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We bring out upper bounds for the orders of Abelian subgroups in finite simple groups. (For al- 

ternating and classical groups, these estimates are, or are nearly, ezact.) Precisely, the following 

result, Theorem A, is proved. Let G be a non-Abelian finite simple group and G ~ L2(q), where 

q = p' for some prime numberp.  Suppose A is an Abenan subgroup of G. Then IAI 3 < IGI. Our 

proof is based on a classification of finite simple groups. As a consequence we obtain Theorem 

B, which states that a non-Abelian finite simple group G can be represented as A B A ,  where A 

and B are its Abelian subgroups, iff G ~- L2(2') for some t >1 2; moreover, 1.41 = 2 ' + 1 ,  Inl = 2', 

and A is cyclic and B an elementary 2-group. 

I N T R O D U C T I O N  

In the present article we work to find upper bounds for the orders of Abelian subgroups in finite simple 

groups. For alternating and classical groups, these estimates are (or are nearly) exact. In any case the 

following is valid: 

T H E O R E M  A. Let G be a non-Abehan finite simple group and G ~ Lz(q), where q = pt for some 

prime number p. Suppose A is an Abelian subgroup of G. Then IAI z < IGI. 

In proving the theorem, we make use of the classification of finite simple groups given in [1, Table 2.4]. 

A consequence is obtaining the answer to Question 4.27 in [2]; the solution to this problem was first 

announced in [3] where it was underpinned by some other ideas. 

T H E O R E M  B. A non-Abelian finite simple group G can be represented as a product  A B A  of its 

Abellan subgroups A and B if and only i f G  -~ L2(2 ~) for some t/> 2; moreover, IA[ = 2' + 1, IBI = 2 ~, and 

A is a cyclic group and B an elementary 2-group. 

Abelian subgroups of finite simple groups have been studied extensively. In [4], for instance, an estimate 

is obtained for the order of a maximal torus in all Chevalley groups. For universal classical Chevalley 

groups, bounds for the orders of semisimple subgroups of nilpotency dass at most 2 are estimated in [5]. In 

[6-9], the reader can find estimates for the orders of Abelian unipotent subgroups in classical groups, and 

also descriptions of those subgroups. 

For many of the Chevalley groups of exceptional type, exact estimates for the orders of Abelian unipotent 

subgroups are still not found; the estimates of which we have knowledge will be given in Lemmas 4.1 and 4.5. 

Chevalley groups are structured so as to allow us to conjecture that  the order of an arbi t rary Abelian 

subgroup does not exceed a maximum of the orders of a greatest Abelian p-subgroup and a greatest Abelian 

p'-subgroup. In the present article, we confirm this conjecture for projective special linear and symplectic 

groups. 
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The article is divided into some sections, in each of which a specified type of finite simple groups is 

treated. In Sec. 1, we address the case of symmetric and alternating groups. Classical groups are studied 

in Sees. 2 and 3, exceptional Lie-type groups m in Sec. 4, and sporadic groups - -  in Sec. 5. In the final 

Sec. 6, we prove Theorem B. 

For the groups amenable to exact estimates, we specify the structure of greatest Abelian subgroups. By 

a greatest Abelian subgroup, throughout the article, we mean an Abelian subgroup of maximal order. 

The notat ion and definitions are borrowed from [10, 11]. Denote by A(G) the greatest Abelian subgroup 

of G, and by Ap(G) and Ap, (G) the greatest Abelian p- and p'-subgroups, respectively. Let p be some prime 

number; then Op(G) is a maximal normal p-subgroup of G. For a subset M of G, we use (M) to denote 

a group generated by the set M, and write IMI for the cardinality of M. If H is a subgroup of G, then 

Ca(H) and NG(H) are, respectively, the centralizer and the normalizer of H in G; [G : H I is the index of 

H in G. If H is normal in G, written H ~ G, then G/H is a factor group of G w . r . t . H .  By Z(G) we 

denote the center of G; A x B is a direct product of groups A and B, and A * B is a central product.  

In dealing with Chevalley groups, we denote by Fq a field of order q, by p its characteristic, and by 

F~ a multiplicative group of Fq. For a Chevalley group corresponding to a root system ff over Fq, write 

if(q). A set of positive roots in the root system �9 is denoted by ~+, and a set of fundamental roots - -  by 

{ r l , . . .  , r~) ,  where the numbering is chosen in accordance with [11]. A root subgroup corresponding to a 

root r G �9 is denoted by Xr,  and an element in that root subgroup - -  by z~(t), t E Fq. An element z in the 

Chevalley group ~(q) is called semisimple, if its order is coprime to p, and we call it unipoten~ if its order 

is the power o fp .  Similarly, a semisirnple subgroup in r is one whose order is coprime to p (p'-subgroup) 
and its unipoter~t subgroup is one whose order is the power of p. 

I. A L T E R N A T I N G  G R O U P S  

T H E O R E M  1.1. A greatest Abelian subgroup in an alternating group A,, is conjugate to one of the 

following groups: 

(1) ( ( 1 , 2 , 3 ) , . . . , ( 3 k -  2 ,3k - 1 ,3k))  if n = 3k; 

(2) ( (1 ,2)(3 ,4) , (1 ,3)(2 ,4) ,  (5, 6 , 7 ) , . . . ,  (3k - 1,3k,3k + 1)) if n = 3k + 1; 

(3) ((1, 2)(3, 4), (1, 3)(2, 4), (5, 6)(7, 8), (5, 7)(6, 8), (9, 10, 11 ) , . . . ,  (3k - 1, 3k, 3k + 1)) if n = 3k + 2; 

(4) ( (1 ,2 ,3 ,4 ,5) )  i f n  = 5. 

Also, the orders of greatest Abelian subgroups in alternating (A,,) and symmetric (Sn) groups are given 

thus: 

IA(As. ) I  = 3"; [A(As.+t ) I  = 4 . 3 ' * - t ;  IA(As.+2)I  = 16"3 ' * -2 ;  IA(As)I  = 5; IA(Ss.) I  = 3~; [A(Ss~+~)I = 
4 . 3 " - ~ ;  IA(Ss~+~)I = 2 . 3  ~. 

For any n, the group A(A,) is unique up to conjugation. 

R e m a r k .  Tha t  Theorem A is valid for alternating groups follows easily from Theorem 1.1. Indeed, 

routine computations help us check that [A(An)[ 3 < IA~] for n />  7. We have A5 -~ L2(4) and A6 ~- L2(9), 

which proves Theorem A for A,,. 

P r o o f  of the theorem. We point out the following well-known fact. Let H < S,~ and assume that  H is 

Abelian and acts transitively on a set {1 , . . . ,  n}. Then IH] = n. 

In fact, consider a stabilizer StH(i) of some element i E { 1 , . . . , n )  in the group H.  Since H acts 

transitively, for any j e { 1 , . . . , n ) ,  there exists a r G H for which i r = j .  For any a E StH(i), therefore, 

we have 
j ~  = i  ~ = i ~ = i  T = j ,  
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that is, if a E Sthr(i) then (r E StH(j) for all j E {1 . . . .  , n}. Hence a = ~ is an identical permutation,  that 

is, Stlr = {r Furthermore, [Hi = [H:  Stu( i ) l .  [StH(i)h IH: StH(i)J = n, and consequently {HI = n. 

