here, either the Hall π-subgroup of G is Abelian, or G is not a
Dπ-group.

Proof. If G is an exceptional group of Lie type then the conclusion of the theorem follows from
Theorem 3, proved above.

Let G be a classical finite group. We treat all possible cases for G. By [9, Thm. 4.9], G is not an
Eπ-group iff G contains a Hall {t, s}-subgroup for all t, s ∈ π. If 2 /∈ π then property Eπ is inherited under
extensions, and so we may assume that G coincides with GLn(q), Spn(q), GUn(q), or GOε

n(q), where ε = ±.
We assume hereafter that t, s ∈ π ∩ π(G), a = e(q, t), b = e(q, s), and t < s.

Let G = GLn(q). In view of [9, Thm. 4.1], G is an E{t,s}-group iff n < bs, and one of the following
cases is realized:

(1) a = b;
(2) a = t− 1, b = t, (qt−1 − 1)t = t, and

[
n

t−1

]
=
[

n
t

]
;

(3) a = t− 1, b = t, (qt−1 − 1)t = t,
[

n
t−1

]
=
[

n
t

]
+ 1, and n ≡ t− 1 (mod t);

(4) a = t− 1, b = 1, (qt−1 − 1)t = t, and
[

n
t−1

]
=
[

n
t

]
.

The condition that n < bs means that s is a large prime for G. Thus |π ∩ ρ| 6 1 and τ ∩ρ = ∅. Further,
if t, s ∈ τ then a = b. Consequently, τ ∩ π(G) ⊆ Φb(q). We treat the four cases singly.

Let a = b. If the Sylow r-subgroup of G is Abelian then the Hall π-subgroup of G lies in some torus
whose order is divided by Φa(q), so π∩ ρ = ∅, and hence condition (1) of the theorem is met. Assume that
the Sylow r-subgroup of G is non-Abelian. Consider a subgroup G1 = GL[n

a ](q
a). For any t ∈ π ∩ π(G),

G1 contains a Sylow t-subgroup of G. Indeed, e(q, t) = a, and hence

|G|t =
∏

m<n, a|m

(qa − 1)t

(m

a

)
t
=

∏
16k6[n

a ]
(qa − 1)t (ka)t = |G1|t .

Thus π(|G : G1|) ∩ π = ∅. Consequently, the Hall π-subgroup of G1 coincides with one in G. Let H and
N be, respectively, a subgroup of diagonal matrices and a subgroup of monomial matrices of G1. Then
N contains a Hall π-subgroup of the groups G1 and G. Therefore the maximal torus T of G such that
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H ≤ T and N ≤ N(T ) contains a Hall τ -subgroup of G and N(T ) contains a Hall π-subgroup of G. Thus
G satisfies condition (2) of the theorem.

Theorem 4.1 in [9] implies that (2)-(4) can be realized only if t = r. Assume that a = r − 1, b = r,
(qr−1−1)r = r, and

[
n

r−1

]
=
[

n
r

]
, or

[
n

r−1

]
=
[

n
r

]
+1 and n ≡ r−1 (mod r). Then the condition that ar > n

holds in view of [9, Cor. 4.2]; so, r /∈ ρ. Thus π∩ρ = ∅. Consider a subgroup G1 = GL[n
r ](q

r)×GLr−1(q) of

G. We know that n = (
[

n
r

]
+1)(r−1)+

[
n
r

]
(cf. proof of Thm. 4.1 in [9]). Consequently, the desired group

G1 does indeed exist in G. Clearly, G1 contains a Hall τ -subgroup of G. Since ar > n and (qr−1 − 1)r = r,
we have |G|r = r. Obviously, |G1|r = r. Let H be a subgroup of diagonal matrices in the group GL[n

r ](q
r).

Then H contains a Hall τ -subgroup of G. Moreover, there exists a maximal torus T of G such that H ≤ T ,
and N(T ) contains a Hall π-subgroup of G. Thus G satisfies condition (3) of the theorem. Note also that
the Hall π-subgroup of G is Abelian in this instance.

