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MAXIMAL ORDERS OF ABELIAN SUBGROUPS
IN FINITE SIMPLE GROUPS

E. P. Vdovin UDC 512.542.5

We bring out upper bounds for the orders of Abelian subgroups in finite simple groups. (For al-
ternating and classical groups, these estimates are, or are nearly, ezact.) Precisely, the following
result, Theorem A, is proved. Let G be a non-Abelian finite simple group and G 2 La(q), where
q = p* for some prime number p. Suppose A is an Abelian subgroup of G. Then |A|® < [G|. Our
proof is based on a classification of finite simple groups. As a consequence we obtain Theorem
B, which states that a non-Abelian finite simple group G can be represented as ABA, where A
and B are its Abelian subgroups, iff G = L,(2*) for some t > 2; moreover, |A| = 2 +1, |B| = 2¢,
and A is cyclic and B an elementary 2-group.

INTRODUCTION

In the present article we work to find upper bounds for the orders of Abelian subgroups in finite simple
groups. For alternating and classical groups, these estimates are (or are nearly) exact. In any case the
following is valid:

THEOREM A. Let G be a non-Abelian finite simple group and G 2 Lj(q), where ¢ = p* for some
prime number p. Suppose A is an Abelian subgroup of G. Then |4]® < |G|.

In proving the theorem, we make use of the classification of finite simple groups given in [1, Table 2.4].

A consequence is obtaining the answer to Question 4.27 in [2]; the solution to this problem was first

announced in [3] where it was underpinned by some other ideas.

THEOREM B. A non-Abelian finite simple group G can be represented as a product ABA of its
Abelian subgroups A and B if and only if G = L;(2%) for some ¢ > 2; moreover, |4| = 2° + 1, |B| = 2¢, and
A is a cyclic group and B an elementary 2-group.

Abelian subgroups of finite simple groups have been studied extensively. In [4], for instance, an estimate
is obtained for the order of a maximal torus in all Chevalley groups. For universal classical Chevalley
groups, bounds for the orders of semisimple subgroups of nilpotency class at most 2 are estimated in [5]. In
[6-9], the reader can find estimates for the orders of Abelian unipotent subgroups in classical groups, and
also descriptions of those subgroups.

For many of the Chevalley groups of exceptional type, exact estimates for the orders of Abelian unipotent
subgroups are still not found; the estimates of which we have knowledge will be given in Lemmas 4.1 and 4.5.

Chevalley groups are structured so as to allow us to conjecture that the order of an arbitrary Abelian
subgroup does not exceed a maximum of the orders of a greatest Abelian p-subgroup and a greatest Abelian
p'-subgroup. In the present article, we confirm this conjecture for projective special linear and symplectic

groups.
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The article is divided into some sections, in each of which a specified type of finite simple groups is
treated. In Sec. 1, we address the case of symmetric and alternating groups. Classical groups are studied
in Secs. 2 and 3, exceptional Lie-type groups — in Sec. 4, and sporadic groups — in Sec. 5. In the final
Sec. 6, we prove Theorem B.

For the groups amenable to exact estimates, we specify the structure of greatest Abelian subgroups. By
a greatest Abelian subgroup, throughout the article, we mean an Abelian subgroup of maximal order.

The notation and definitions are borrowed from [10, 11]. Denote by A(G) the greatest Abelian subgroup
of G, and by A,(G) and A,/ (G) the greatest Abelian p- and p'-subgroups, respectively. Let p be some prime
number; then O,(G) is a maximal normal p-subgroup of G. For a subset M of G, we use (M) to denote
a group generated by the set M, and write |M]| for the cardinality of M. If H is a subgroup of G, then
Cg(H) and Ng(H) are, respectively, the centralizer and the normalizer of H in Gj; |G : H| is the index of
H in G. If H is normal in G, written H < G, then G/H is a factor group of G w.r.t. H. By Z(G) we
denote the center of G; A x B is a direct product of groups A and B, and A * B is a central product.

In dealing with Chevalley groups, we denote by F, a field of order g, by p its characteristic, and by
F7 a multiplicative group of Fy. For a Chevalley group corresponding to a root system & over Fy, write
®(g). A set of positive roots in the root system @ is denoted by %, and a set of fundamental roots — by
{r1,-..,7&}, where the numbering is chosen in accordance with [11]. A root subgroup corresponding to a
root r € @ is denoted by X, and an element in that root subgroup — by z,(t), t € F,. An element z in the
Chevalley group ®(q) is called semisimple, if its order is coprime to p, and we call it unipotent if its order
is the power of p. Similarly, a semisimple subgroup in ®(q) is one whose order is coprime to p (p'-subgroup)

and its unipotent subgroup is one whose order is the power of p.

1. ALTERNATING GROUPS

THEOREM 1.1. A greatest Abelian subgroup in an alternating group A, is conjugate to one of the
following groups:

(1) ((1,2,3),...,(3k — 2,3k — 1, 3k)) if n = 3k;

(2) ((1,2)(3,4),(1,3)(2,4), (5,6,7),..., (3k — 1,3k, 3k + 1)) if n = 3k + 1;

(3) {(1,2)(3,4),(1,3)(2,4), (5,6)(7,8), (5,7)(6,8),(9,10,11), ..., (3k — 1,3k, 3k + 1)) if n = 3k + 2;

(4) ((1,2,3,4,5)) if n = 5.

Also, the orders of greatest Abelian subgroups in alternating (A,) and symmetric (S, ) groups are given
thus:

[A(A3n)l = 3" |A(Asns1)l = 4-377%; |A(Asn42)| = 163772 |A(4s)] = 5; |A(S3a)| = 37 |A(S3n41)| =
4-3"71; |A(S3a42)| = 23"

For any n, the group A(A,) is unique up to conjugation.

Remark. That Theorem A is valid for alternating groups follows easily from Theorem 1.1. Indeed,
routine computations help us check that |A(4,)]® < |4, for n > 7. We have As = L,(4) and A¢ = L,(9),
which proves Theorem A for A,.

Proof of the theorem. We point out the following well-known fact. Let H < S, and assume that H is
Abelian and acts transitively on a set {1,...,n}. Then |H|=n. : :

In fact, consider a stabilizer Stg(i) of some element ¢ € {1,...,n} in the group H. Since H acts
transitively, for any j € {1,...,n}, there exists a 7 € H for which :" = j. For any o € Stg(i), therefore,

we have
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that is, if o € Sty (i) then o € Sty (j) for all j € {1,...,n}. Hence o = ¢ is an identical permutation, that
is, Sty (i) = {¢}. Furthermore, |H| = |H : Stx ()| - |Stu (i), |H : Stg(i}| = n, and consequently |H| = n.
Finally, the whole set {1,...,n} splits into disjoint subsets Iy,..., I, on each of which the Abelian

E
subgroup G of S, acts transitively. Thus |G| < [] |
j=1

k
Write P, = max (][] nj). By the above, |A(S,)| = P.. It is not hard to see that P, satisfies the

ni+...+ni=n j=1
following recurrent relation:

P, = o?ffén(P“"" -m), Pp=1.