Finally, the whole set { 1 , . . . , n }  splits into disjoint subsets I 1 , . . . , I k ,  on each of which the Abelian 
k 

subgroup G of S~ acts transitively. Thus IGI 1-[ IIwl. 
j = l  

Write P .  -- . max ( I-I nj).  By the above, [A(S.)I -- P. .  It is not hard to see that  P .  satisfies the 
. l t . . . ~ n ~ = .  #=I 

following recurrent relation: 

P .  = max (P ._ ,~ . r a ) ,  P0---- I. 
0<.n~<n 

Using this, by induction we obtain the equalities 

P3. : 3"; ~3.+1 ---- 4- 3"-i; P3.+2 : 2 �9 3". 

The theorem is proved for A(S.) .  

Note that  A .  < S . ,  and hence [A(A.)[ ~< [A(S.)[. In the group A3., there exists an Abelian subgroup 

G generated by permutations (1, 2, 3), (4, 5, 6 ) , . . . ,  (3n - 2, 3n - 1,3n), that  is, G can be represented as a 

direct product  of cyclic groups of order 3. The order of G is equal to 3"; therefore, [A(A3.)] : 3 '~. It is 

worth mentioning that  any greatest Abelian subgroup F in A3. is represented as a direct product  of cychc 

groups of order 3, that  is, it is generated by permutations (kl, k2, ka), (k4, ks, k 6 ) , . . . ,  (k3.-2,  k3.-1,  k3.); 

therefore, G v = F,  where a is a permutation in $3. sending 1 to kl, 2 to k2, and so on. If a is odd, we 

may take a permutat ion (1, 2)o" : r ,  which is even. Since G(1'2) = G, we have G ~ = F,  that  is, G and F 

are conjugate in A3..  

In the group A3.+~, there is an Abelian subgroup G generated by permutations (1, 2)(3, 4), (1, 3)(2, 4), 

(5, 6, 7), ..., ( 3 n -  1, 3n, 3n + 1); its order is equal to 4 -3  " - I ,  and so IA(A3.)I = 4 - 3  " -1 .  A proof  that  any 

greatest Abelian group and G are conjugate in A3.+I goes along the same hne as in the A3. case. 

Lastly, if G is an Abelian subgroup of A3.+2, then either [GI = 3n+2,  or G is represented as G = GI x G2, 

where GI < Ak~, G2 < Ak,, and k I + k 2 : 3n + 2. If n/> 2, for the indices k I and k2, we have the following 

cases. 

1. Let kl = 3 n 1 + 1  and k2 : 3n2+ 1. Then IG[ = [G1 x G2[ : IG~l']G21 ~< [A(A3nx+I)['[A(A3.=+I)] : 
16 .3  " - 2  . 

2. Let kx : 3~,1 and k2 : 3n2+2. Then [G[ = ]GlxG2] : [GxI'IG2I ~< ]A(Aa.~)]'[A(A3.2+2)I = 16"3 "-2- 

Using induction on n yields the estimate IA(A3,,+2)[ ~< 16- 3 " -2 .  On the other hand, for n />  2, A3,,+2 

contains a subgroup G generated by permutations (1, 2)(3, 4), (1, 3)(2, 4), (5, 6)(7, 8), (5, 7)(6, 8), (9, 10, 11), 

..., (3n, 3n + 1, 3n -{- 2); its order is equal to 16.3  " -2 ,  and so IA(Aa.)I -- 1 6 . 3 " - ' .  As above, we can prove 

that  any greatest Abellan subgroup and G are conjugate in A3,+2. The theorem is proved. 

2. R E S U L T S  R E V I S I T E D  

Theorems 11.3.2, 14.5.1, and 14.5.2 in [11] imply 

LEMMA 2.1. The following isomorphisms hold: 

(1) A.-1(q)  ~- L.(q) ~ PSL.(q) ,  n >/2; 
(2) B (q) >i 3; 
(3) c (q) PSp .(q), i> 2; 
(4) D.(q) PaL(q), 4; 
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(5) 2Dn(q2) ~ Pl2~n(q), n >/4; 

(6) 2A.(q~) ~- PSU.+l(q~), ,~ >. 2; 
(7) B2(3) ----- 2A4(22), B . ( 2  a) ~ C.(2a) ,  B~(q) ~- C2(q). 
The next lemma collects the results obtained in [6-9]. The cases of orthogonal groups of small dimensions 

of which no mention is made in the lemma can be found in [8]. 

L E M M A  2.2. Let q - pa. Then: 

(1) [Ap(GL,(q))] = q[~];  

(2) IAp(S~.(q)) t = q ~ ;  
(3) IAp(O2.+x(q))l = q"~",-')+l for n/> 3 and p # 2; 

(4) IAp(O+,(q))[ = q -  -A_~. for n ~> 4; 

(5) IAp(O~,,(q))l = q~"-')?'-')+2 for n/> 4, q is odd; 

(6) IA~,(O~,,(q))l - q~%-') for n ~> 4, q is even; 

(7) IAp(U,(q2))l = qtT] .  

L E M M A  2.3 [5]. Let V be an n-dimensional vector space over a finite field Fq, assume that G < GL(V),  

H <1 G, (IG/HI, q) = 1, and suppose that the nilpotency class of G / H  is at most 2. Then:  

(1) IG/HI < q". 
(2) if G preserves the nondegenerate bilinear form f on V then IG/H I <~ 2"(")6[~], where 

e ( n ) = (  0 if q or n is even, 6 = {  8 i f q = 3 o r 5 ,  

1 if q and n are odd; 1 + q otherwise. 

L E M M A  2.4 [4, Thin.  2.4]. Let G be an adjoint Chevalley group, which is not a Suzuki or Ree group. 

Suppose that  U is a maximal unipotent subgroup of G, and q = I z w ) l .  Then ~(q - 1y  .< IAp,(V)l <. 
~(q + 1) ~, where r is the Lie rank of G and d is the order of the center of a universal Chevalley group. (In 

[11], that  order is determined for all Chevalley groups.) If G is a Suzuki or Ree group, again we let U be a 

maximal unipotent  subgroup of G, q = IZ(V)[, and q~ = vq- Then (qx - 1y  .< IAp,(G)I .< (q~ + 1y,  where 

r is the Lie rank of G. 

L E M M A  2.5 [5, Lemma 1.1]. Let V be a finite-dimensional vector space over a field Fq. Suppose A 

is a subgroup of GL(V), and (IA[,q) = 1. Then V is decomposed into a direct sum of proper irreducible 

A-submodules. 

L E M M A  2.6 [5, Lemma 1.2]. Let V be a finite-dlmensional vector space over Fq and f be the 

nondegenerate bilinear form on V. If A is a subgroup of GL(V), A preserves f, and (tAI,q) = 1, then 

V = Cv(A) (3 "L [V, A] is an orthogonal direct sum of A-submodules Cv(A) = {v E V l v a  = v for all a E A} 

and [V, A] = ( ~  - ~ I~ ~ V, ~ �9 A}. 