Finally, let a = r− 1, b = 1, (qr−1 − 1)r = r, and
[

n
r−1

]
=
[

n
r

]
. We comment on the structure of a Hall

π-subgroup.
For some natural m and b, n = mr+b = m(r−1)+(b+m). Since b+m < r−1, m < r−1. Furthermore,

the Hall τ -subgroup of G lies in the subgroup H of diagonal matrices of G, and |G|r = |Symn|r, where
Symn is a symmetric group of degree n, which coincides with the Weyl group for G. Consequently, the
subgroup

G1 = GL1(q)× . . .×GL1(q)︸ ︷︷ ︸
b times

×GLr(q)× . . .×GLr(q)︸ ︷︷ ︸
m times

of G contains a Hall π-subgroup of G. Moreover, the Hall τ -subgroup of G1 lies in a product of the diagonal
matrices of direct factors of G1 and the Hall π-subgroup lies in a product of the monomial subgroups of
direct factors of G1.

Let s ∈ τ and (q − 1)s = sα 6= 1. Denote the group Zsα by S. Clearly, the Hall π-subgroup of G is a
direct product of Hall π-subgroups in the groups GL1(q) = GF (q)∗ and GLr(q). The structure of a Hall
π-subgroup in GL1(q) is obvious, and so we need only show how such is structured in GLr(q). Its Hall
τ -subgroup T lies in a group of diagonal matrices, and the Sylow r-subgroup R acts on T by permuting
diagonal elements of the matrices. Therefore the Hall π-subgroup H of GLr(q) has the form R i T , and
if h ∈ H is some r-element of H then the group CH(h) consists of scalar matrices. On the other hand,
CGLr(q)(h) ≥ Zr × Zq−1 × Zq−1 ≥ Zr × S × S. By reason of this fact, the Hall π-subgroup of G1 (and
consequently of G) contains no subgroup isomorphic to the group

G2 = S × . . .× S︸ ︷︷ ︸
b+m(r−1)+2 times

× Zr.

Alternatively, G1 does contain a subgroup isomorphic to G2. Therefore G is not a Dπ-group. And G then
satisfies condition (3) of the theorem.

Let G = GUn(q2). In view of [9, Thm. 4.3], G is an E{t,s}-group iff one of the following cases is realized:
(1) a = b ≡ 0 (mod 4) and n < bs;
(2) a = b ≡ 2 (mod 4) and 2n < bs;
(3) a = b ≡ 0 (mod 4) and n < bs;
(4) t ≡ 1(mod 4), a = t− 1, b = 2t, (qn − 1)t = t, and

[
n

t−1

]
=
[

n
t

]
;

(5) t ≡ 3 (mod 4), a = t−1
2 , b = 2t, (qn − 1)t = t, and

[
n

t−1

]
=
[

n
t

]
;

(6) t ≡ 1 (mod 4), a = t− 1, b = 2t, (qn − 1)t = t, and
[

n
t−1

]
=
[

n
t

]
+ 1 and n ≡ t− 1 (mod t);
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(7) t ≡ 3 (mod 4), a = t−1
2 , b = 2t, (qn − 1)t = t, and

[
n

t−1

]
=
[

n
t

]
+ 1 and n ≡ t− 1 (mod t);

(8) t ≡ 1 (mod 4), a = t− 1, b = 2, (qn − 1)t = t, n < 2s, and
[

n
t−1

]
=
[

n
t

]
;

(9) t ≡ 3 (mod 4), a = t−1
2 , b = 2, (qn − 1)t = t, n < 2s, and

[
n

t−1

]
=
[

n
t

]
.

It is not hard to verify that if t, s ∈ τ then a = b, that is, τ ∩ π(G) ⊆ π(Φa(q)). Furthermore, in items
(1)-(3), (8), and (9) s is a large prime for G. As indicated below, both of the numbers t and s are large in
(4) and (7). Consequently, τ ∩ ρ = ∅. Now we consider all of the nine cases singly.

Let a = b ≡ 0 (mod 4) and n < bs. If the Sylow r-subgroup of G is Abelian then the whole π-subgroup is
contained in some maximal torus, and so G satisfies condition (1) of the theorem. Suppose that G contains
a non-Abelian Sylow r-subgroup. Then the subgroup G1 = GL[n

a ](q
a) of G contains a Hall π-subgroup of

G. In this case the Hall π-subgroup of G1 is contained in its monomial matrix group. Consequently, there
exists a maximal torus T such that N(T ) contains a Hall π-subgroup of G. Hence G satisfies condition (2)
of the theorem. Cases (2) and (3) can be treated similarly.