Using this, by induction we obtain the equalities
Py, =3% P3ap1=4-3""1 P3app=2-3"

The theorem is proved for A(Sy).

Note that A, < S,, and hence |A(4,)] < |A(Sn)|. In the group Ajs,, there exists an Abelian subgroup
G generated by permutations (1,2,3),(4,5,6),...,(3n — 2,3n — 1,3n), that is, G can be represented as a
direct product of cyclic groups of order 3. The order of G is equal to 3"; therefore, |A(A3,)] = 3". It is
worth mentioning that any greatest Abelian subgroup F in Aj, is represented as a direct product of cyclic
groups of order 3, that is, it is generated by permutations (ki, k2, k3), (k4, ks, ke), ..., (k3n—-2, k3n—1, k3n);
therefore, G = F, where o is a permutation in S3, sending 1 to k;, 2 to k3, and so on. If o is odd, we
may take a permutation (1,2)c = 7, which is even. Since G(?) = G, we have G™ = F, that is, G and F
are conjugate in Aj,.

In the group Asny1, there is an Abelian subgroup G generated by permutations (1, 2)(3,4), (1,3)(2,4),
(5,6,7), ..., (3n— 1,3n,3n + 1); its order is equnal to 4- 3", and so |4(A3n)]| = 4-3""1. A proof that any
greatest Abelian group and G are conjugate in A3n 41 goes along the same line as in the A3, case.

Lastly, if G is an Abelian subgroup of A3, 43, then either |G| = 3n+2, or G is represented as G = G1 x Gy,
where Gy < Ag,, Gy < Ag,,and by +k; =3n+2. Ifn 2> 2, for the indices ky and ky, we have the following
cases.

1. Let ky = 3n;+1 and k2 = 3n2+ 1. Then |G| = |Gy x G2| = |G1] - |G2| < |A(Asn,+1)]- |A(A30,41)] =
16372,

2. Let ky = 3n; and k2 = 3n342. Then |G| = |G1x G| = |G1|-|G2| < |A(Asn,)|-|A(A3n,42)| = 16-3772

Using induction on n yields the estimate |A(43n+2)] € 16 -3~ 2. On the other hand, for n > 2, Asn42
contains a subgroup G generated by permutations (1,2)(3,4), (1,3)(2,4), (5,6)(7, 8), (5, 7)(6, 8), (9, 10,11),
s (3n,3n + 1,3n + 2); its order is equal to 16-3"~Z%, and so |A(A3.)] = 16 - 3"~ 2. As above, we can prove
that any greatest Abelian subgroup and G are conjugate in Aj3,12. The theorem is proved.

2. RESULTS REVISITED

Theorems 11.3.2, 14.5.1, and 14.5.2 in [11] imply

LEMMA 2.1. The following isomorphisms hold:
(1) An-1(q) = La(q) = PSLa(g) n 2 %

(2) Ba(q) = PQ2n41(9), n > 3;

(3) Cn(q) = PSpza(q), n 2 2;

(4) Da(q) = PO, (q). n > 4;
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(5) *Da(q®) = PQ3,(9), n 2 4

(6) 24a(q?) = PSUn1a(¢?), n 2 2

(7) B2(3) = 244(22), Ba(2%) = Ca(2%), B2(q) = C2(q)-

The next lemma collects the results obtained in [6-9]. The cases of orthogonal groups of small dimensions
of which no mention is made in the lemma can be found in [8].

LEMMA 2.2. Let ¢ = p®. Then:

(1) [45(GLa()] = ¥,

(2) 14(Sp2a())] = ¢ ™57

(3) 14p(Ozn11(a)) | =¢~ 7 *'forn >3 and p#2;

(4) 1 4(03,(0) = g™ for n > 4;

(5) 145(0z(a))] = ¢ 4547 for n > 4, g s odds

(6) 145(0z.(9))| = qﬁ% forn> 4, q is even;

(7) 145(Un(g?))| = ¢!

LEMMA 2.3 [5]. Let V be an n-dimensional vector space over a finite field Fy;, assume that G < GL(V),
H <a G, (|G/H|,q) =1, and suppose that the nilpotency class of G/H is at most 2. Then:

(1) [G/H| < g™

(2) if G preserves the nondegenerate bilinear form f on V then |G/H| < 2¢(™4(3)] where

e(n) = .0 if ¢ or n is even, 5= 8 ifg=3o0r5,
"] 1 ifqandn are odd; "] 14+q otherwise.

LEMMA 2.4 [4, Thm. 2.4]. Let G be an adjoint Chevalley group, which is not a Suzuki or Ree group.
Suppose that U is a maximal unipotent subgroup of G, and q = |Z(U)|. Then 1(q — 1) < [4p(G)] <
3(g +1)7, where 7 is the Lie rank of G and d is the order of the center of a universal Chevalley group. (In
[11], that order is determined for all Chevalley groups.) If G is a Suzuki or Ree group, again we let U be a
maximal unipotent subgroup of G, ¢ = |Z(U)|, and ¢; = ,/g. Then (g, — 1)" < |4,/(G)| < (g1 + 1), where
r is the Lie rank of G.

LEMMA 2.5 [5, Lemma 1.1]. Let V be a finite-dimensional vector space over a field F;. Suppose A
is a subgroup of GL{V), and (|A|,q) = 1. Then V is decomposed into a direct sum of proper irreducible
A-submodules.

LEMMA 2.6 [5, Lemma 1.2]. Let V be a finite-dimensional vector space over F, and f be the
nondegenerate bilinear form on V. If A is a subgroup of GL(V'), A preserves f, and (|A|,q) = 1, then
V = Cy(A) &' [V, A] is an orthogonal direct sum of A-submodules Cy(4) = {v € V |va=v forall a € A}
and [V, A] = {va —v|v €V, a€ A}.