3. C L A S S I C A L  S I M P L E  G R O U P S  

A classical simple group, we recall, is an adjoint classical Chevalley group. Up to isomorphism, this is 

one of the following: 

(1) A,(q) = Ln+l(q) = PSL,+I(q); 

(2) Br,(q) -- 02.+1(q) "- Pf12.+l(q); 

(3) C.(q) = s~.(q) = Psp2.(q); 
(4) O.(q) -- O+.(q) = PIl+.(q);  
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(5) ~ a . ( q  2) = U .+ l (q )  = PSU.+l(q-~); 
(6) 2D,~(q2) = 02,,(q ) = Pfl2,(q)" 

T H E O R E M  3.1. Greatest  Abefian subgroups of classical simple groups are est imated thus: 

Ia(L~(q))l  = q + 1 if q is even; 

IA(L2(q))I = q if q is odd; 
IA(L3(q))[ = q2 + q  + 1 if ( 3 , q -  1) -- 1; 

IA(L3(q))I = q2 if (3,q - 1) = 3; 

Ia(L. (q) ) l  = q[,:/41 if n :> 4; 

IA(U4(2))[ = [A($4(3) ) [ -  27; 

q~ <~ Ia(S4(q))l <. (q + 1)q 2 if q >1 4; 
q4 << ]A(OT(q))l <<. 2(q + 1)2q 3 if q is odd; 

q +~ ~< Ia(O~.+~(q))l ~< 26q"(", - ' ,  , where q is odd, 6 is as in Lemma 2.3, and n ~> 4; 

IACS2.Cq))l = q "<V'~ for ~ >: 3; 
q 2 <<. IA(O+n(q))[ <~ i~q = ; 
qr ~< lA(o~=(q))l  ~< 62q~"-~ ~-') +~, where q is odd; 

q << IA(O~,,(q))[ <~ 6q"(~ -') , where q is even; 
q2 <~ [A(U3(r <~ (q + 1)2; 

IA(U4(q))I = q4 if q is odd; 

q4 ~< la(U~(q))l .< (q" + 1)q 2 if r > 3 and is even; 

q [n2/41 ~< Ia(U=(q))l ~ (q2 + 1)q[n~/4] for n >/5. 

R e m a r k  1. For classical groups, Theorem A is verified by direct computat ions  via the estimates given 

in Theorem 3.1. 

R e m a r k  2. The groups for which exact estimates are obtained admit  obtaining a description of greatest  

Abelian subgroups up to conjugation. For Ap(An(q)) and Ap(Cn(q)), this was done in [6]. Up to conjugation,  

a greatest  Abelian subgroup is one of the following: 

Ap(A2,~+l(q)) ---- ( X r l r / >  r,~+l); 
AI,(A2,,(q)) = (Xr ]r >1 r,~) or A.p(A2,(q)) = (Xr [r /> r,~+l); 

a , ( C . ( q ) )  = (X,  lr :> r.>. 
For the other cases, a description is immediately obtained thus. 

Let L2(q) ~- SL2(q) for q even. Choose a matr ix  A in GL2(q) such tha t  IA[ = q2 _ 1, tha t  is, the element 

A generates a group F~,. It follows tha t  A(L2(q)) = (Aq-1), tha t  is, the result is a cyclic group generated 

by A q-1. 

Let L3(q) -- SL3(q) for (3 ,q--  1) : 1. Choose a matr ix  A in GL3(q) so tha t  ]A[ = q3 _ 1, tha t  is, the 

element A generates F~*~. Then A(Lz(q)) = (Aq-1). 
The p r o o f  of the theorem will proceed through a number of lemmas. 

L E M M A  3.1. Let 
~2 

f l ( n ,  q ) =  max(q '~ - 1, ( q -  1)q[Tl); 

f2(rt, q) -- (2, q - 1)q "(~3+~) for n ~> 3, f2(2, q) -- (2,q - 1 ) (q+  1)q 2, and f2(1, q) -- max(6, (2,q - 1)q); 

f3(n,  q) -- (2, n -  1)-2-6.  q[~1([~]-1)/2 if n />  8 and q is odd; f3(2k + 1, q) = q k~+,) if k/> 2 and q is even; 

f3(2k, q) = 6q ~(~:~ if k :> 4 and q is even; f3(1, q) = 2, f3(2, q) = 2q, f3(3, q) = 4q, f3(4, q) = 2- (q + 1). q2 

f3(5,q) = 4 . ( q + 1 ) .  q2, f3( f ,q)  = 2 . ( q +  1) 2 . q 3 , f 3 ( 7 , q )  = 4 . ( q + 1 )  2-q3  i f q i s  odd; f3(1,q) = 1, 

f3(2,q) = q + 1, f3(3,q)  -- q + 1, f3(4,q) = (q + 1)q 2, f3(6,q) = (q + 1)2q 3 if q is even; 
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f4(n, q) = (2, r t -  1). 2 . 6  (2'~) �9 q[-~'~]([~ -t]-U/2+(2,') if rt /> 8 and q is odd; f4(n, q) = f3(n, q) if rt ~< 7 

or q is even; 

fs(n,q) = (q + 1)(q = + 1)q[~] if rt /> 5; /5(1,q) = q + 1, fs(2, q) = (q + 1) 9, fs(a,q) = (q + 1) a, 

/5(4, q) = (q + I ) .  q4 if q 1> 3; f5(4,2) = 81. 

Then, for any j = 1, 2, 3, 4, 5, 

fj(n + m,q) >i f~(n,q)fj(m,q). (i) 
In proving the present lemma, we will use the following: 

P r o p o s i t i o n  3.1. Let f ( z )  and g(z) be polynomials of degrees rt 1 and n2, respectively. Suppose that  

f ( z )  and g(z), together with their derivatives, are not less than 0 for z > 0. Also, assume that  rtl < rt2 

and g(zo) >1 f(z0),  g'(zo) >: f '(zo),  ..., g("*)(z0) ~> f(":)(z0) at some point z0 > 0. Then g(z) >. f ( z )  for 

all z ~> z0. 

P roof .  By assumption, g(n:+l)(z) /> 0 for all z > 0, and f(nt+l)(z)  = 0; therefore, g(n:+U(z) ~> 

f("~+l)(z) for all z ~> z0. Since g("~)(zo)/> f(":)(z0),  we have g("~)(z)/> f("~)(z) for all z /> so. And the 

required result will follow by repeating this argument for derivatives of lesser orders. 

P r o o f  of Lemma 3.1. We prove inequality (1) for the case f3(n,q), q is odd. For n, rn/> 8, 

fa (n ,q) -  f3(m,q) = 2(2, n -  1)6q[~]([~]-l)/22(2, m -  1)6q[~]([~ 1-1)/2 ~< 

2(2, n + m -- 1)6q [ ~ ' ] ( [ '+~ ' ] -z) /2  = f3(n + m, q); 

therefore, it sumces to consider the case where m ~< 7. We claim, for instance, that  f3(6, q)f3(6, q) = 
2(q + l)2q 3. 2(q + 1)2q 3 <~ 26q ls -- f3(12, q). In fact, by the definition of 6, we need only prove that  

2(q + 1) z ~< r (2) 

It is not hard to see that  the polynomials in q on the right- and left-hand sides of the inequality satisfy the 

conditions of the proposition at point q = 2; hence, inequality (2) ~ true for all q ~> 2. 

Arguing similarly for other i, m, n, and q proves the lemma. 

L E M M A  3.2. Let G < GL,(q), with G satisfying the following conditions: 

(1) G = H,  x H,,, where E ,  and g, ,  are, respectively, semisimple and unipotent components of G; 

(2) the nilpotency class of H,  does not exceed 2; 

(3) H,, is Abelian. 

Then IGI ~< A(n, q). 
P roo f .  Assume that  the statement of the lemma is untrue, and G is its counterexample of minimal 

order. 