If a 6= b then t = r. Assume that one of (4)-(7) holds. Then ar > n, which was stated in the proof
of Theorem 4.3 in [9]. Consequently, |G|r = r and G contains an Abelian Sylow r-subgroup. In addition,
sb > sr > n, and so s is a large prime. Hence the Hall π-subgroup of G is Abelian, and so G satisfies
condition (3) of the theorem.

Cases (8) and (9) can be treated in the same way as was (4) for GLn(q). In each of these cases, G

satisfies condition (3) of the theorem, and it is not a Dπ-group in this instance.
At the moment assume that G = GOε

n(q), where ε = ±. In view of [9, Thm. 4.4], G contains a Hall
{t, s}-subgroup iff one of the following cases holds:

(1) ε = +, a = b ≡ 0 (mod 2), and n 6 bs;
(2) ε = +, a = b ≡ 1 (mod 2), and n 6 2bs;
(3) ε = −, a = b ≡ 0 (mod 2), and n 6 bs;
(4) ε = −, a = b ≡ 1 (mod 2), and n 6 2bs;
(5) ε = −, a ≡ 1 (mod 2), b = 2a, and n = 4a;
(6) ε = −, b ≡ 1 (mod 2), a = 2b, and n = 4b.
As we did for the groups GLn(q) and GUn(q2), we can prove that if (1)-(4) hold then G satisfies

conditions (1) or (2) of the theorem. In items (5) and (6), the Hall π-subgroup of G is cyclic, which was
mentioned in the proof of Theorem 4.4 in [9]. Consequently, G satisfies condition (3) of the theorem, and
its Hall π-subgroup is Abelian.

Finally assume that G = Sp2n(q). G contains a Hall {t, s}-subgroup iff one of the following cases is
realized (cf. [9, Thm. 4.5]):

(1) a = b ≡ 0 (mod 2) and 2n < bs;
(2) a = b ≡ 1 (mod 2) and n < bs.
As above, it is not hard to verify that if either one of (1), (2) is realized then G satisfies conditions (1)

or (2) of the theorem.

5. INHERITING Dπ IN FINITE GROUPS

We prove that, for the case where 2 /∈ π, an extension of a Dπ-group by a Dπ-group is again a Dπ-group.
We say that G satisfies condition (∗) if it satisfies conditions (1) and (2) of Theorem 4 or one of (1)-(3) of
Lemma 14 (with the condition that |π ∩ π(G)| > 2 dropped).
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From Theorems 1 and 4 and Lemma 14, it follows that if a finite Lie-type group G satisfies (∗) then its
Hall π-subgroup M is representable as M = R i T , where R is a Sylow r-subgroup of G, r is a minimal
number in π ∩ π(G), τ = π \ {r}, and T is a Hall τ -subgroup of G. Furthermore, there exists a maximal
torus H such that T ≤ H and M ≤ N(H).

Below we also need an additional definition bearing on algebraic groups. Let G = Op′(Gσ) be a finite
group of Lie type and G its corresponding simple algebraic group. Let T be some maximal torus of G and
D a T -invariant connected semisimple subgroup of G such that D ∩ T is a maximal torus in D. Then D

is called a subsystem subgroup of G. Obviously, T ·D is a connected reductive subgroup of maximal rank
in G. If R = T · D is a σ-invariant group then D =

[
R,R

]
is also one. The subsystem subgroup of G is

D = Dσ ∩G = D ∩G. Clearly, every non-trivial subsystem subgroup of G either coincides with G or has
the form G1 ∗ . . . ∗Gk, where all Gi are Lie-type groups of lesser rank than is G, but possibly with a larger
definition field.

LEMMA 15. Let G = Op′(Gσ) be a finite group of Lie type satisfying condition (∗), R be a σ-invariant
semisimple connected subgroup (of not necessarily maximal rank) in G, and Op′(Rσ) = G1 ∗ . . .∗Gk, where
all Gi are finite groups of Lie type. Then all groups G1, . . . , Gk satisfy condition (∗). Moreover, if r is the
least prime in π ∩ π(G), e = e(q, r), and |Gi|r > 1, then |Gi| is divided by Φe(q).

