ON THE EXISTENCE OF CARTER SUBGROUPS
E.P.Vdovin*

In the paper we obtain the existence criterion of a Carter subgroup in a finite group in terms of its
normal series. An example showing that the criterion cannot be reformulated in terms of composition
factors is given.

1 Introduction

Recall that a nilpotent self-normalizing subgroup of a group G is called a Carter subgroup. The
classical result by Carter [1] states that every finite solvable group contains Carter subgroups
and all of them are conjugate. A finite group G is said to satisfy condition (C) if, for every its
nonabelian composition factor S and for every its nilpotent subgroup N, Carter subgroups (if
exist) of (Auty(S),S) are conjugate (the definition of Auty(S) is given below). In the paper
[2] it is proven that if a finite group satisfies (C), then its Carter subgroups are conjugate. In
the recent paper |3, Theorem 10.1] it is proven that in every almost simple group with known
simple socle Carter subgroups are conjugate. Thus, modulo the classification of finite simple
groups, in every finite group Carter subgroups are conjugate. In the paper by a finite group
we almost mean a finite group satisfying (C), thus the results of the paper does not depend on
the classification of finite simple groups. There exist finite groups without Carter subgroups,
the minimal example is Alts. In the paper we give a criterion of existence of Carter subgroups
in terms of normal series.

If G is a group, A, B, H are subgroups of G and B is normal in A (B<A), then Ny(A/B) =
Ny (A)N Ny(B). If # € Ny(A/B), then x induces an automorphism Ba — Bz 'ax of A/B.
Thus, there is a homomorphism of Ny (A/B) into Aut(A/B). The image of this homomorphism
is denoted by Auty(A/B) while its kernel is denoted by Cy(A/B). In particular, if S is a
composition factor of G, then for any H < G the group Auty(S) is defined.

Let G = Gy > G > ... > G, = {e} be a chief series of G (recall that G is assumed
to satisfy (C)). Then G;/Giy1 = T;1 X ... X Ti,, where T,y ~ ... ~ T, ~ T, and T} is a
simple group. If i > 1, then denote by K; a Carter subgroup of G/G; (if it exists) and by K;
its complete preimage in G/Gi1. If i = 0, then Ky = {e} and Ky = G/G,. We say that a
finite group G satisfies condition (E), if, for every i, j, either K; does not exist, or Autg, (7T} )
contains a Carter subgroup.

The following lemma shows that the homomorphic image of a Carter subgroup is a Carter
subgroup. We shall use this fact substantially.

Lemma 1. 3, Lemma 2.1| Let G be a finite group, let K be a Carter subgroup of G and assume
that N is a normal subgroup of G. Assume that either KN satisfies (C) (this condition is
automatically satisfied if G satisfies (C) or if N is solvable), or KN = G. Then KN/N is a
Carter subgroup of G/N.

2 Criterion

Lemma 2. Let H be a normal subgroup of a finite group G, S = (A/H)/(B/H) be a compo-
sition factor of G/H, and L be a subgroup of G.
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Then Autr(A/B) ~ Autry/u((A/H)/(B/H)).

Proof. Since H < B, then H < Cs(A/B), hence we may assume that L = LH. Moreover. we
may assume that L < Ng(A) N Ng(B) and G = LA. Then the action on A/B given by x :
Ba — Bz 'ax coincides with the action on (A/H)/(B/H) given by xH : BaH — Bx laxH,
and the lemma follows. O

Below we shall need to know some additional information about the structure of Carter
subgroups in groups of special type. Let A’ be a group with a normal subgroup 7”. Consider
the direct product Ay X ... x Ay, where A; ~ ... ~ Ay ~ A’ and its normal subgroup 7" = T} x
... X Ty, where T} ~ ... ~ T}, ~ T". Consider the symmetric group Sym,, acting on Ay X...x Ay
by Af = A;s for all s € S and define X to be a semidirect product (A; x ... x Ag) X Symy,
(permutation wreath product of A" and Sym,). Denote by A the direct product A; x ... x Ay
and by m; the projection 7; : A — A;. In the introduced notations the following lemma holds.