By Lemma 2.5, the group Ha is decomposed into irreducible blocks. We can therefore assume that  

I H,~ ... 0 1 H, = 0 "'. 0 , 
0 ... H,~ 

where all blocks of Hsj are irreducible and numbered in order of increasing dimension. The so structured 

g roup / I s  indicates that  all matrices in Hj are in blockwise-diagonal form, and each block of Haj can be 

conceived of as a semisimple irreducible subgroup of the group GL,j.(q); any Hs~ has its nllpotency class 

at most 2. In addition, nl  + . . .  + nk : n. Note that  now Hs < Hs~ x . . .  x H,~. 
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Further we may assume that all H,~. coincide and hence H~ ---- H0:. Indeed, H,, # {1}, since otherwise 

G = He, and by Lemma 2.3, we would have [GI ~< q" - 1 ~< f x (n ,q ) ,  which contradicts the assumption 

that G is a counterexample. By assumption, A B  = B A  for any matrices A 6 Ha and B 6 H,,. Write B as 

follows: 
Bll B12 - . -  Blk 

B =  B2~ B23 - . .  B2k J , 
, . .  

Bk, BI,2 . . .  Bk~ 

where the dimension of a block coincides with that  of a corresponding block in the representation of the group 

H, ,  that  is, BIj has n i columns and n/ rows. By commutativity, HaiB~j = Bi#Hs# and Ha#Bj~ = By, Ha ~. 

By the Schur lemma, the sets B(y,i ) --- {Bi ,  [B E H,,} and B(~,y ) - {Bij I B 6 H ,}  form a division ring. 

Consequently, if dimensions of the blocks corresponding to groups Ha~ and Ha# are different, or these groups 

are not conjugate, then B(i,y ) = B( i j )  = {0}. In this way, if dimensions of the blocks do not coincide, or 

some blocks (groups) are not conjugate, then the group H,,, in the same basis as Ha, takes up the following 

form: 

0 H ~  

It follows that  G < Gx x G2, where G~ and G2 are subgroups in GL, , , (q)  and GL,,~(q) satisfying the 

assumption of the lemma. Since G is a minimal counterexample, Lemma 3.1 implies 

IGI ~ [Gd" IG=I ~ A(~x ,q ) .A(n2 ,q )  <~ A ( n x  + n 2 , q )  = A ( n , q ) .  

We have arrived at a contradiction with G being a minimal counterexample. 

Thus, not only are dimensions equal for all blocks Ha j, but also all subgroups of tfas are conjugate. Up 

to conjugation, therefore, the group Ha has the following form: 

( H~ ... 0 ) 

H,= 0 "-. 0 (3) 

�9 0 . . .  H,~ " 
v 

k times 

Consequently, H, ~- H,x. Assume that the dimension of H,, equals -~. By Lemma 2.3, IH,[ = ]Hsxl 

(q~ - 1). Since all blocks B~# of the matrices in Hu form a division ring, and any finite division ring is a 

field, and, since they lie in M~:(q), we may assume that these blocks form a subfield in F~. The group 

H, has the form (3); therefore, we can think that H,~ <_ GLk(q~). From (1) of Lemma 2.2, it follows that 
[H,,[ ~ q~[~-~]. This implies that 

IGl ~ [Hsl. IH,,I ~ (q~ - 1 ) .q~[~]  ~ f l (n ,q) .  

Contradiction. Hence such G does not exist, proving the lemma. 

LEMMA 3.3. Suppose G _< Sp2,(q) and G satisfies the following conditions: 
(1) G : H, x H~, where H, and H,, are, respectively, semisimple and unipotent components of G; 

(2) the nilpotency class of H~ is at most 2; 

(3) H,, is Abelian. 

Then IGI f2(n, q). 

73 



Proof .  Assume that the statement of the lemma is untrue, and G is its minimal counterexample. If 

the group H, has no proper submodules then it is a unique irreducible block. 

Among all proper H,-submodules, if any, choose an H,-submodule U of minimal dimension. Consider 

D = CH,(U). If D = {1} then H, acts faithfully on U. By Lemma 2.3, [Hs[ < qdim(U) : qk. As in 

the proof of the previous lemma, we can obtain IGI ~< tH, I. IH=I .< (qk _ 1)qk[~-] ~ f2(~, q). (The latter 

inequality holds for n /> 3 and k /> 2.) For n = 1, the situation that  obtains is the known case where 

Sp2(q) "~ SLy(q). For the case where n = 2 and k = 2, note that  H,  �9 Z(GL4(q)) satisfies the estimate 

IH, * Z(GL4(q))I <<. (q2 - 1). Since ]H, f3 Z(GL4(q))[ <~ (2,q - 1), we have I~,1 .< (2, q - 1)(q + 1), tha t  is, 

the inequality IGI .</2(,~, q) holds in this case, too. If k = 1 then IH, I = ( 2 , q -  1). By (2) of Lemma 2.2, 

IH=I ~< q~(%+'), and so IGI .< (2,q - 1)q~(7 ') ~< f2(rt, q). 

We can thus assume D > {1}. Then Cv(D) and [V, D] are proper nontrivial H0-submodules. By 

Lemma 2.6, V = Cv(D)~ • [V, D]; hence, H, can be represented as a subgroup in the group H,~ x H,~, where 

H,~ and H,~ are semisimple class 2 nilpotent subgroups in the groups Sp2,~,(q) and Sp2,:(q), respectively. 

Repeating the above argument for H,~ and H,~ yields H~ < Hs, x . . .  x H,~, where all H,j are irreducible, 

semisimple, nilpotent subgroups of class 2 in Sp2,,j(q). 
We make use of the estimate obtained in Lemma 3.2 and the fact that  H,, can be treated as a subgroup 

of GLk(q~),  that  is, IH=I ~ q ~ [ ~ ] .  As indicated above, H, has the form 

H$ : " . .  

0 H~, 

k times 

that  is, H, ~- H,,, and hence IHsl ~< 6{ by Lemma 2.3. It follows that IGI ~< 6=.q-~CT] ~ ~ f2( , q) 
for n :> 3. For n = 2 and k = 2, [G[ ~< 6. q2 ~< f2(n, q). The lemma is proved. 

L E M M A  3.4. Let G be a subgroup of the orthogonal group O,,(q) satisfying the following conditions: 

(a) G = Hs x H~,, where H, and H~ are, respectively, semisimple and unipotent components of G; 

(b) the nilpotency class of Hs is at most 2; 

(c) H~, is Abelian. 

Then the following properties hold: 

(1) if G <_ O+2,~(q) then IGI ~ fa(2n, q); 
(2) if G <_ O~,~(q) then IGI ~</4(2n, q); 
(3) if G <_ 02n+l(q) then [GI ~</a(2n + 1,q). 

P r o o f .  Assume that  the conclusion of the lemma is untrue, and G is a counterexample of minimal 

order. 

If H ,  lacks proper submodules then H, is a unique irreducible block itself. 

Among all proper H:submodules,  if any, choose an Hs-submodule U of minimal dimension. Consider 

D = CH,(U). If D = {1} then Hs acts faithfully on U. By Lemma 2.3, IH~I < qdim(~) = qk. Let 

G <_ Ok(q). As in the proof of Lemma 3.2, we can obtain IGI ~< IHsl �9 IH,,[ <~ (qk _ 1) vmn[q" " k[--.-].,. ,q ~ 2  ) ~< 

fi(n,q). (The latter inequality holds for n/> 8 and k/> 2.) The cases where G <_ 02,~(q) and G <_ O2,~+1(q) 

admit  a similar treatment. Small-dimensional cases will be treated separately, a bit later. If k : 1 then 

IH~[ : (2,q - 1). And, taking the value of the order of the greatest Abelian unipotent subgroup from 

Lemma 2.2, we arrive at [G[ ~< (2,q - 1)IH~[ ~< A(n,q). 
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We can thus assume that  D > {1}. Then Cv(D) and IV, D] are proper nontrivial H,-submodules.  By 

Lemma 2.6, V -- Cv(D)$ • [V, D]; hence, H, is represented as a subgroup in H,, x Hs2, where H,  1 and H;, 2 

are subgroups in O,~,(q) and O~,2(q) , respectively. Repeating the above argument for H,~ and Hs2 yields 

H,  _< H, ,  x . . .  x H,h, where all H, i  are subgroups in O,~j(q) and are irreducible. 