Proof. Let D = Op′(Rσ). Since Φnα(t) divides Φn(tα) whenever some polynomial Φn(qα) divides |D|,
Φnα(q) divides |D| and hence also |G|. Therefore if s is a large prime for G then it is also one for D. In
addition, if r is a minimal prime in π ∩ π(G), e = e(q, r), and r divides |Gi|, then Φke(q) divides |Gi| for
some natural k; consequently, either qke − 1 divides |Gi|, or qke/2 + 1 divides |Gi|. Since Φe(q) divides
qke − 1 or qke/2 + 1, Φe(q) divides |Gi|, whence the result.

LEMMA 16. Let G = Op′(Gσ) be a finite simple group of Lie type and X a subgroup of AutG. Then
X satisfies one of the following:

(1) X normalizes some proper connected σ-invariant subgroup H < G;
(2) there exists a finite simple group H such that H ≤ X ≤ AutH;
(3) X ∩G lies in the normalizer of some Jordan subgroup of G;
(4) G = E8(q), char GF (q) > 5, and Y < G0 ∩X < NG(Y ), where Y ∼= A×B, A ∼= Alt5 and B ∼= Alt6

are alternating groups of degrees 5 and 6, respectively, NG(Y )/Y is a quaternion group, CG(B) = A,
CG(A) ∼= Sym6 is a symmetric group of degree 6, B = [CG(A), CG(A)], and Y is defined uniquely up to
conjugation in G.

Proof. Theorem 1 in [22] was proved for the case where σ is some classical Frobenius automorphism.
That proof, note, can be carried over verbatim to the case of an arbitrary automorphism whose fixed-point
set is finite.

THEOREM 5. Let G = Op′(Gσ) be a finite simple Lie-type group satisfying condition (∗). Then the
following conditions are equivalent:

(1) every π-subgroup of G contains a normal Hall τ -subgroup;
(2) AutG is a Dπ-group;
(3) every extension of G by an arbitrary Dπ-group is a Dπ-group;
(4) G is a Dπ-group.
Proof. The implication (2) ⇒ (3) follows from the corollary to Theorem 1 in [23]. (3) ⇒ (4) is trivial.

(4) ⇒ (1) follows from Theorem 1.
We embark on (1) ⇒ (2). Assume that this implication is false, and that G0 = Op′(Gσ) is a counterex-

ample of minimal order. Put G1 = Aut G0. Let M1 be a maximal π-subgroup of G1 which is not Hall. Put
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G = Ĝ0 = Gσ. Condition (1) of the theorem is equivalent for G0 and G = Ĝ0 since N(T0)T σ = N(T ) for
every maximal torus T0 = T σ ∩G0. We handle a group M = M1 ∩G. There are three cases to consider.

Case (a). M contains a non-trivial τ -subgroup T . In view of condition (1), M also contains a normal Hall
τ -subgroup. We may assume that T is a normal Hall τ -subgroup of M . Consider a group CG(T ). Since T is
contained in some maximal torus H of G which contains a Hall τ -subgroup of G, CG(T ) is a reductive (not
necessarily connected) σ-invariant subgroup of maximal rank in G. Furthermore, CG(T )0 = C = DR is a
characteristic σ-invariant subgroup of CG(T ); here, D = [C,C] and R = Z(C)0. It follows that Cσ = DσRσ

and Op′(Dσ) = G1 ∗ . . .∗Gk. By Lemma 15, G1, . . . , Gk satisfy (∗). Since G is a counterexample of minimal
order, AutG1/Z(G1), . . . ,AutGk/Z(Gk) are Dπ-groups. By [23, cor. to Thm. 1], it then follows that the
group Cσ and its every extension by a Dπ-group are Dπ-groups. Since M1 normalizes Cσ and is a Dπ-group,
M1Cσ is also a Dπ-group. Note that Cσ contains a Hall τ -subgroup of G.