Lemma 3. Let G be a subgroup of X such that T < G, G/(GNT) is nilpotent and (GNA)™ =
A;. Assume also that A is solvable. Let K be a Carter subgroup of G.
Then (K N A)™ is a Carter subgroup of A;.

Proof. Assume that the statement is not true and let G be a counterexample of minimal order
with minimal k. Then S = G/(G N A) is transitive and primitive. Indeed, if S is not transitive,
then S < Sym,, x Sym;_, , hence G < G; X Gy. If we denote by ¢; : G — G the natural
homomorphism, then G¥% = G, satisfies conditions of the lemma and K%' = K, is a Carter
subgroup of G;. Clearly (G N A)™ = (G;N A¥)™, where i = 1if j € {1,...,k;} and i = 2 if

je{ki+1,... k}, i e., the following diagrams are commutative:
¥ Ty
GNA Aj, GNA Aj.
N 2 Te
G1 N Ad)l G2 N A¢2

Thus we obtain the statement by induction. If S is transitive, but is not primitive, let
Ql = {Th B aTm}7 QQ = {Tm-i-lv SR 7T2m}7 R Ql = {T(lfl)erla s 7ﬂm}
be a system of imprimitivity. Then it contains a nontrivial intransitive normal subgroup

F' < Sym,, X ... x Sym,,,

~
[ times

where k = m - [. Consider the complete preimage F' of F' in X. Then GNF < Fy; x ... X F].
Denote by v; : F' — F; the natural projection, then (G N F)¥ = F;. Note that all of F; satisfy
conditions of the lemma and, if we define T} = T(;_1)m+1 X ... X T}y, then G satisfies conditions
of the lemma with 7" = T] x ... x T} and A’ = F. By induction we have that (K N F)¥i is
a Carter subgroup of F; and, if j € {m- (i — 1) +1,...m -4}, then ((KNF)¥ NAY")" is a
Carter subgroup of A;. Since (GNA)™ = ((K N F)% N A%)™ (for suitable i), we obtain the
statement by induction.

Let Y’ be a minimal normal subgroup of G contained in T (if Y’ is trivial, then T is trivial
and we have nothing to prove, since G is nilpotent in this case). Thus Y is a normal elementary



Abelian p-group. Let Y; = (Y")™, then Y = Y] x ... X Y} is a nontrivial normal subgroup of
G (Y is a subgroup of G since T' < G). Let 7; : (G N A) — A;/Y; = A; be the projection
corresponding to ;. Denote by K = KY/Y the corresponding Carter subgroup of G = G/Y.
Then G satisfies conditions of the lemma. By induction, (K N A)™ is a Carter subgroup of
A;. Let K, be a complete preimage of K in G and let Q be a Hall p’-subgroup of K;. Then
(Q N A)™ is a Hall p’-subgroup of (K7 N A)™. In view of the proof of [4, Theorem 20.1.4], we
obtain that K = Nk, (Q) is a Carter subgroup of G and (Ng,na(QNA))™ is a Carter subgroup
of A;. Thus we need to show that (Ng,na(QNA))™ = (Ng,ns(@Q))™. By induction, the equality
(N7 (ANQ))™ = (Ng~z(Q))™ holds. Thus we need to prove that (Ny (QNA))™ = (Ny(Q))™.
Note also that (Ny(Q N A))™ < Ny, ((Q N A)™).

Since S is a transitive and primitive nilpotent subgroup of Sym,, then & = r is prime and
S = (s) is cyclic. If r = p, then @ N A = @ and we have nothing to prove. Otherwise let h
be an r-element of K, generating S modulo K N A. Clearly Q = (Q N A)(h). Let t € Y; be
an element of Ny,((Q N A)™). Then (t-t"-...-t"") € Ny(Q) and t™ = (t-t". .. . t"" )™,
hence (Ny(Q M A))™ < Ny,((Q N A)™) < (Ny(Q))™ < (Ny(@ N A))™. O

Theorem 1. Let G be a finite group. Then G contains a Carter subgroup if and only if G
satisfies (E).