Since G is minimal, again we may assume that H,  has the form 

/ ~ $  - - -  ~ 1 7 6  

N / 

k times 

that  is, H, ~- H, 1, and by Lemma 2.3, IH, I ~< 6[~1. It follows that  IGI x< 6[~] min(q~{~],  IH,,I) ~ f3(n ,q) .  

(The lat ter  inequality holds for n >~ 8.) 

For groups O~(q), we note, all blocks of the group H, ,  for k -- 2, cannot be conjugate: the dimension 

of a maximal isotropic subspace is equal to ~ - 1, and so G <_ G1 • G2, where G 1 _< 0 +  1 and G 2 < O~-, 

whence [G] < f3(nx,q)" f4(n2, q) ~ f4(n,q).  For k > ~, we have [G[ < 6 ['~/2k] �9 q~[~]  < f4(n,q) .  (The 

latter inequality holds for n/> 8). 

We proceed to small-dimensional cases. Obtaining estimates specified in the lemma does not depend on 

which of the groups O+(q) or O~ (q) is chosen, and so below we do not discriminate between these. Unless 

otherwise stated, we adhere to the notation used in proving the first part  of the lemma. For instance, U 

denotes a proper H,-submodule of minimal dimension. The function f~ (n, q) was constructed in a way that  

it is not less than a maximum of the order of a semisimple group of nilpotency class at most 2 and the 

order of an Abelian unipotent subgroup, multiplied by an order of the center Z(O,t(q)). Therefore, we need 

only handle the case where H,  > Z(O,~(q)), H,, # {1}. In addition, Lemma 3.1 allows us to treat the cases 

with G < G1 x G2, where G1 and G2 are subgroups of orthogonal groups in a smaller dimension. 

For groups 01(q), O2(q), and Oz(q), nontrivial cases are an impossibility. For 05(q) and O~(q), every 

subgroup fitting in the nontrivial case is decomposable, since 5 and 7 are primes, and so we may well omit 

them. 

Consider a group O4(a). A nontrivial case appears when dim (U) = k = 2. Let CH,(U) = {1}; 

then H, < GL2(q) and [H, * Z(GL~(q))[ <~ q2 _ 1. Since leg t3 Z(GL2(q))] <~ ( 2 , a -  1), we have IH,[ ~< 

( 2 , q -  1 ) ( q + l ) .  In [8], it was proved that  IR~I .< yielding the required estimate. Now let C~,(U) # {1}. 

Then the group H,  takes up the blockwise-diagonal form, and blocks along the diagonal coincide. Hence 

IH.I <. n q2, yielding the required estimate again. 

Finally, consider 06(q). Nontrivial cases are realizable with dim (U) : k = 2 and dim (U) = k = 3. In 

the former case, arguing in a way we did for O4(q) yields IH, I ~< (2,q -- 1)(q 4- 1). In IS], it was proved 

that  I~1  -< q4, yielding the required value. Let k = 3. If C~.(U) r {1} then H,  splits into equal 

blocks; hence, IH, I ~ (2,q - 1)6. We can assume H,, < GLz(q3); therefore, IH=I ~< a z. Consequently, 

the s ta tement  of the lemma is true. Let Cn.(U) = {1}. Then tt, < GL3(q), 111, * Z(GLz(q))[ <~ q3 _ 1, 
[H, NZ(GL3(q))[ <~ (2, q -  1); hence, I11,1 <- (2, q - 1 ) ~  ~< (2, q - 1)(q 4- 1) 2. Moreover, again I11=1 ~ q3, 

yielding the required value. The lemma is proved. 

For uni tary groups - -  denoted by U,,(q 2) throughout the proof of Lemma 3.5 - -  a statement similar 

to Lemma 2.6 holds; see [9]. Again, the bound for the order of a maximal Abelian semisimple subgroup 

in a uni tary group, which we are able to derive from Lemma 2.3, is equal to just  q2,t _ 1. This is too big 
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for groups in a small dimension, and so we need a somewhat refined estimate for the order of a semisimple 

group. 

First note that  if H~ satisfies the conditions 

(1) (q, IH~ 1, and 
(2) H~ C1Z(Un(q2))) is an Abe]Jan group, 

then its order does not exceed (q + 1) '~. Indeed, by Lemma 2.4, the order of a greatest Abelian semisimple 

subgroup in 2An_x(q2 ) is at most ( l+z) ' - t  and IU,~(q2) : SU,~(q2)[ -- q + 1, whence the result. I Z(SU~(qO) l ' 
L E M M A  3.5. Let G < U,~(q 2) and G satisfy the following conditions: 

(1) G = H~ x Ht,, where H,  and H~ are, respectively, semisimple and unipotent components of G; 

(2) H,/(H, n z(u.(q2)))  is AbeUan; 
(3) Hu is Abelian. 

Then IGI f s ( n ,  q). 
P r o o f .  As above, assume that  the statement of the lemma is untrue, and G is its counterexample of 

minimal order. 

Let U be a proper H,-submodule of minimal dimension. If d im(U)  = n then H~, = {1}, and the 

statement of the lemma is true for G. We therefore let dim (U) = k < n. If k = 1 then Ho <_ Z(GL,,(q2)), 
that  is, H,  is a scalar matrix group, since otherwise the G would split into 

G~ 0 0 

0 G2 0 

0 0 G,,~ 

Each block corresponds to a subspace of eigenvectors for some matr ix in H,,  in which case different blocks 

correspond to different eigenvalues, and the vectors corresponding to the various eigenvalues are orthogonal. 

Therefore, we may assume that the blocks Gi are subgroups in unitary groups of smaller dimensions, whence 

G S Gz x . . .  x Gin, and hence JOl .< [ G I ] - . . . .  IG,nl ~< f s ( n l , q ) . . . . ,  f s ( r ~ , q )  ~< (by Lemma 4.1) f~(n,q) ,  

which contradicts the choice of G for m > 1. If r~ = 1 then ]H, N Z(GL,~(q2))] <~ q + 1, by Lemma 2.2, 

[Ht, I ~< q[ ~ ], and the statement of the lemma is thus true. 

If k > 1, we repeat the argument of Lemma 3.2 to see that 

q2k _ l q 2 k [ - ~ ] ,  

which proves the lemma for n />  5. Here, just as was done for orthogonal groups, small-dimensional cases 

will be treated separately. 

In fact, we need only consider the case where G is indecomposable, H,  # Z(V,(q2)), and/ i r~ # {1}. 

The sole unitary group of small dimension satisfying the above conditions is U4(q2). 

A nontrivial case is realized with d im(U)  = 2. If CH~ # {1} then H,  splits into equal blocks, 

which are subgroups in U2(q2). Therefore, I•,1 .< (q + 1) 2. The group H~ can be t reated as a subgroup of 

GL2(q4). In some basis for a 4-dimensional vector space over Fq2, the group in question takes up the form 

0 E ' 
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where the first two vectors of the basis are taken from the module U, and the next two - -  from its orthogonal 

complement. Hence the matrix of unitary form in that basis is shaped thus: 

0 A2 

Direct computations show that B = {0}, hence B',~ = {1}, and the statement of the lemma is thus true. 

We let ffH,(U) = {1}. The group H,  takes up the form 

( E,~ 0 ) .  