The group M1 is a maximal π-subgroup; hence, it is a Hall π-subgroup of M1Cσ. And T is then a Hall
τ -subgroup of G. The group NG(T ) is, therefore, normalized by M1 and contains a Hall π-subgroup of G.
The Hall π-subgroup of every non-Abelian composition factor in NG(T ) coincides with a Sylow r-subgroup
of that factor and, consequently, is nilpotent. By [3, Thm. D5; 23, cor. to Thm. 1], every extension of
NG(T ) by a Dπ-group, and the group M1NG(T ) in particular, will enjoy property Dπ. By maximality, M1

is a Hall π-subgroup of M1NG(T ). Therefore M = M1 ∩G is a Hall π-subgroup of G.
Consider a group NG1(M). By [10], G1 is a Cπ-group. In particular, NG1(M) contains a Hall π-

subgroup of G1. Since the group G1/G is solvable, NG1(M)/M ∼= NG1(M)G/G is also solvable and is a
Dπ-group. Consequently, M1/M is contained in the Hall π-subgroup N1/M of NG1(M)/M . And M1, then,
is contained in the Hall π-subgroup N1 of G1, a contradiction with the choice of M1.

Case (b). M is a non-trivial r-group. In view of [24, Thm. 30], every automorphism of G = Gσ extends
to an automorphism of G which commutes with σ. Thus we may assume that M1 ≤ AutG. Since M is
non-trivial, the same is true for its center Z(M) and, hence, for the group Z = Ω1(Z(M)). Consider a
group C = CG(Z). Since Z is closed and M1-invariant, C is likewise. Furthermore, C0 is a characteristic
subgroup of C; consequently, it is M1-invariant. Let U = Ru(C0) be a unipotent radical of C0. Since U is
a characteristic subgroup of C0, it is also M1-invariant.

First assume that U is non-trivial. Put N1 = NG(U), U1 = URu(N1), Ni = NG(Ui−1), and Ui =
Ui−1Ru(Ni). Since G is finite-dimensional, the chain of embeddings N0 ≤ N1 ≤ . . . will stabilize at some
step k. The group N0 is M1-invariant, and so are all Ni therefore. In addition, Z consists of σ-fixed
elements; consequently, the groups C, C0, and U are σ-invariant, and so therefore are all Ni, Ui. By [13,
Prop. 30.3], P = Nk is a σ- and M1-invariant parabolic subgroup of G. Since N0 6= 1, we have P 6= G. Thus
Pσ is a proper parabolic subgroup of G and Pσ is representable as LσVσ, where Vσ = Ru(P )σ, Lσ = Dσ ∗Sσ

is the Levi factor of Pσ, Dσ = [L,L]σ is a subsystem subgroup of G, and Sσ = (Z(L)0)σ is some torus of
order (q − 1)k, k = dim(Z(L)). By Lemma 15, all non-Abelian composition factors of the group Pσ = P1

satisfy (∗). Thus P1 and M1P1 are Dπ-groups in view of corollary to Theorem 1 in [23]. By maximality,
M1 is a Hall π-subgroup of M1P1.

Since r divides |Pσ| and is coprime with p, r divides |Lσ|. It follows that either r divides |Dσ|, or r

divides |Sσ|. In the former case the order of Dσ is divisible by Φe(q), where e = e(r, q), by Lemma 15.
Hence the group Pσ contains non-trivial τ -elements. Consequently, M contains a non-trivial τ -subgroup, a
contradiction with the choice of M1. In the latter case r divides q − 1. It follows that e(r, q) = 1, and the
torus Sσ contains non-trivial τ -elements, which is a contradiction with the choice of M1 again.
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TABLE 2

G J NG(J)
Arn−1, n > 1 r2n r2n · Sp2n(r)

E6 33 33 · 33 · SL3(3)
E8 53 53 · SL3(5)
F4 33 33 · SL3(3)

Next suppose that U is trivial. Then C is a reductive subgroup of G. And we are faced with the
following options:

1. Let dim(C) = 0. Since Z is finite, it is a d-group. NG(Z) is a finite group in view of the fact that
d-groups are rigid (cf. [13, cor. to Prop. 16.3]). By Lemma 16, Z satisfies one of (2)-(4) of that lemma.
Since Z is a non-trivial normal Abelian subgroup of NG(Z), Z cannot satisfy (2) or (4). Consequently,
Z contains a Jordan subgroup of G. The Jordan subgroup is a maximal elementary Abelian subgroup of
NG(Z) (cf. condition 2 in [25]); therefore, Z is a Jordan subgroup of G. Since Z lies in G, NG(Z) also lies
in G. In Table 2, we list all possible Jordan subgroups J of odd order (cf. [25]).