3. CLASSICAL SIMPLE GROUPS

A classical simple group, we recall, is an adjoint classical Chevalley group. Up to isomorphism, this is
one of the following:

(1) An(g) = Las1(g) = PSLasa(q);

(2) Ba(q) = Ozn41(q) = P2n+1(9);

(3) Ca(q) = S2a(q) = PSp2a(9);

(4) Da(q) = 04,(q) = POL,(a);
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(5) 24n(q%) = Un41(q) = PSUn11(¢*);

(6) *Da(g?) = Oz4(9) = PO3,(9)-

THEOREM 3.1. Greatest Abelian subgroups of classical simple groups are estimated thus:
|A(L2(q))| = ¢ +1if ¢ is even;

|A(L2(q))| = g if q is odd;

[A(La(@))l =q* +q+1if (3,q—1)=1;

|A(La(q))| = ¢ if (3, 1) = 3;

[A(La(@)l =g/ ifn > 4

|4(U4(2))] = |A(S4(3))] = 27;

P <|AGSI < (g +1)Pifg2 4

¢* < |A(0(9))] < 2(g +1)*¢% if ¢ is odd;

qﬂlz-—l)"“ < |A(Ozn+1(9))| £ 26ql&;—1)', where ¢ is odd, § is as in Lemma 2.3, and n > 4;
|A(Szn(@))l = ¢*F* forn > 3; |

™ < |A(0F ()] < 6075

g =TT < 4(05,(0))] < 6272, where g is odd;

¢ <JA(05,())] < 8¢7F ™, where ¢ is even;

¢ < |A(Us(9)] € (¢ + 1)

|A(Us(q))| = ¢* if ¢ is odd;

¢* < |A(Us(9))] < (¢* +1)¢” if ¢ > 3 and is even;

g™/ < |A(Ua(@))] < (@* + 1)g* /T for n > 5.

Remark 1. For classical groups, Theorem A is verified by direct computations via the estimates given

in Theorem 3.1.

Remark 2. The groups for which exact estimates are obtained admit obtaining a description of greatest
Abelian subgroups up to conjugation. For 4,(A4n(g)) and A,(Cn(g)), this was done in [6]. Up to conjugation,
a greatest Abelian subgroup is one of the following:

Ap(A2a+1(9)) = (X |7 2 Tat1);

Ay(A2a(@) = (X, |7 > 7a) 0F Ap(Azn(2)) = (X, |7 > rapa);

45(42(2) = (80, ()22 (@)r, 4r2 (8) [0 € Fyy b € Fy;

45(Cal@)) = (X, |7 > ra).

For the other cases, a description is immediately obtained thus.

Let Ly(q) = SL,(q) for g even. Choose a matrix A in GL,(q) such that |A| = g2 — 1, that is, the element
A generates a group Fy;. It follows that A(L(q)) = (A971), that is, the result is a cyclic group generated
by AL

Let L3(q) = SLs(q) for (3,¢ — 1) = 1. Choose a matrix 4 in GL3(g) so that |A| = ¢ — 1, that is, the
element A generates F;. Then A(Ls(q)) = (A7),

The proof of the theorem will proceed through a number of lemmas.

LEMMA 3.1. Let

fi(n,q) = max(g” - 1, (¢ - D)gl¥);

f2(n,q) = (2,9 - 1)ql("=_+ll for n > 3, f2(2,9) = (2,9 — 1)(g + 1)¢?, and f3(1,q) = max(é, (2,9 — 1)g);

f3(n,q) = (2,n—1) -2.6-gl31(31-V/2f n > 8 and ¢ is 0dd; f3(2k+1,q) = qﬂ$l if £ > 2 and ¢ is even;
fa(2k,q) = 6" 572 if k > 4 and q is even; f3(1,9) = 2, f3(2,9) = 24, f3(3,9) = 4q, fa(4,9) =2-(g+1)- %,
f3(5,9) =4-(g+1)- & fa(6,9) =2-(g+1)-¢° f3(7,9) = 4- (¢ +1)*- ¢ if ¢ is odd; f3(1,¢) = 1,
f(2,9) =a+1, f3(3,9) =q+1, fs(4,9) = (¢ + 1)q?, f3(6,9) = (¢ +1)%¢° if ¢ is even;
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fa(n,q) = (2,n = 1)-2.63M CGUPFRF-0/242m) §f o > 8 and g is odd; fa(n,q) = fa(n,q) ifn £ 7
or q is even;
fs(ng) = (g + 1)(® + Del¥ if n > 5 fs(Lg) = ¢+ 1, fs(2,0) = (¢ + 1), fs(3,0) = (¢ + 1)?,
Fo(4,a) = (g +1) gt i > 3 fu(4,2) = B1.
Then, for any j = 1,2,3,4,5,
fin+m,0) > f(n,0)fs(m,0). (1

In proving the present lemma, we will use the following:

Proposition 3.1. Let f(z) and g(z) be polynomials of degrees n; and n,, respectively. Suppose that
f(z) and g(z), together with their derivatives, are not less than 0 for z > 0. Also, assume that n; < n,
and g(zo) > f(20), ¢'(z0) = f'(z0), - 9™ (z0) > f(™1)(zo) at some point zo > 0. Then g(z) > f(z) for
all z > zo.

Proof. By assumption, g(®+1)(z) > 0 for all z > 0, and F(*1*1)(z) = 0; therefore, gm(z) >
f:+1)(z) for all z > z¢. Since g(®1)(z0) > F(*1)(z), we have g(*1)(z) > f(")(z) for all z > zo. And the
required result will follow by repeating this argument for derivatives of lesser orders.

Proof of Lemma 3.1. We prove inequality (1) for the case f3(n,q), ¢ is odd. For n, m > 8,
f3(n,q) - f3(m, @) = 2(2,n — 1)§gI3NEI-D/29(2, m — 1)5glFUFI-1/2 ¢
2(2,n+m — 1)6g " FIFD/2 = fo(n 4, q);

therefore, it suffices to consider the case where m < 7. We claim, for instance, that f3(6,q)f3(6,q) =
2(g +1)%¢> - 2(g + 1)%¢® < 26¢"° = f3(12,9). In fact, by the definition of §, we need only prove that

20¢+1)° < ¢ (2)

It is not hard to see that the polynomials in g on the right- and left-hand sides of the inequality satisfy the
conditions of the proposition at point ¢ = 2; hence, inequality (2) is true for all ¢ > 2.

Arguing similarly for other 7, m, n, and q proves the lemma.

LEMMA 3.2. Let G < GLy,(q), with G satisfying the following conditions:

(1) G= H, x H,, where H, and H, are, respectively, semisimple and unipotent components of G;

(2) the nilpotency class of H, does not exceed 2;

(3) Hy is Abelian.

Then |G| < fi(n, q)-

Proof. Assume that the statement of the lemma is untrue, and G is its counterexample of minimal
order.