0 Ho~ 

In the same basis, H,, has a presentation by matrices of the form 

0 E 

We can write V = U f13 Ui, where U and Ui are proper / / , - submodules  corresponding to irreducible blocks. 

We introduce some notation. Denote by B the matrix 

0 E ; 

u (without indices) is an element of U, ul is one of U1, and ~-1 = uB - u is an image of u in Ui under 

the action of some matr ix  B in H,,. Note that U1 is a fixed-point space for the group /~,. Consider an 

Hermitian product  (ul ,  w), where Ul and w are arbitrary vectors in Ui and U, respectively. We then have 

(ui ,w)  = (ulE, wB) = ( u l , w ) +  (ul,~-i); consequently ( u ~ , ~ )  = 0. Since ux and w are arbitrary, the 

space Ui is isotropic. Consider (u, u). For any matrix B in /-/~, and for every vector u in U, we have 

(u,u)  = (uB, uB) = (u + ~-Lu + u-~l) : (u,u) + (u,~-]'l) + (~]f,u); consequently, (u,~-]-l) + (~ f ,u )  = O. 

Since (u,~-]'l) = (~-]'l,u) q, it follows that (u,~-]-l)[1 + (u,~]f)q-il = O. This implies either (u,~--i'1) -- 0 or 

(u,~'x) q-1 = - 1 .  In the former case the unitary form should be degenerate, which it is not. 

We handle the second case. Let (u,~'~l) = z. Then 1 + z q- i  = 0, 1 : z q2-i, hence zq-l(~: q+x + 1) : 0, 

whence z 2 - :  1. Since z q-1 = - 1 ,  for q odd, we arrive at a contradiction. I fq  is even, we obtain z = 1, and 

then 

(u,~()  : 1. (4) 

If (u, ~-i) = 1 and (u, ~-i'~) = 1, then (u, ~ - / -  ~ )  = 0. Hence ui - vi lies in the subspace orthogonal to u. 

Also, U1 is an isotropic subspace; therefore, the dimension of the orthogonal complement of u in Ux is at 

most 1. Hence the number of vectors in Ui satisfying (4) is at most qZ. The number of such vectors is not 

less than Ifi.I. In fact, if ~ = ~ for some matrices B'-~ and B-'~ in fir,, then Bi  + B2 E fi,,, since {B} 

is a field. This implies that  uBi + B2 = u, and hence Bi  = B2. Thus, different dements  in H,, send the 

vector u E U to different elements ~ E Ui; hence, IH~ I ~ Ithe orthogonal complement of u in Ul[ = q2. 

The 1emma is proved. 

P r o o f  of Theorem 3.1. Let A be an Abelian subgroup of a classical group G. Then A = H0 x H~,, 

where Ho and H,, are, respectively, semisimple and unitary subgroups in A. Let A be a preimage of A in 

the universal central extension (cf. [12] for definition) under the natural  homomorphism. Then A satisfies 

the conditions of Lemmas 3.2-3.5, and the estimate for [A I is obtained from one in the appropriate lemma, 

by dividing by the order of the center of a suitable group. The theorem is proved. 
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4. E X C E P T I O N A L  C H E V A L L E Y  G R O U P S  

We bring out known bounds for the orders of Av(G), where G is a Chevalley group of exceptional type; 

see [12]. 

L E M M A  4.1. Let G = L(q) be a Chevalley group of exceptional type over a field Fq and p be the 

characteristic of Fq. Then the foUowing estimates are correct: 

(1) i f p  # 3 then IAp(G~(q))l : q3; 

(2) ifp---- 3 then IAa(G2(q))I : q4; 
(3) IA~(2a~(2~"+'))t = 23~+1; 
(4) IA3(2G2(q))[ = q2, q = 3 ~ + 1 ;  
(5) IA2(2F4(q))I = qS, q = 22'~+1; 

(6) IAp(3n4(q3))l = : ;  
(7) if v = 2 then q12 <~ IA~(F4(q))l < ql~; 
(8) i f p  = 2 then q12 ~< [A~(2E6(q2))I ~< q20; 

(9) i f p  = 2 then [A2(Ee(q))] = q16; 
(10) i f p  = 2 then [A2(ET(q))[ : q~-7; 

(11) i f p  = 2 then [Az(Es(q))l = q36. 

Let G be a Chevalley group of normal type over a field Fq and k be its Lie rank. Recall that  any element 

h in the Cartan subgroup H in G (cf. [11] for definition) has the form h(x),  where X is defined as follows. 

Let P be a set of all linear combinations of fundamental roots { r l , . . .  , r/~} with integral coefficients and let 

Q be a set of rational combinations of the same roots. Then {X} is precisely the set of homomorphisms of 

P into F~, which are extended to homomorphisms of Q into F~. For any r E �9 and t E Fq, the equality 

h(x)z,.(t)h-l(X) = z~(x(r ) t  ) holds. 

L E M M A  4.2. Let h(x) r 1 be some element in a Cartan subgroup of the Chevalley group L(q) and 

U be a maximal unipotent subgroup in L(q). Then the centralizer Cr.r(h(x)) of h(x) in U is equal to U.x,  

where ~x = {r Ix( r )  = 1} C ~ and U,~ = (X~ [r E ~x)" Also, ~x i~ a subsystem of ~. 

P r o o f .  By the above, it suffices to prove that  @x is a subsystem of ~. Recall tha t  the subset ~ of a 

finite-dimensional Euclidean space over ~R is called a root system if the following conditions are satisfied: 

(1) �9 is finite, generates the vector space as a whole, and is freed of zero vectors; 

(2) if r E @ then the vectors multiple to r in ~/are  just +r ;  

(3) if r e ~ / then  the reflection wr leaves the set @ invariant, where w~(s) = s - ~ r ;  

(4) if r, s E q~ then 2 r_(y.~ is an integer. 

Conditions (1), (2), and (4) are satisfied since @x is a subset of @. We check (3). For r and s, we have 

x ( r )  = X(S) = 1. Then 

2(~,~)~ x- ~/2(~,~) 
= s = = 1 .  

~ e s  
The lemma is proved. 

L E M M A  4.3 [12, Sec. 2.4]. Let Q be a nontrivial p-subgroup of a Chevalley group G. Then G contains 

a proper parabolic subgroup P such that Q <_ Or(P) and NG(Q) < P. Here, Op(P) is a maximal normal 

p-subgroup of P.  
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L E M M A  4.4 [12, Sec. 2.2]. Let Px be a parabohc subgroup of a Chevalley group G of normal type. 

Then it has the form PI = LIUIH,  where LI is the Levi factor, which is a central product of Chevalley 

groups of which each is obtained from a connected component in the Dynkin diagram for G, by banishing 

vertices which enter the set I, UI = (Xr I r = ~ mirl ,  mi > 0, for some i E I) .  Again, for any Chevalley 

group G, we have PI = L~UzH, where H <_ Na(LI ) ,  U~ = Ov(Pl ) and U I N L I H  = 1, NG(UI) = PI, where 

LI is a central product  of ChevaUey groups. 

In what follows, we write r0 to denote a longest root in the root system �9 for a Chevalley group in 

question. Note that  Z(U)  = Xro. We describe how the normaliser of X,o is structured; see [12]. 

Let G be a Chevalley group of normal type. Then Na(Zro(t))  = Pro = Na(Xro)  for t # 0. Here, the 

subgroup Pro is obtained as follows: first, an extended Dynldn diagram is built up by adding to the ordinary 

diagram a vertex - r 0  bridged to the other vertices in the usual way, and then Pro is found by discarding 

the vertices bridged to - t o .  