If G = Arn−1(K) then r divides q − 1. Consequently, NG(Z) is a τ ′-group. Therefore M1NG(Z) is
a Dπ-group, and hence M is a Sylow r-subgroup of NG(Z). The latter is impossible since NG(Z) acts
regularly on Z and is generated by r-elements, which contradicts the condition that Z ≤ Z(M). In all
other cases (cf. Table 2), either NG(Z) is a τ ′-group, which is again a contradiction with the choice of M1,
or G contains a π-subgroup of the form L = J h T , where J is a normal Sylow r-subgroup of L and T is a
Hall τ -subgroup of L which is not normal in it. This leads us to a contradiction with condition (1) of the
theorem.

2. Assume that Z(C0) = 1, dim(C) > 0, and that C is of lesser rank than is G. Then C0 is a σ-
and M1-connected invariant semisimple group, and by Lemma 15, the composition factors of M1(C0)σ all
satisfy condition (∗); hence, C0 is a Dπ-group. Therefore M is a Hall π-subgroup of M1(C0)σ. If r divides
|(C0)σ|, then (C0)σ = G1 ∗ . . . ∗ Gk, since Z(C0) is trivial; so, (C0)σ = G1 ∗ . . . ∗ Gk contains non-trivial
τ -elements by Lemma 15, which contradicts the choice of M1. For the other case we obtain Z ∩ C0 = 1.

Let T be some maximal torus of C0. Since C0 is connected, CC0(T ) = T . From [13, Thm. 22.3], it follows
that C1 = CG(T ) is a connected reductive subgroup of maximal rank in G. Clearly, Z ≤ C1. Moreover,
Z 6≤ Z(C1), for otherwise Z would lie in some maximal torus, and so CG(Z) = C would be a subgroup
of maximal rank in G, which is a contradiction with the conditions on C. Thus Z1 = Z ∩ [C1, C1] 6= 1;
in particular, [C1, C1] 6= 1. We have CC0(T ) = T , and so [C1, C1] ∩ C0 ≤ Z(C1). Since CG(Z) = C,
C[C1,C1](Z1) is a finite group. Thus Z1 is a Jordan subgroup of [C1, C1]. This, in view of the above, leads
us to a contradiction either with Z ≤ Z(M) or with condition (1) of the theorem.

3. Let Z(C0) 6= 1 or C be a subgroup of maximal rank in G. If C is not a subgroup of maximal rank,
then Z(C0) 6= 1 is contained in some maximal torus of G, since it is contained in all maximal tori of the
connected group C0. Consequently, CG(Z(C0)) is a proper σ- and M1-invariant subgroup of maximal rank
in G, and C can be replaced by the group CG(Z(C0)). Further, we assume that C is a reductive subgroup
of maximal rank in G.

Put C1 = C0 and F = (C1)σ = Dσ ∗ Sσ, where Dσ = [C1, C1]σ is a subsystem subgroup of G and
Sσ = (Z(C1)0)σ is some torus. Consider a group M1F . Since G is a counterexample of minimal order,
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TABLE 3

G r |(CG(S))σ| e(q, r)
Akr−1(q) (qkr − 1)/(q − 1) 1

2Akr−1(q2), k is odd (qkr + 1)/(q + 1) 2
G2(q) 3 q2 + q + 1 1
G2(q) 3 q2 − q + 1 1
F4(q) 3 (q2 + q + 1)2 1
F4(q) 3 (q2 − q + 1)2 1
E6(q) 3 (q2 + q + 1)3 1
E6(q) 3 q6 + q3 + 1 1
E6(q) 3 (q2 − q + 1)2(q2 + q + 1) 2
E8(q) 3 (q2 + q + 1)4 1
E8(q) 3 (q2 − q + 1)4 2
E8(q) 3 (q2 − q + 1)(q6 − q3 + 1) 2
E8(q) 5 (q4 + q3 + q2 + q + 1)2 1
E8(q) 5 (q4 − q3 + q2 − q + 1)2 2

3D4(q3) 3 (q2 + q + 1)2 1
3D4(q3) 3 (q2 − q + 1)2 2
2E6(q2) 3 (q2 + q + 1)2(q2 − q + 1) 1
2E6(q2) 3 (q2 − q + 1)3 2
2E6(q2) 3 q6 − q3 + 1 2

and all non-Abelian composition factors of F satisfy (∗), M1F is a Dπ-group. By maximality, M1 is a Hall
π-subgroup of M1F .