By Lemma 2.5, the group H, is decomposed into irreducible blocks. We can therefore assume that

H, ...0
H,= 0 . ¢ p
o ... H,

where all blocks of H,; are irreducible and numbered in order of increasing dimension. The so structured
group H, indicates that all matrices in H, are in blockwise-diagonal form, and each block of H,; can be
conceived of as a semisimple irreducible subgroup of the group GL, (¢); any H,, has its nilpotency class
at most 2. In addition, ny +... 4+ ng = n. Note that now H, < H,, x ... x H,,.
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Further we may assume that all H,; coincide and hence H, = H,,. Indeed, H, # {1}, since otherwise
G = H,, and by Lemma 2.3, we would have |G| € ¢" — 1 < fi(n,q), which contradicts the assumption
that G is a counterexample. By assumption, AB = BA for any matrices A € H, and B € H,,. Write B as

follows:
B;, By, ... By,
B= B,, By, ... B, ,

By, B, ... B,
where the dimension of a block coincides with that of a corresponding block in the representation of the group
H,, that is, B;; has n; columns and n; rows. By commutativity, H,,B;, = B;;H,, and H,;B;, = Bj.H,,.
By the Schur lemma, the sets B(;;) = {B;;|B € H,} and B; jy = {B;;|B € H,} form a division ring.
Consequently, if dimensions of the blocks corresponding to groups H,; and H,; are different, or these groups
are not conjugate, then By; ;) = B(;;) = {0}. In this way, if dimensions of the blocks do not coincide, or
some blocks (groups) are not conjugate, then the group H,, in the same basis as H,, takes up the following

H, 0
H, = ! .
* ( 0 H'u; )

It follows that G < G1 x G, where G; and G, are subgroups in GL,,(q) and GL,,(q) satisfying the
assumption of the lemma. Since G is a minimal counterexample, Lemma 3.1 implies

form:

|G| < [G1] - |G2| € fr(n1,9) - fi(n2,q) < fi(n1 + n2,q) = fi(n,q).

We have arrived at a contradiction with G being a minimal counterexample.
Thus, not only are dimensions equal for all blocks H,;, but also all subgroups of H,; are conjugate. Up
to conjugation, therefore, the group H, has the following form:

H, ... 0
H,= 0 "-. 0 . (3)
6 ... H,,
k times

Consequently, H, = H, . Assume that the dimension of H,, equals }. By Lemma 2.3, |H,| = |H,,| <
(¢® —1). Since all blocks B;,; of the matrices in Hy, form a division ring, and any finite division ring is a
field, and, since they lie in My (g), we may assume that these blocks form a subfield in qu. The group
H, has the form (3); therefore, we can think that H, < GLx(g*). From (1) of Lemma 2.2, it follows that
|H.| < ¢#15°). This implies that

G < B, |- |Ha| < (g% - 1) - ¢*15) < fu(n, q).

Contradiction. Hence such G does not exist, proving the lemma.
LEMMA 3.3. Suppose G < Sp2.(g) and G satisfies the following conditions:
(1) G= H, x H,, where H, and H, are, respectively, semisimple and unipotent components of G;
(2) the nilpotency class of H, is at most 2;
(3) Hy is Abelian.
Then |G| < fa(n, g)-
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Proof. Assume that the statement of the lemma is untrue, and G is its minimal counterexample. If
the group H, has no proper submodules then it is a unique irreducible block.

Among all proper H,-submodules, if any, choose an H,-submodule U of minimal dimension. Consider
D = Cy,(U). ¥ D = {1} then H, acts faithfully on U. By Lemma 2.3, |H,| < ¢¥™(U) = ¢* Asin
the proof of the previous lemma, we can obtain |G| < |H,| - |Hu| < (¢* — l)qk[i‘;] < fa(n,g). (The latter
inequality holds for n > 3 and k > 2.) For n = 1, the situation that obtains is the known case where
Sp2(q) = SLj(q). For the case where n = 2 and k = 2, note that H, * Z(GL4(q)) satisfies the estimate
|H, * Z(GL4(q))] < (g% — 1). Since |H, N Z(GL4(q))} < (2,g — 1), we have |H,| < (2,9 — 1)(g + 1), that is,
the inequality |G| < f2(n, q) holds in this case, too. If k = 1 then |H,| = (2,¢ — 1). By (2) of Lemma 2.2,

nndl) Alnt1)
|Hul| < ¢~ 2 ,andso |G[<(2,9-1)¢" 7 < fa(n,q).

We can thus assume D > {1}. Then Cy(D) and [V, D] are proper nontrivial H,-submodules. By
Lemma 2.6, V = Cy(D)®* [V, D]; hence, H, can be represented as a subgroup in the group H,, x H,,, where
H,, and H,, are semisimple class 2 nilpotent subgroups in the groups Sp2,,(q) and Span,(g), respectively.
Repeating the above argument for H,, and H,, yields H, < H,, x ... x H,,, where all H,; are irreducible,
semisimple, nilpotent subgroups of class 2 in Sp2a,(g).

We make use of the estimate obtamed in Lemma 3.2 and the fact that H, can be treated as a subgroup
of GLr(q™®), that is, |H,| < ¢ ¥I% 71, As indicated above, H, has the form

I 0
H, = .
0 H,,

~—
k times

thatis, H, = H,,, and hence |H,| < §* by Lemma 2.3. It follows that |G| < &% -qu"(E;] < q"Tsz% < f2(ny q)
forn>3. Forn=2and k =2, |G| K < fa(n,q). The lemma is proved.

LEMMA 3.4. Let Gbe a subgroup of the orthogonal group O,(q) satisfying the following conditions:

(a) G = H, x H,, where H, and H, are, respectively, semisimple and unipotent components of G;

(b) the nilpotency class of H, is at most 2;

(c) Hy is Abelian.

Then the following properties hold:

(1) if G < O, (q) then |G < fa(2n, a)

(2) i G < O3, (g) then |G| < fu(2n,q)

(3) if G < Ozn41(q) then |G| < f3(2n + 1,9).

Proof. Assume that the conclusion of the lemma is untrue, and G is a counterexample of minimal
order.

If H, lacks proper submodules then H, is a unique irreducible block itself.

Among all proper H,-submodules, if any, choose an H,-submodule U of minimal dimension. Consider
D = Cg,(U). If D = {1} then H, acts faithfully on U. By Lemma 2.3, |H,| < qdim(U) = q Let
G < 0f.(q)- As in the proof of Lemma 3.2, we can obtain |G| < |H,|-|Hy| < (¢* - l)mm(qk['ﬂ ) <
fi(n,q). (The latter inequality holds for n > 8 and & > 2.) The cases where G < 05, (¢) and G < 02,,+1(q)
admit a similar treatment. Small-dimensional cases will be treated separately, a bit later. If & = 1 then
|Hs} = (2,9 — 1). And, taking the value of the order of the greatest Abelian unipotent subgroup from

Lemma 2.2, we arrive at |G| < (2,9 — 1)|Hy| < fi(n,q).
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We can thus assume that D > {1}. Then Cy(D) and [V, D] are proper nontrivial H,-submodules. By
Lemma 2.6, V = Cy(D)®* [V, DJ; hence, H, is represented as a subgroup in H,, x H,,, where H,, and H,,
are subgroups in O, (q) and O,,(q), respectively. Repeating the above argument for H,, and H,, yields
H,<H, x...x H,,, where all H,, are subgroups in O, (q) and are irreducible.