Proof. We prove first the part “only if”. Let H be a minimal normal subgroup of G. Then
H =T, x...xTy, where T} ~ ... ~ T} ~ T are simple groups.

If H is elementary Abelian (i. e., T is cyclic of prime order), then Aut(T") is solvable and
contains a Carter subgroup. Assume that 7" is a nonabelian simple group. Clearly K is a Carter
subgroup of K'H. By |2, Lemma 3| we obtain that Autxy(7;) contains a Carter subgroup for
all 7.

Now we prove the part “if”. Again assume by contradiction that G is a counterexample of
minimal order, i. e., that G does not contain a Carter subgroup, but, G satisfies (E). Let H be
a minimal normal subgroup of G. Then H =T} x ... xX T}, where T} ~ ...~ T, ~ T, and T is
a finite simple group.

By definition G'/H satisfies (E), thus, by induction, there exists a Carter subgroup K of
G = G/H. Let K be a complete preimage of K, then K satisfies (E). If K # G, then, by
induction K contains a Carter subgroup K’. Note that K’ is a Carter subgroup of GG. Indeed,
assume that ¥ € Ng(K’) \ K'. Since K'H/H = K is a Carter subgroup of G, we have that
x € K. But K’ is a Carter subgroup of K, thus z € K'. Hence G = K, i. e. G/H is nilpotent.

If H is Abelian, then G is solvable, therefore G contains a Carter subgroup. So assume
that 7" is a nonabelian finite simple group. We first show that Cg(H) is trivial. Assume that
Cg(H) = M is nontrivial. Since T is a nonabelian simple group, it follows that M N H = {e},
so M is nilpotent. By Lemma 2 we have that G/M satisfy (E). By induction we obtain that
G/M contains a Carter subgroup K. Let K’ be a complete preimage of K in . Then K’
is solvable, hence contains a Carter subgroup K. Like above we obtain that K is a Carter
subgroup of G, a contradiction. Hence Cq(H) = {e}.

Since H is a minimal normal subgroup of G, we obtain that Autg (7)) ~ Autg(Ty) ~ ... ~
Autg(Ty). Thus there exists a monomorphism

(o G — (AU_tg<T1) X ... X Autg(Tk)) PN Symk = G1

and we identify G with G¥. Denote by K; a Carter subgroup of Autg(7;) and by A the
subgroup Autg(71) % ... x Autg(Ty). Since G/H is nilpotent, then K;T; = Autg(7;) and



Gy = (KqTy x ... x K;Ty) N Symy,. Let my : GNA — (GNA)/Cianay(T;) be the canonical
projections. Since G/(G N A) is transitive, we obtain that (G N A)™ = K;T;.

Since Autgna(T;) = K;T;, hence G N A satisfies (E). By induction it contains a Carter
subgroup M. By [2, Lemma 3| we obtain that M™ is a Carter subgroup of K;T;, therefore we
may assume M™ = K;. In particular, if R = (K1 NTy) x ... x (KyNT), then M < Ng(R). In
view of [3], Carter subgroups in every finite group are conjugate. Since (G N A)/H is nilpotent
we obtain that GN A = MH, hence G = Ng(M)H. Moreover Ng(M)NA = M, so Ng(M)
is solvable. Since M normalizes R, M™ = K;, we obtain that Ng(M) normalizes R, hence
Ng(M)R is solvable. Therefore it contains a Carter subgroup K. By Lemma 3, (K N A)™ is
a Carter subgroup of (Ng(M)RN A)™ (R plays the role of T' from Lemma 3 in this case), so
(KNA)™ = K;. Assume that x € Ng(K)\ K. Since G/H = Ng(M)H/H = KH/H it follows
that € H. Therefore 2™ € (Ng(K)NA)™ < Np,(KNA)™) = K;. Since (), Ker(m;) = {e}, it
follows that © € R < Ng(M)R. But K is a Carter subgroup of Ng(M)R, hence x € K. This
contradiction completes the proof. O]

3 Example

In this section we construct an example showing, that we can not substitute condition (E) by
a weaker condition: for every composition factor S of G, Autg(S) contains a Carter subgroup.
This example also shows that an extension of a group containing a Carter subgroup by a group
containing a Carter subgroup may fail to contain a Carter subgroup.