We proceed to obtain estimates of ]A~(G)[ for the cases unmentioned in Lemma 4.1. 

L E M M A  4.5.  Let q be odd and q = p'~. Then the following estimates are correct: 

(1) q9 <<. [Av(F4(q)) ] ~ q14; 

(2) q16 <. tA (E6(q))I <. 
(3) q2~ ~< [Ap(E,(q))[ <<. q32; 

(4) q3r ~< [A~,(Es(q))] <<. qS~; 
(5) q12 ~< [Ap(2E6(q2))[ ~< q20. 

P r o o f .  For all groups of normal type, the estimates are obtained along similar fines, which we sketch 

below. 

Consider a parabolic subgroup P,o = UroLro H, where Lro is a Chevalley group for which the order of 

an Abellan p-subgroup is a known value. The group [Jr~ possesses the property [Uro, Uro] = Z(Uro) = Xro ; 
therefore, Uro/Xro can be treated as a vector space over Fq, with basis {5;} and summation given by the 

rule a57~+ ~ = zr ( a ) z ,  (fl). Again, on that space, the nondegenerate antisymmetric bilinear form can be 

defined by setting Zro((~, ~)) = [u,v I. 
An Abefian subgroup can then be thought of as an isotropic subspace of known dimension. In this way 

we obtain estimates for the orders of Abelian p-subgroups in Lro and in Ur0. To obtain the ultimate value, 

we need only take a product of these two. 

The case of a group 2E6(q2 ) is somewhat more complicated. The root system has type F4, but  it 

consists, not of roots, but  of equivalence classes. The equivalence classes are of two types: 

R = {r}: if r = r ~, where ~ is an automorphism of a root system generated by the symmetry  of a 

Dynkin diagram of type E6, then R is a class of normal type; 

R = {r, ~}: if r # r ~ = ~, then R is a class of special type. 

The unipotent  group U is generated by root subgroups XR. Also, the basis classes R1, R2, R3, and R4 

corresponding to fundamental roots in a root system of type F4 are chosen thus: 

If the class R is in form {r, f}, then, for definiteness, we assume that  r < f ,  where the order is given 

thus: r > 0 r r -- ~ a i r  i and the first ai distinct from 0 is greater than O. 

P r o p o s i t i o n  4.1. Let 

= I I  
IR+iSeF+ 
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where CjiSR and fij (L u) are defined as follows: 

(1) if R and S are classes of normal type then f l , ( t , u )  : - u t  and CnSR : C n , r ;  

(2) if R is a class of special type and S a class of normal type then fx, (t, u) : -u t ,  f2, (t, u) = uf{ and 

CIISR : CII~r , CI2SR = Cl l f r+aCl lsr ;  

(3) if R is normal and S special then f l , ( t ,u)  = --uT~, f l , ( t ,u)  =tufL and Cnsn  = C l l s , ,  C 2 1 $ R  : 

Cllir+s Cllsr; 
(4) if R, S, and R + S are classes of special type then f i t  (~, u) = - u t  and CllSR = CllsF; 

(5) if R and S are special and R + S normal then f l ,  (t, u) = - (u{  + fit) and C, ISa = Cn,e. 
The p r o o f  is by an exhaustive search of all cases, combined with applying properties of structural 

constants in a root system of type E6 and the commutator Chevalley formula; see [11, 5.2.2]. Note only 

that  ICijSRI = 1, that  is, they do not vanish for any characteristic of Fq. 

Write UR~ = (XRIR  >_ R1). Then U2E6(q= ) = U~A6(q3)UR,, and UIzx <~ U3E6(q2 ). It follows that  

A~(zEs(q2)) : Ap(2As(q2))A, where A is an Abelian subgroup in URn. Let W = (XR [R is a class of 

special type). Then UR, = UR~/W is Abelian, and on it we can define the antisymmetric bilinear product,  

as we did for the groups of normal type; an image of the Abelian subgroup, in this event, is an isotropic 

subspace of known dimension. 

Finally, consider W = W/XRo. This is again a vector space (but now over Fq2), on the basis vectors of 

which the scalar product first is defined by setting (k--~,~) = C11sR and then is extended, by linearity, to 

the whole space. Since W satisfies the identities 

we can prove that  for odd q, (+i,~) = 0 iff [u,v] = 1. Summing up all the above facts yields the estimate 

specified in the lemma. 

P r o o f  of Theorem A. Consider a group G2(q). Since our theorem is true for the greatest Abellan 

semisimple and unipotent groups, we may assume that the Abelian subgroup A has "mixed" order, that  is, 

it has both semisimple and unipotent elements. By Lemma 4.3, A lies in some proper parabolic subgroup of 

Gz(q). The maximal subsystem in G2 is A2. Therefore, if h(x) 6 A for some h(x) # 1, then, by Lemmas 2.2 

and 4.2, the order of an Abelian p-subgroup in A is at most q2, that is, [A I ~< (q2 _ 1)q2, which satisfies the 

statement of Theorem A. We now assume that  such h(X) is missing. Note that  Na(X,o) = AI(q)U,,H. If 

A is an Abelian subgroup containing zr0(*), t ~ 0, then A <_ NG(Xro). It follows that A _< H,  x H,,, where 

H, <_ SL2(q), H,  <_ Ur, = (X~ [r < r2), and AN H = 1. It is easy to check that  [H,[ ~< q3, [H,[ ~< q + 1, 

whence IAI ~< (q + 1)q 3. Hence  [A[ 3 < [G[. Let A N X, o = {1}. Writing A = H,  x Ht,, with [H,I ~< q + 1, 

[Hul ~< qa, again we obtain IA[ 3 < IGI. (Indeed, if q is not the power of 3 then IH=I .< q2.) Theorem A is 

thus proved for G2(q). 

We proceed to groups F4(q), where q = i oa and is odd. We may assume that  the Abelian subgroup 

A has mixed order, that  is, ([AI,P) = p and A is not a p-group. By Lemma 4.3, A lies in some proper 

parabolic subgroup. If h(x) # 1 6 A exists, by Lemma 4.2, R,+ is then a unipotent subgroup of A and lies 

in the unipotent subgroup corresponding to some root subsystem of F4. The maximal subsystem in F4 is 

B4, hence [H,~[ ~< q6 by Lemmas 2.2 and 4.2, and so IAI ~< qS(q + i)3(q _ I), lAP < [F4(q)[. If such h(x) 
does not exist, then A < UILI, and hence ]A I ~< qX4(q + 1)3 and [A[ 3 < IF4(q)l by Lemmas 2.4 and 4.5. 

We turn to groups F4(2'). The orders of greatest Abelian 2- and 2t-subgroups, when raised to the third 

power, do not exceed the order of a whole group. If there exists an Abelian subgroup A for which the 

inequality IAI 3 >/ IG] holds, then the order of A is of mixed type, that  is, the order of A is even, but A 
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is not a 2-group. Since A is Abelian, it contains an element of mixed order. The orders of centralizers of 

elements in F4(2 t) are given in [13]. The orders of centralizers of elements of mixed type do not exceed 

q9(q + 1)(qS _ 1)(q4 _ 1), and the cube of the latter is less than the order of the whole group. 

Consider E6(q), where q is odd. If there exists h(X) ~ 1 E A then, again, H,, is a subgroup in some 

unipotent group corresponding to a proper root subsystem. The maximal root subsystem in E6 is Ds. By 

bemmas 2.2 and 4.2, we then have IH,,I ~< ql0, IAI .< ql~ 1)5(q-1), and IAI 3 < IE6(q)l. If such h(X ) does 

not exist, then A < UxLz. I fA  > Xr0 then A < U,.~L,.,. And, if we address the proof  of Lemma 4.5, we see 

that  either IAI ~< qlt(q + 1)s or [A[ ,< q2o(q + 1)4. In either case A satisfies the s tatement  of Theorem A. 