Since G is minimal, again we may assume that H, has the form

H,, 0
H, = .
0 H,,

N\

k times

that is, H, = H,,, and by Lemma 2.3, |H,| < 8U3). It follows that |G| < 605%) min(¢ #1557, |Hyl) < fa(n,q).
(The latter inequality holds for n > 8.)
For groups O, (g), we note, all blocks of the group H,, for k = %, cannot be conjugate: the dimension

of a maximal isotropic subspace is equal to § — 1, and so G < Gy x G3, where G, < Oj,’l and G; < O,
whence |G| < f3(n1,q) - fa(na,q) < fa(n,q). For k > %, we have |G| < 5ln/2k] . q{f[¥] < fa(n,q). (The
latter inequality holds for n > 8).

We proceed to small-dimensional cases. Obtaining estimates specified in the lemma does not depend on
which of the groups O} (q) or O (q) is chosen, and so below we do not discriminate between these. Unless
otherwise stated, we adhere to the notation used in proving the first part of the lemma. For instance, U
denotes a proper H,-submodule of minimal dimension. The function f;(n,q) was constructed in a way that
it is not less than a maximum of the order of a semisimple group of nilpotency class at most 2 and the
order of an Abelian unipotent subgroup, multiplied by an order of the center Z(0,(g)). Therefore, we need
only handle the case where H, > Z(On(q)), Hy # {1}. In addition, Lemma 3.1 allows us to treat the cases
with G < G X G2, where G; and G2 are subgroups of orthogonal groups in a smaller dimension.

For groups O4(q), O2(q), and O3(q), nontrivial cases are an impossibility. For Os(q) and O7(q), every
subgroup fitting in the nontrivial case is decomposable, since 5 and 7 are primes, and so we may well omit
them.

Consider a group Og4(g). A nontrivial case appears when dim (U) = k = 2. Let Cq, (U) = {1};
then H, < GL,(q) and |H, * Z(GL2(q))| < ¢% — 1. Since |H, N Z(GLy{q))| < (2,94 — 1), we have |H,| <
(2,4—1)(g+1). In [8], it was proved that |H,| < ¢?, yielding the required estimate. Now let Cg, (U) # {1}.
Then the group H, takes up the blockwise-diagonal form, and blocks along the diagonal coincide. Hence
|H,| < & and |H,| < ¢2, yielding the required estimate again.

Finally, consider Og(q). Nontrivial cases are realizable with dim (U) =k =2 and dim(U) =k =3. In
the former case, arguing in a way we did for O4(gq) yields |H,| < (2,9 — 1)(g + 1). In [8], it was proved
that |Hy| < ¢*, yielding the required value. Let k¥ = 3. If Cg,(U) # {1} then H, splits into equal
blocks; hence, |H,| < (2,9 — 1)6. We can assume H, < GL,(¢%); therefore, |H,| < ¢°. Consequently,
the statement of the lemma is true. Let Cy,(U) = {1}. Then H, < GLa(q), |H, * Z(GL3(q))| < ¢* — 1,
|Hs N Z(GL3(q))| < (2,9 — 1); hence, |H,| < (2,9 1)5’;—{?1 < (2,9 - 1)(g + 1)®. Moreover, again |H,| < ¢°,
yielding the required value. The lemma is proved.

For unitary groups — denoted by U,(g?) throughout the proof of Lemma 3.5 — a statement similar
to Lemma 2.6 holds; see [9]. Again, the bound for the order of a maximal Abelian semisimple subgroup

in a unitary group, which we are able to derive from Lemma 2.3, is equal to just ¢>® — 1. This is too big
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for groups in a small dimension, and so we need a somewhat refined estimate for the order of a semisimple
group.

First note that if H, satisfies the conditions

(1) (@ Z.)) = 1, and

(2) H,/(H, N Z(Ua(q?))) is an Abelian group,
then its order does not exceed (g + 1)". Indeed, by Lemma 2.4, the order of a greatest Abelian semisimple
subgroup in 24, _1(¢?) is at most rzi(isitfl,%m’ and |Un(q?) : SUa(g%)| = ¢ + 1, whence the result.

LEMMA 3.5. Let G < U,(¢q?) and G satisfy the following conditions:

(1) G = H, x H,, where H, and H, are, respectively, semisimple and unipotent components of G;

(2) H,/(H, N Z(U,(g?))) is Abelian;

(3) Hy is Abelian.

Then |G| < fs(n,9)-

Proof. As above, assume that the statement of the lemma is untrue, and G is its counterexample of
minimal order.

Let U be a proper H,-submodule of minimal dimension. If dim (U) = n then H, = {1}, and the
statement of the lemma is true for G. We therefore let dim (U) =k < n. If k = 1 then H, < Z(GL.(q?)),
that is, H, is a scalar matrix group, since otherwise the G would split into

G, 0 0
0 G, 0
0 0 Gm

Each block corresponds to a subspace of eigenvectors for some matrix in H,, in which case different blocks
correspond to different eigenvalues, and the vectors corresponding to the various eigenvalues are orthogonal.
Therefore, we may assume that the blocks G; are subgroups in unitary groups of smaller dimensions, whence
G <Gy X...X G, and hence |G| < |Gy| ... |Gm| < fs(n1,9) ... fs(nm,q) € (by Lemma 4.1) f5(n,q),
which contradicts the choice of G for m > 1. If m = 1 then |H, N Z(GL,(¢%))| < ¢ + 1, by Lemma 2.2,
[Ho| € q[”;], and the statement of the lemma is thus true.

If £ > 1, we repeat the argument of Lemma 3.2 to see that

2k _ .
1G] < Lt gakan),
g-—1

which proves the lemma for n > 5. Here, just as was done for orthogonal groups, small-dimensional cases
will be treated separately.

In fact, we need only consider the case where G is indecomposable, H, # Z(Un(g?)), and H, # {1}.
The sole unitary group of small dimension satisfying the above conditions is Us(g?).

A nontrivial case is realized with dim (U) = 2. If Cy, (U) # {1} then H, splits into equal blocks,
which are subgroups in U,(g2). Therefore, [H,| < (¢ + 1)%. The group H, can be treated as a subgroup of
GL2(g*). In some basis for a 4-dimensional vector space over F2, the group in question takes up the form

(v3)
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where the first two vectors of the basis are taken from the module U, and the next two — from its orthogonal

complement. Hence the matrix of unitary form in that basis is shaped thus:

A, O
0 A, |’

Direct computations show that B = {0}, hence H, = {1}, and the statement of the lemma is thus true.
We let Cy,(U) = {1}. The group H, takes up the form

H, 0
6 H, |

In the same basis, H, has a presentation by matrices of the form

(v3)

We can write V = U @ U, where U and U; are proper H,-submodules corresponding to irreducible blocks.