Consider L = I'SLy(3%) = PSLy(3%) X\ (p), where ¢ is a field automorphism of PSL,(3%).
Let X = (L; X Ly) N Sym,, where L; ~ Ly ~ L and if 0 = (1,2) € Sym, \ {e}, (z,y) €
Ly x Ly, then o(z,y)o = (y,z) (permutation wreath product of L and Sym,). Denote by
H = PSLy(3%) x PSLy(3%) the minimal normal subgroup of X and by M = L; x L,. Let
G = (H X {(p,¢7))) N\ Sym, be a subgroup of X. Then the following statements hold:

1. For every composition factor S of G, Autg(S) contains a Carter subgroup.
2. GN M <G contains a Carter subgroup.

3. G/(GN M) is nilpotent.

4. GG does not contain a Carter subgroup.

1. Clearly we need to verify the statement for nonabelian composition factors only. Every
nonabelian composition factor S of G is isomorphic to PSL,(3%) and Autg(S) = L. In view of
[3, Theorem 7.1| (Theorem 3 below) we obtain that L contains a Carter subgroup (coinciding
with a Sylow 3-subgroup).

2. Since (G N M)/H is nilpotent and from the previous statement we obtain that G N M
satisfies (E), hence contains a Carter subgroup (it is easy to see that a Sylow 3-subgroup of
G N M is a Carter subgroup of G N M).

3. Evident.

4. Assume that K is a Carter subgroup of G. Then KH/H is a Carter subgroup of
G/H. But G/H is a nonabelian group of order 6, hence G/H ~ Sym, and K H/H is a Sylow
2-subgroup of G/H. In view of |2, Lemma 3] it follows that Autyx(PSL2(3%)) is a Carter
subgroup of Autgy(PSLy(3%)) = PSLy(3%). But PSLy(3%) does not contain Carter subgroups
in view of [3, Theorem 7.1] (Theorem 3 below).



4 The classification of Carter subgroups

It is proven in [3, Lemma 2.3] that a Carter subgroup of a finite group G contains a Sylow
2-subgroup S of G if and only if Ng(S) = SCs(S). A finite group G is said to satisfy (ESyl2),
if for its Sylow 2-subgroup S the condition Ng(S) = SCq(S) holds. We give main classification
theorems from [3] here for convenience.

Theorem 2. |3, Theorem 6.1] Let G be a group of Lie type over a field of characteristic p
with trivial center and G, o are chosen so that OV (G,) < G < G,, and O” (G,) is isomorphic
to either Dy(q), or >Dy(q®). Assume that T is a graph automorphism of order 3 of O (G)
if O"(G) ~ Dy(q) and is a field automorphism of order 3 which has the set of stable points
isomorphic to Ga(q) if G ~ 3Dy(q®). Denote by Ay the subgroup of Aut(Dy(q)) generated by
inner-diagonal and field automorphisms, and also by a graph automorphism of order 2. Let
A < Aut(G) be such that A £ Ay (if OY(G) ~ Dy(q)), and K be a Carter subgroup of A.
Assume also that |0 (G)| < Cmin, G = ANG, and A = KG. Then one of the following
statements holds:

(a) G ~3Dy(¢*), (|JA:G|,3) =1, q is odd and K contains a Sylow 2-subgroup of A;

(b) (JA:Gl,3) > 1, qis odd, T € A and, up to conjugation by an element of G, the subgroup
K contains a Sylow 2-subgroup of Cx(17) ~T'Gy(q) and T € K;

() (JA:G|,3) > 1, q=2" 7 € a and, up to conjugation by an element of G, the subgroup
K contains a Sylow 2-subgroup of Ca(T) ~ G5(2%) and T € K;

(d) OY(G) ~ Dy(p*), p is odd, the quotient A/G is cyclic, OP (GYXN{T) £ A, A=GXN{((),
where g € G,, and ( = 7™ 1is a graph-field automorphism, and , up to conjugation by
an element of G, K = QX (C), where Q is a Sylow 2-subgroup of C(Cy) ~ 3 Dy(p/12]).