Further, either r divides |Dσ|, or r divides |N(F )|. In the former case, F contains non-trivial τ -elements
by Lemma 15. Hence M contains a non-trivial τ -subgroup, which contradicts the choice of M1. Suppose
that the second case is realized and F is a τ ′-group. Denote e(r, q) by e. Then Sσ is some torus such that
the order of its group N(Sσ) is divided by Φke(q), for some k ∈ Z, and the order of (CG(S))σ is not divided
by Φe(q). In Table 3 we list all groups G and all primes r for which such a situation obtains (cf. [17-19]).

Our next goal is to treat all of these cases singly. Note, from the outset, that π ∩ π(N(Sσ)) = {r} and
N(Sσ) is an M1-invariant group, and so M1N(Sσ) enjoys Dπ. This, in view of the fact that M1 is maximal,
implies that M is a Sylow r-subgroup of N(Sσ).

First assume that G = Akr−1(q). Then Sσ = (CG(S))σ is a cyclic group. Consequently, Sσ contains a
unique subgroup A = 〈a〉 of order r, which lies in the center of M . Indeed, A is a characteristic subgroup of
Sσ, hence A∩(M) 6= 1, and so A∩Z(M) = A. Since Sσ �M1N(Sσ), A is normal in M1. If CG(A) 6≤ NG(S),
or, which is the same, CG(A) 6≤ N(Sσ), then CG(A)0 is a σ- and M1-invariant subgroup of maximal rank
in G, distinct from S. Hence (CG(A))σ contains non-trivial τ -elements, which is a contradiction with the
choice of M1 again. Therefore we may assume that CG(A) ≤ N(Sσ), that is, a is a regular element.

Let R1 be a Sylow r-subgroup in G1 containing a Sylow r-subgroup of M1; then R = R1 ∩ G is a
Sylow r-subgroup of G containing M . Since R � R1, R contains an element b of order r in Z(R1). Clearly,
b ∈ Z(R), and so b ∈ CG(a) ≤ N(Sσ). Direct computations show that Z(R) is contained in the group
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of diagonal matrices of G; hence, CG(Z(R)) ≤ CG(b) and the group CG(Z(R)) contains non-trivial τ -
elements. Consequently, b /∈ A. From [15, Prop. 30], it follows that N(Sσ)/Sσ is a cyclic group. Therefore
〈a〉 × 〈b〉 = Ω1(M) is a characteristic subgroup of M .

Thus 〈a〉 and 〈a〉 × 〈b〉 are M1-invariant groups. Note also that r is the least number in π. In fact, r is
least in π ∩ π(G) by assumption. If there exists an s < r, s ∈ π, then qs−1 − 1 divides |G| and is divided
by s, which contradicts the choice of r. Since |a| = r and π(r − 1) ∩ π = ∅, M1 centralizes 〈a〉. In view
of 2 /∈ π, we have π ∩ π(r + 1) = ∅, and so π ∩ π(r2 − 1) = ∅. Consequently, every r′-element of M1

centralizes 〈a〉 × 〈b〉. Further, the group CM1(〈a〉 × 〈b〉) is normal in M1 and contains a Sylow r-subgroup
of M1. Consequently, every Sylow r-subgroup of M1 lies in CM1(〈a〉× 〈b〉). The group M1 centralizes b and
hence normalizes CG(b). The group CG(Z(R)), and so CG(b), should contain non-trivial τ -elements, which
they do not by the choice of M1. Similarly we argue for the group 2Akr−1(q2).