We introduce some notation. Denote by B the matrix

(v 3)

u (without indices) is an element of U, u, is one of U;, and %y = uB — u is an image of u in U; under
the action of some matrix B in H,. Note that U; is a fixed-point space for the group H,. Consider an
Hermitian product (u;,w), where u; and w are arbitrary vectors in U; and U, respectively. We then have
(u1,w) = (w1 E,wE) = (u3,w) + (u1,Wr); consequently (u;, W) = 0. Since u; and w are arbitrary, the
space Uy is isotropic. Consider (u,u). For any matrix B in H, and for every vector u in U, we have
(w,u) = (uB,uB) = (u+ T, u + W) = (v,u) + (v, &) + (¥, u); consequently, (u,%7) + (Tr,u) = 0.
Since (u,%7) = (U1, u)?, it follows that (u,%y)[1 + (u,%7)?"!] = 0. This implies either (u,%;) = 0 or

(v, @1)9~! = —1. In the former case the unitary form should be degenerate, which it is not.

We handle the second case. Let (u,%7) = . Then 1+ 29"1 =10, 1 = 29 -1, hence z9~}(z7+! +1) = 0,
whence 22 = 1. Since 297! = —1, for g odd, we arrive at a contradiction. If g is even, we obtain z = 1, and
then

(v, 41) = 1. (4)

If (u,%7) = 1 and (u,77) = 1, then (u, %] — 77) = 0. Hence %y — 77 lies in the subspace orthogonal to u.
Also, Uy is an isotropic subspace; therefore, the dimension of the orthogonal complement of u in U, is at
most 1. Hence the number of vectors in Uy satisfying (4) is at most g2. The number of such vectors is not
less than |H,|. In fact, if & = %7’ for some matrices B; and B; in H,, then By + B; € H,, since {B}
is a field. This implies that uB; + Bz = u, and hence B; = B;. Thus, different elements in H, send the
vector u € U to different elements %y € Uy; hence, |Hy| < |the orthogonal complement of w in U] = q.
The lemma is proved.

Proof of Theorem 3.1. Let A be an Abelian subgroup of a classical group G. Then A = H, x H,,
where H, and H, are, respectively, semisimple and unitary subgroups in A. Let A be a preimage of 4 in
the universal central extension (cf. [12] for definition) under the natural homomorphism. Then A satisfies
the conditions of Lemmas 3.2-3.5, and the estimate for |A| is obtained from one in the appropriate lemma,

by dividing by the order of the center of a suitable group. The theorem is proved.
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4. EXCEPTIONAL CHEVALLEY GROUPS

We bring out known bounds for the orders of A,(G), where G is a Chevalley group of exceptional type;
see [12].

LEMMA 4.1. Let G = L(q) be a Chevalley group of exceptional type over a field F,; and p be the
characteristic of F;. Then the following estimates are correct:

(1) if p # 3 then |4,(G2(q))| = ¢%;

(2) if p=3 then |45(G2(q))] = ¢*

(3) |42(* By(27"*1))] = 2%+,

(4) 14:(*G2(9))l = &%, ¢ = 32"+

(5) 1422 Fu(9))l = ¢°, ¢ = 2"+,

(6) 14,(*Ds(2?))] = ¢

(7) if p=2 then ¢ < |42(Fe(9))| < ¢*%

(8) if p= 2 then ¢'? < |42(*Fe(q?)| < *%

(9) if p = 2 then [42(Es(q))] = ¢*°;

(10) if p = 2 then | 43(E1(q))] = ¢*';

(11) if p = 2 then |A2(E3s(q))| = ¢°C.

Let G be a Chevalley group of normal type over a field 7, and k be its Lie rank. Recall that any element
h in the Cartan subgroup H in G (cf. [11] for definition) has the form h(x), where x is defired as follows.
Let P be a set of all linear combinations of fundamental roots {r;,...,r} with integral coefficients and let
Q be a set of rational combinations of the same roots. Then {x} is precisely the set of homomorphisms of
P into Fy, which are extended to homomorphisms of Q into Fj. For any r € ® and t € F,, the equality
h(x)z-(£)h~ (x) = 2 (x(r)t) holds.

LEMMA 4.2. Let h(x) # 1 be some element in a Cartan subgroup of the Chevalley group L(gq) and
U be a maximal unipotent subgroup in L(g). Then the centralizer Cy(h(x)) of h(x) in U is equal to Us_,
where @, = {r|x(r) =1} C & and Us, = (X, |r € §y). Also, &, is a subsystem of $.

Proof. By the above, it suffices to prove that &, is a subsystem of &. Recall that the subset ¥ of a
finite-dimensional Euclidean space over R is called a root system if the following conditions are satisfied:

(1) ¥ is finite, generates the vector space as a whole, and is freed of zero vectors;

(2) if » € ¥ then the vectors multiple to r in ¥ are just +r;

(3) if r € ¥ then the reflection w, leaves the set ¥ invariant, where w,(s) = s —

4)if r,5 € ¥ then 2% js an integer.
(r,r)

Conditions (1), (2), and (4) are satisfied since @, is a subset of . We check (3). For 7 and s, we have
x(r) = x(s) = 1. Then

2(r,s
M

x(ur(o) =x (s 200) = 2 x7t (32e) =)o =1,

(r,r
2= times
The lemma is proved.

LEMMA 4.3 [12, Sec. 2.4]. Let Q be a nontrivial p-subgroup of a Chevalley group G. Then G contains
a proper parabolic subgroup P such that @ < O,(P) and Ng(Q) < P. Here, O,(P) is a maximal normal
p-subgroup of P.
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LEMMA 4.4 [12, Sec. 2.2]. Let P; be a parabolic subgroup of a Chevalley group G of normal type.
Then it has the form Pr = L;UrH, where L; is the Levi factor, which is a central product of Chevalley
groups of which each is obtained from a connected component in the Dynkin diagram for G, by banishing
vertices which enter the set I, Uy = (X, |r = Y m;r;, m; > 0, for some ¢ € I). Again, for any Chevalley
group G, we have Pr = LU H, where H < Ng(Ly), Uy = Op(Pr) and UrNL1H = 1, Ng(Ur) = Pr, where
Ly is a central product of Chevalley groups.

In what follows, we write 79 to denote a longest root in the root system ® for a Chevalley group in
question. Note that Z(U) = X, . We describe how the normalizer of X, is structured; see [12].

Let G be a Chevalley group of normal type. Then Ng(z.,(t)) = Pr, = Ng(X,,) for t # 0. Here, the
subgroup P,, is obtained as follows: first, an extended Dynkin diagram is built up by adding to the ordinary
diagram a vertex —rg bridged to the other vertices in the usual way, and then P, is found by discarding
the vertices bridged to —r.

We proceed to obtain estimates of |A,(G)| for the cases unmentioned in Lemma 4.1.

LEMMA 4.5. Let q be odd and ¢ = p®. Then the following estimates are correct:

(1) & < [4,(Fafa)] < 4%

(2) 4'° < |4p(Es(9))l < ¢

(3) 7 < 145(E+(@))] < 6%

(4) °° < 145(Es(9))] <

(5) 02 < |4, Ee(a?))] < 6.

Proof. For all groups of normal type, the estimates are obtained along similar lines, which we sketch
below.