Theorem 3. |3, Theorem 7.1| Let G be a finite group of Lie type (G is not necessary simple)
with trivial center over a field of characteristic p and G, o are chosen so that O (G, ) <G <G,
Assume also that G % 3Dy(¢%). Choose a subgroup A of Aut(O¥ (G,)) with ANG, = G and
assume that A is contained in the subgroup A, defined in Theorem 2, if OY (G) = Dy(q). Let
K be a Carter subgroup of A and assume that A = KG.

Then exactly one of the following statements holds:

(a) A=TG and either TG = (*A (2%), Cg), orI'G = 215(2\%»\((), where the order |C| =t is

odd, Cg(C) ~ Qm (Ca(C) ~ 2A2( ) if G =2A5(22) ort is divisible by 3), the subgroup
K NG is Abelian and has order 2 - 3%, where 3*~1 = t5;

(b) G is defined over GF(2), a field automorphism ( is in A, |C| = t, and, up to conjugation
in G, the equality K = Q X ((,7) holds, where Q is a Sylow 2-subgroup of G¢,, and T is
a graph automorphism of order < 2 of O (G) contained in A;

(¢) G ~PSLy(3"), a field automorphism C is in A, |(| =t is odd, and, up to conjugation in
G, the equality K = Q X (¢) holds, where Q is a Sylow 3-subgroup of G, ;

(d) A = TG = 2Go(32" ™) N (), |¢] = 2n + 1, and, up to conjugation in G the equality
K N2Gy(3%1) = S x P holds, where Q is of order 2 and |P| = 3!,



(e) p does not divide |K NG| and K contains a Sylow 2-subgroup of A, the group A satisfies
(ESy12) if and only if G satisfies(ESyl2).

We give also two technical lemmas that will be used in the classification of Carter subgroups
in almost simple groups.

Lemma 4. |2, Lemma 5| Assume that G is a finite gorup. Let K be a Carter subgroup of G
with center Z(K). Assume also that e # z € Z(K) and Cg(2) satisfies (C).

(1) Every subgroup Y containing K and satisfying (C) is self-normalized in G.
(2) No conjugate of z in G, except z, lies in Z(G).

(3) If H is a Carter subgroup of G, non-conjugate to K, then z is not conjugate to any
element in the center of H.

In particular the centralizer Cg(2) is self-normalizing in G, and z is not conjugate to any
power 2* # z.

Lemma 5. |3, Lemma 2.6] Let G be a finite group, let H be a normal subgroup of G such
that |G : H| = 2'. Let S,T be Sylow 2-subgroups of G, H respectively and Ny(T) = TCy(T).
Then Ng(S) = SCq(95).

In particular, G, H contain Carter subgroups K, L respectively, satisfying S < K andT' < L.

In view of condition (E) and Theorem 1 the investigation of Carter sbugroups in finite groups
is reduced to the classification of Carter subgroups in almost simple groups A, satisfying the
additional condition: A/F*(A) is nilpotent. The classification of Carter subgroups in almost
simple groups satisfying this condition is obtained by several authors and we give it here in the
form that is convinient to use.

We prove first the following theorem showing that if for some subgroup S of Aut(G) there
exists a Carter subgroup, then it exists in every larger group S < A < Aut(G) (here G is a
known finite simple group).

Theorem 4. Let G be a finite simple group and G < A < Aut(G) be an almost simple group
with simple socle G. Assume that A contains a subgroup S such that G < S and S contains a
Carter subgroup.

Then A contains a Carter subgroup.

Proof. Let K be a Carter subgroup of S. Clearly we may assume that S = KG.