Finally, if A N X~ o = {1) then [A I ~< q19(1 + q)S, and the statement of Theorem A is satisfied again. 

For the other exceptional groups of normal type, the desired estimate is obtained by taking a product  

of known values of the orders of greatest Abelian p- and p'-groups. 

The groups 2B2(22"+t) and ~G2(q), treated in detail in [14, 15], satisfy the s tatement  of Theorem A, 

IA(SBs(2s"+t))l = 2 3"+I, and IA(2G2(q))I = q2. For ZF4(q), the value is found by taking a product  of the 

orders of greatest Abelian p- and p'-subgroups. 

For the other exceptional Chevalley groups of twisted type, again we make use of parabolic subgroups. 

For the latter,  however, there is no such accurate description as have we do for the case of groups of normal 

type. Still we can exploit the fact that they lie in parabolic subgroups of the initial groups of normal type. 

Consider a group 2Ee(qS). If h(x) ~ 1 E A exists then H~, is contained in some unipotent subgroup of 

Ee(q s) corresponding to a proper root subsystem. Searching all the subsystems and taking into account 

the condition that  Br~ is twisted, we obtain ]H,, I ~< q9. Then IA] ~< qg(q + 1)6, and Theorem A is true 

for the present case. If such h(X) is missing then IA] ~< q20(q + 1)5 and the desired inequality obtains for 

q/> 4. For q = 3, if A _> XRo (for definition of XRo, see proof of Lemma 4.5), then A < UR~LR~. There  are 

two options: IAI ,< 3 t l -  45 or IAI ,< 32~ 44. The statement of Theorem A is true in both of these cases. If 

ANXreo = {1} then [A] ~ 319 . 4  5 ,  which satisfies the statement of Theorem A. The case of a group 2E6(22) 

will be t reated together with sporadic groups. 

We finish our s tudy of exceptional ChevaUey groups by treating 3D4(q3 ). A greatest subsystem in D4, 

which is sent to itself under the action of a graph automorphism, is A1 x At x At. Therefore, if h(X) ~ 1 E A 
exists then IAI <. q3(q + 1)2(q_ 1), and the desired inequality holds. If not, then A < UrLI, IAI <. q~(q + 1) 2, 
which confirms the statement of Theorem A for all q except 2. The case of a group 3D4(23) will be treated 

together with sporadic groups. 

5. S P O R A D I C  G R O U P S  

Orders of sporadic groups will be estimated by using results of [6]. Estimates for all groups are obtained 

following essentially the same line of argument, and so below we concentrate on just  two: Co2 and Fi23. 
(On them, we demonstrate all tricks through which we obtain the desired estimates.) 

1. Co2. We have [Cos[ = 2 ts �9 3 6 �9 5 3 �9 7 �9 11 �9 23. First we argue that  the theorem is true for Abelian 

p-subgroups. Let Qp be a Sylow p-subgroup. Note, from the outset, that  IQpl a < ICo21 for p >/3; hence, 

if there exists an Abelian p-subgroup which fails to satisfy Theorem A, then that  subgroup is As(Cos).  

Furthermore,  ICco,(2B)l = 2 lz .  315, where 2B is some involution of Cos, and so lA2(Co2)l <. 2 iv. Again, 

Cos contains an element of order 8. Consequently, if IA2(Co2)l -- 2 t~" then A2(Cos) has an element of 

order 4. The  maximM power of 2 in the orders of centralizers of such elements is at most 16; therefore, 

IA2(Cos)l ,< 2 t6. We have (216) 3 < ICosl, and so the statement of Theorem A is true also for As(Cos).  
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If we consider an Abelian subgroup of mixed order, that is, a subgroup which is not a p-group, then 

it will contain an element of mixed order. Once we have looked through the orders of centralizers of such 

elements we arrive at the desired estimate. 

2. Fi23. We have lfi231 = 2 xT" 39. 52. 7 .11 .13 .  For Abelian p-subgroups, obtaining an estimate is still 

simpler than in the previous case. However, the mixed case gives rise to problems. 

We have [CFi~8(6B)] = 27- 36, where 6B is some element of order 6. Thus, if the Abellan subgroup 

A contains an element of order 6, we can maintain only that  ]A I ~< 27 �9 36. The A lles in some maximal 

subgroup G of Fi23. Since [A[ divides IG[, we have the following options for G: 

(1) if G = O7(3) then IA[ ~< 32-27 and IAI a < lFi231; 

(2) if G = $3 x U4(3) : 2 then IAI ~< 2 =. 3 5 and IAI 3 < lFi23[; 
(3) if  G --  31+6: 23+4:  3 2 : 2  then IAI < 2 6. 3 6 and IAI 3 < lFi231. 

Theorem A is proved. 

6. P R O O F  O F  T H E O R E M  B 

Clearly, if Abelian subgroups of G satisfy [A[ 3 < [G], then G fails to be represented as A B A .  We thus 

need to consider only groups Z2(q). In so doing, we distinguish between the cases with q even and q odd. 

q+X q-1 If Let q be odd, q /> 7. Then the orders of maximal AbeIian subgroups are equal to q, 2 , 2 �9 

L2(q) = A B A ,  for the orders of A and B we face the following two options: IAI = IBI -- q or [A[ = q ,  

[B[ = 4+1 By routine computations, using the canonical form of elements in L2(q), we conclude that  if 2 " 
u is a nonidentity unipotent element then Zz2(q)(u) = U, where U is a unipotent  subgroup of L2(q). For 

every Sylow p-subgroup P and for any element z in L2(q), therefore, P N P= is equal either to 1 or to P.  

We proceed to consider both options for A and B. Seek an order of the set AbA, where b is some element 

in B. We have IAbAI = IAbAb-Xl = Ial2 / [A[ 

If L2(q) = A B A ,  we arrive at the following two systems of equations (for the first and second versions, 

respectively): 
~2_1 

q z + y =  2 ' 
z + y = q  

and q~-I 
qz+y--- -  2 ' 

q+l 
z + y =  2 ' 

where z and y are integers. It is not hard to see that neither system has an integer-valued solution, for any 

q. Therefore, L2(q) is not represented as A B A  if q is odd. 

Let q be even. Then, for the orders of A and B, there are four options for which IG[ ~< IAl. IB[ �9 IAI. 

These are the following pairs: (q, q + 1), (q, q), (q + 1, q - 1), and (q + 1, q). The first two are t reated the 

same way as for q odd, and we have G # A B A  for them. For the other two, we make use of the fact that  

L2(2 t) = SL2(2t). If the order of A is q + 1, then A is conjugate in SLy(2 2t) to a subgroup of matrices of 

the form 
( ~  O ) .  

Thus ZsL,(q)(a) = A for a nonidentity element a in .4; hence, ACl A z is equal either to 1 or to A. ALso, 

[Nsz,,(q)(A)l = 2(q + 1). Using the same argument as for q odd, we arrive at the fonowing two systems (for 
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the third and fourth versions, respectively): 

and 

qz + y : q(q - 1), 

z + y = q - 1  

qz-l- y : q(q -- I), 

z + y = q .  

The system has no integer-valued solution in the third case, but has in the fourth - -  z = q - 2, y : 2. We 

have [NsL2(~)(A)t ----- 2(q + 1), and so SLy(q) : ABA, which proves Theorem B. 
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