Consider a parabolic subgroup P, = U, L., H, where L,, is a Chevalley group for which the order of
an Abelian p-subgroup is a known value. The group U,, possesses the property [U,,,U,,] = Z(U,,) = X;o;
therefore, U,,/X,, can be treated as a vector space over Fy, with basis {Z;} and summation given by the
rule aZ; + Oz, = m. Again, on that space, the nondegenerate antisymmetric bilinear form can be
defined by setting z,,((, 7)) = [u,v].

An Abelian subgroup can then be thought of as an isotropic subspace of known dimension. In this way
we obtain estimates for the orders of Abelian p-subgroups in L,, and in U,,. To obtain the ultimate value,
we need only take a product of these two.

The case of a group 2Eg(q?) is somewhat more complicated. The root system has type Fy, but it
consists, not of roots, but of equivalence classes. The equivalence classes are of two types:

R = {r}: if r = r?, where o is an automorphism of a root system generated by the symmetry of a
Dynkin diagram of type Es, then R is a class of normal type;

R={r,7}: if r # 7 = 7, then R is a class of special type.

The unipotent group U is generated by root subgroups Xp. Also, the basis classes R;, Rz, R3, and R4
corresponding to fundamental roots in a root system of type Fy are chosen thus:

Ry = {ry}, R2={r3}, R3 = {r2,ms}, Ra = {r1,76}.
If the class R is in form {r,7}, then, for definiteness, we assume that r < 7, where the order is given
thus: 7 > 0 & r = 3 a;r; and the first o; distinct from 0 is greater than 0.
Proposition 4.1. Let

[er(t).zs(@)] = [] zireis(Ciisrfi;(t.w),
iR+jSeF}
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where Cjisr and f;, (t,u) are defined as follows:

(1) if R and S are classes of normal type then f; (¢,u) = —ut and C115r = Ci14r;

(2) if R is a class of special type and S a class of normal type then fi,(t,u) = —ut, f2,(¢,v) = utt and
Ciisr = Ciisry Crasr = Cl17r 45 Cr1sri

(3) if R is normal and S special then fy,(t,u) = —ut, f1,(t,u) = tu® and Ci1sr = Ci1sry C1sr =
C11sr+sCl1sr;

(4)if R, S, and R+ S are classes of special type then fi,(f,u) = —ut and Ci1s5r = Ci1,7;

(5) if R and S are special and R + S normal then fi,(¢,u) = —(uf + @t) and Ci15r = Ci1,7-

The proof is by an exhaustive search of all cases, combined with applying properties of structural
constants in a root system of type Es and the commutator Chevalley formula; see [11, 5.2.2]. Note only
that |Cijsr| = 1, that is, they do not vanish for any characteristic of Fy.

Wirite Ug, = (Xr|R > Rl). Then U’Eg(q’) = U’A;(q’)URn and Ugp, « U’Eg(q:)’ It follows that
A,(%Es(q®)) = Ap(*As(q?))A, where A is an Abelian subgroup in Ug,. Let W = (Xg|R is a class of
special type). Then Ug, = Ug, /W is Abelian, and on it we can define the antisymmetric bilinear product,
as we did for the groups of normal type; an image of the Abelian subgroup, in this event, is an isotropic
subspace of known dimension.

Finally, consider W = W/Xpg,. This is again a vector space (but now over F,2), on the basis vectors of
which the scalar product first is defined by setting (Zg,ZTs5) = C11sr and then is extended, by linearity, to

the whole space. Since W satisfies the identities
[‘U.IU.g, v] = [ull ‘U] [‘U.z, ‘U], [u) vle] - [‘U., vl][ul ‘02],

we can prove that for odd ¢, (%,%) = 0 iff [u,v] = 1. Summing up all the above facts yields the estimate
specified in the lemma.

Proof of Theorem A. Consider a group Gz(g). Since our theorem is true for the greatest Abelian
semisimple and unipotent groups, we may assume that the Abelian subgroup A has “mixed” order, that is,
it has both semisimple and unipotent elements. By Lemma 4.3, A lies in some proper parabolic subgroup of
G3(¢). The maximal subsystem in G, is A,. Therefore, if h(x) € A for some h(x) # 1, then, by Lemmas 2.2
and 4.2, the order of an Abelian p-subgroup in A is at most g2, that is, |4| < (g% - 1)¢?, which satisfies the
statement of Theorem A. We now assume that such h(x) is missing. Note that Ng(X,,) = A1(q)U,, H. If
A is an Abelian subgroup containing z.,(¢), ¢t # 0, then A < Ng(X,,). It follows that A < H, x H,, where
H, < SLy(q), Hy < U,, = (X, |r < 72), and AN H = 1. It is easy to check that |Hy| < ¢°, |H,| < g +1,
whence |A]| < (¢ + 1)¢3. Hence |A]? < |G|. Let ANX,, = {1}. Writing A = H, x H,, with |H,| < g+1,
{Hy| € ¢°, again we obtain |A]® < |G|. (Indeed, if g is not the power of 3 then |H,| < ¢2.) Theorem A is
thus proved for G(q).

We proceed to groups Fy(g), where ¢ = p® and is odd. We may assume that the Abelian subgroup
A has mixed order, that is, (|A],p) = p and A is not a p-group. By Lemma 4.3, A lies in some proper
parabolic subgroup. If h(x) # 1 € A exists, by Lemma 4.2, H, is then a unipotent subgroup of A and lies
in the unipotent subgroup corresponding to some root subsystem of Fs;. The maximal subsystem in F, is
By, hence |Hy| < ¢° by Lemmas 2.2 and 4.2, and so |A] < ¢®(g + 1)3(g — 1), |4]® < |Fs(q)|. If such h(x)
does not exist, then A < UrL;, and hence |A] < ¢**(g + 1)® and |A]® < |F4(g)| by Lemmas 2.4 and 4.5.

We turn to groups Fy(2°). The orders of greatest Abelian 2- and 2’-subgroups, when raised to the third
power, do not exceed the order of a whole group. If there exists an Abelian subgroup A for which the
inequality |A|> > |G| holds, then the order of A is of mixed type, that is, the order of A is even, but A4
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is not a 2-group. Since A is Abelian, it contains an element of mixed order. The orders of centralizers of
elements in F4(2) are given in [13]. The orders of centralizers of elements of mixed type do not exceed
¢°(g + 1)(g® — 1)(¢* — 1), and the cube of the latter is less than the order of the whole group.

Consider Eg(gq), where q is odd. If there exists h(x) # 1 € A then, again, H,, is a subgroup in some
unipotent group corresponding to a proper root subsystem. The maximal root subsystem in Eg is Ds. By
Lemmas 2.2 and 4.2, we then have |H,| < ¢'°, |A]| < ¢*%¢+1)%(¢—1), and |A|® < |E¢(g)|- If such h(x) does
not exist, then A < UrL;. If A> X, then A < U, L.,. And, if we address the proof of Lemma 4.5, we see
that either |A| < ¢'*(g + 1)° or |A| < ¢®°(g + 1)%. In either case A satisfies the statement of Theorem A.
Finally, if AN X,, = {1} then |4] < ¢'%(1 + ¢)°, and the statement of Theorem A is satisfied again.