For exceptional groups, the argument is uniform based on the groups Akr−1(q) and 2Akr−1(q2) treated
above. We dwell, for instance, on the case where G = E8(q), r = 5, and |Sσ| = (q4 − q3 + q2 − q + 1)2. By
[15, Lemmas 26 and 27], the group Sσ = (CG(S))σ is unique up to conjugation in E8(q). From [19, Table 2],
it follows that E8(q) contains a subgroup isomorphic to 2Â4(q2) ∗ 2Â4(q2). Since this subgroup contains a
torus of order (q4 − q3 + q2 − q + 1)2, we may assume that Sσ ≤ 2Â4(q2) ∗ 2Â4(q2). Then N(Sσ) contains
a normal subgroup of index 2, representable as a central product N1 ∗N2 of isomorphic groups, which lies
in the group 2Â4(q2) ∗ 2Â4(q2). By the above, M1 centralizes some element a ∈ 2Â4(q2) ∗ 2Â4(q2), whose
centralizer contains non-trivial τ -elements. We are led to a contradiction with the choice of M1.

Case (c). The group M1 ∩ G is trivial. Every element of G1 is uniquely represented as a product of
inner-diagonal, field, and graph automorphisms. First assume that M1 lies in a group generated by the
inner-diagonal and field automorphisms of G2. The group G2/G is cyclic. Since M1 ∩G = {1}, M1 is also
cyclic and M1 = 〈h〉. By [26, 7-2], h may be conceived of as an automorphism of G0.

If the Hall π-subgroup of G is Abelian then G2 possesses property Dπ by [3, Thm. D5]. If it is non-
Abelian then π(W (G)) ∩ π 6= ∅. In view of [24, Thm. 30], h may be treated as an automorphism of G.
Consequently, K = Op′(Gh) is a finite group of Lie type, which is a subgroup of Gσ = G. Moreover, there
exists an h-invariant maximal torus T of G such that Th ∩ K is a Cartan subgroup of K. In particular,
N(Th ∩K) consists of h-fixed elements. Since π(N(Th ∩K)/(Th ∩K)) = π(W (K)) = π(W (G0)), the group
N(Th∩K) contains a non-trivial π-element l. Therefore 〈h〉 ≤ 〈h, l〉, 〈h, l〉∩G 6= {1}, and 〈h, l〉 is a π-group,
which contradicts the choice of M1.

Lastly assume that M1 does not belong to a group generated by inner-diagonal and field automorphisms.
This is possible only if G0 = D4(q3) and 3 ∈ π. The group M1∩G2 is then a cyclic normal subgroup of index
3 in M1; hence, 〈h〉 = M1 ∩G2. By the above, either the Hall π-subgroup of G is Abelian, or NG1(h) ∩G

contains non-trivial 3-elements. In the former case the result follows from [3, Thm. D5]. In the latter case
we may take a Sylow 3-subgroup S in NG1(h) ∩G which contains a Sylow 3-subgroup of M1. Then S · 〈h〉
is a π-subgroup, contains M1 as a group, and has a non-trivial intersection with G. Therefore S · 〈h〉 6= M1,
which contradicts the choice of M1.

Proof of Theorem 2. By [23, Thm. 1], it suffices to prove that an automorphism group of every
non-Abelian simple Dπ-group G is a Dπ-group.

If a simple group is sporadic or alternating then the order of its inner automorphism group is the degree
of 2, and so our claim is trivial.

If a simple group is of Lie type and the characteristic of its definition field lies in π, we need only appeal
to [8].
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Finally, if G is a simple group of Lie type and the characteristic of its definition field does not lie in π,
one of the following statements holds:

(1) a Hall π-subgroup is Abelian, and every extension of a Dπ-group with an Abelian Hall subgroup by
a Dπ-group is again a Dπ-group (cf. [3, Thm. D5]);

(2) G is a π′-group, as desired;
(3) G satisfies condition (∗), and the conclusion follows immediately from Theorem 5.

Remark. The proof of Theorem 5 shows that there exist groups for which (∗) does not imply condition
(1) of Theorem 5. In this connection, it might be useful to make up a list of all finite groups of Lie type
which satisfy (∗) and for which (1) of Theorem 5 is satisfied. Such a list would allow us to exhaust the
description of groups with property Dπ for the case where 2 /∈ π.

Acknowledgement. We are deeply indebted to Profs. A. S. Kondratiev and V. D. Mazurov for help and
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