For the other exceptional groups of normal type, the desired estimate is obtained by taking a product
of known values of the orders of greatest Abelian p- and p'-groups.

The groups 2B,(22"*1) and 2G,(q), treated in detail in [14, 15], satisfy the statement of Theorem A,
|A(2By(22+1))| = 23**!, and [A(2G2(q))| = ¢%. For 2F4(q), the value is found by taking a product of the
orders of greatest Abelian p- and p’-subgroups.

For the other exceptional Chevalley groups of twisted type, again we make use of parabolic subgroups.
For the latter, however, there is no such accurate description as have we do for the case of groups of normal
type. Still we can exploit the fact that they lie in parabolic subgroups of the initial groups of normal type.

Consider a group 2Eg(g?). If h(x) # 1 € A exists then H, is contained in some unipotent subgroup of
Eg(q?) corresponding to a proper root subsystem. Searching all the subsystems and taking into account
the condition that H, is twisted, we obtain |H,| < ¢°. Then 4] < ¢°(g + 1), and Theorem A is true
for the present case. If such h(x) is missing then [A] < ¢?°(g + 1)%, and the desired inequality obtains for
g>4. Forg=13,if A > Xpg, (for definition of Xg,, see proof of Lemma 4.5), then A < Ug, Lg,. There are
two options: |A| < 3'1- 4% or |A] < 3%0. 4%, The statement of Theorem A is true in both of these cases. If
ANXg, = {1} then |A4] < 3!9-45, which satisfies the statement of Theorem A. The case of a group 2 Eg(2?)
will be treated together with sporadic groups.

We finish our study of exceptional Chevalley groups by treating 3D,(g%). A greatest subsystem in Dy,
which is sent to itself under the action of a graph automorphism, is A; x A; x A4;. Therefore, if h(x) # 1€ A
exists then |A| < ¢3(g+1)%(g—1), and the desired inequality holds. If not, then A < UrLy, |A| < ¢®*(g+1)3,
which confirms the statement of Theorem A for all ¢ except 2. The case of a group 3D4(23) will be treated
together with sporadic groups.

5. SPORADIC GROUPS

Orders of sporadic groups will be estimated by using results of {6]. Estimates for all groups are obtained
following essentially the same line of argument, and so below we concentrate on just two: Co; and Fij3.
(On them, we demonstrate all tricks through which we obtain the desired estimates.)

1. Co;. We have |Co,| = 2'8.3%.53.7.11.23. First we argue that the theorem is true for Abelian
p-subgroups. Let @, be a Sylow p-subgroup. Note, from the outset, that |Q,|> < |Co2| for p > 3; hence,
if there exists an Abelian p-subgroup which fails to satisfy Theorem A, then that subgroup is A;(Co,).
Furthermore, |Cc,,(2B)| = 2'7 - 315, where 2B is some involution of Coz, and so |42(Co,)| < 217. Again,
Co; contains an element of order 8. Consequently, if [42(Co;)| = 2!7 then A;(Coz) has an element of
order 4. The maximal power of 2 in the orders of centralizers of such elements is at most 16; therefore,
|42(Co2)| < 215, We have (216)3 < |Cos], and so the statement of Theorem A is true also for A;(Coz).
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If we consider an Abelian subgroup of mixed order, that is, a subgroup which is not a p-group, then
it will contain an element of mixed order. Once we have looked through the orders of centralizers of such
elements we arrive at the desired estimate.

2. Fiz3. We have |Fiz3| = 217.3°.52.7.11-13. For Abelian p-subgroups, obtaining an estimate is still
simpler than in the previous case. However, the mixed case gives rise to problems.

We have |Cpi,, (6B)| = 27 - 3%, where 6B is some element of order 6. Thus, if the Abelian subgroup
A contains an element of order 6, we can maintain only that |A| < 27- 3% The A lies in some maximal
subgroup G of Fiy3. Since |A]| divides |G|, we have the following options for G:

(1) if G = O7(3) then |A| < 32-27 and |A]? < |Fizs);

(2) if G = S3 x Uy(3) : 2 then |4] < 27-3° and |A4]® < |Fizs);

(3) if G = 31+ :23+4: 32 : 2 then |A]| < 2°- 3% and |A]? < |Fizs).

Theorem A is proved.

6. PROOF OF THEOREM B

Clearly, if Abelian subgroups of G satisfy |4|> < |G/, then G fails to be represented as ABA. We thus
need to consider only groups L2(g). In so doing, we distinguish between the cases with g even and ¢ odd.

Let ¢ be odd, ¢ > 7. Then the orders of maximal Abelian subgroups are equal to g, 9—;—1, 9;—1 I
L2(g) = ABA, for the orders of A and B we face the following two options: |A| = |B| = ¢q or |4| = g,
|B| = 9% By routine computations, using the canonical form of elements in L;(g), we conclude that if
u is a nonidentity unipotent element then Zy,,)(u) = U, where U is a unipotent subgroup of L;(g). For
every Sylow p-subgroup P and for any element z in L;(g), therefore, P N P is equal either to 1 or to P.

We proceed to consider both options for A and B. Seek an order of the set AbA, where b is some element

in B. We have |AbA| = |AbAb~1| = Fr%]-_u = II::IL .
If Ly(q) = ABA, we arrive at the following two systems of equations (for the first and second versions,
respectively):
{ gz +y= L3,
z+y=9q
and

2
gz +y= 134,
z+y =17,

where z and y are integers. It is not hard to see that neither system has an integer-valued solution, for any
g. Therefore, Ly(q) is not represented as ABA if ¢ is odd.

Let ¢ be even. Then, for the orders of A and B, there are four options for which |G| < |4] - |B| - |4].
These are the following pairs: (g,q9 + 1), (¢,9), (¢ +1,¢ — 1), and (g + 1,q). The first two are treated the
same way as for ¢ odd, and we have G # ABA for them. For the other two, we make use of the fact that
L(2%) = SLy(2%). If the order of A is ¢ + 1, then A is conjugate in SL3(2%) to a subgroup of matrices of

the form
a 0
0 af |

Thus Zsp,(g)(a) = A for a nonidentity element a in A; hence, AN A7 is equal either to 1 or to A. Also,
|Nsz,(q)(A)l = 2(q + 1). Using the same argument as for ¢ odd, we arrive at the following two systems (for
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the third and fourth versions, respectively):

and

gz +y=gq(g—1),
t+y=q-1

gz +y=q(g—-1),
ztt+y=4q.

The system has no integer-valued solution in the third case, but has in the fourth —z =g -2, y = 2. We
have [Nsr,(q)(A)] = 2(¢ + 1), and so SL;(q) = ABA, which proves Theorem B.
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