Assume that either G ~ Alt,, for some n > 5, or G is sporadic. Since by [5, Lemma 2.10]
every element of odd order of G is conjugate to its nontrivial power, and since |Aut(G) : G| is
a power of 2, Lemmas 4 and 5 imply that, if some G < § < Aut(G) contains a Carter subroup
K, then K coincides with a Sylow 2-subgroup of S. Since |A : S| is a 2-power, the statement
of the theorem in this case follows from Lemma 5.

Assume that G = 3D,(¢%). By [6, Theorem 1.2(vi)| every element of G is conjugate to its
inverse. If ¢ is odd, then [3, Lemma 4.3] implies that K is a Sylow 2-subgroup of S. Thus
by Lemma 5 and [3, Lemma 4.3] it follows that A satisfies (ESyl2), i. e. contains a Carter
subgroup. If ¢ = 2! is even, then by Theorems 2 and 3 it follows that either |[Aut(G) : S| =3
and a Carter subgroup of S is a Carter subgroup of A, or |[Aut(G) : S| = 2 and, if A # S, then
A contains a subgroup M of index 3 such that M satisfies Theorem 3(2) and a Carter subgroup
of M is a Carter subgroup of A.



Assume that G is a group of Lie type, G 2 2D4(¢%) and, if G ~ D4(q), then S < A;, where
Ay < Aut(Dy(q)) is defined in Theorem 2. Then S satisfies one of the statements (1)—(5) of
Theorem 3. Consider these cases separately.

Assume that S satisfies (1). There can be two cases: either 3 divides |(], or 3 divides |(].
In the first case we have that |Aut(G) : S| = 2 thus either A = 5, or A = Aut(G). If A =S5
then there is nothing to prove, if A = Aut(G), then A satisfies (2) of Theorem 3, thus contains
a Carter subgroup. In the second case (when 3 divides |(|) we have that A is equal to either
2 45(220) N (C), o1 2A5(22) X (C), or 245(220) X (¢(7), or Aut(G) (here 7 is a field automorphism
of order 2, commuting with (). First two groups contain a Carter subgroup in view of Theorem
3(1), the least two groups contain a Carter subgroup in view of Theorem 3(2).

Assume that S satisfies (2) of Theorem 3. Then |[Aut(G) : S| < 2, hence either A = S,
or A = Aut(G). In the first case A clearly contains a Carter subgroup. In the second case
|A: S| =2 and A contains a Carter subgroup in view of Theorem 3(2).

Assume that S satisfies either (3), or (4) of Theorem 3. Then S = Aut(G) = A and there
is nothing to prove. R

Assume that S satisfies (5) of Theorem 3. Let @ be a Sylow 2-subgroup of SN G. As it is
noted in Theorem 3(5), then the eqality Ng-5(Q) = QC4.a(Q) holds. Since ANG > SNG, then
by [7] we have that N, 4(Q1) = Q1C 4~a(Q1), where @ is a Sylow 2-subgroup of ANG. By [3,
Lemma 4.3] it follows that for a Sylow 2-subgroup @ of A the equality N4(Q2) = Q2C4(Q2)
holds. Therefore, [3, Lemma 2.3] implies that A contains a Carter subgroup.

Assume now that G = Dy4(q) and S satisfies Theorem 2. Since graph automorphisms of
order 2 and 3 does not commute, then only one of them can be contained in a nilpotent
subgroup, Thus we may assume that only one of them is contained in A. Then every subgroup
A containing S either satisfies Theorem 2, or satisfies 3 condition (2), if ¢ is even, or condition
(5), if ¢ is odd, i. e., contains a Carter subgroup. O

The tables given below are arranged in the following order. In the first column is given
a simple group S such that Carter subgroups of Aut(S) are classified. In the second column
we give conditions for a subgroup A of its group of automorphisms for A to contain a Carter
subgroup. In the third column we give the structure of a Carter subgroup K. In every subgroup
of Aut(S) lying between S and A Carter subgroups does non exist. By P.(G) a Sylow r-
subgroup of G is denoted. By ¢ we denote a field automorphism of a group of Lie type S,
by 7 we denote a graph automorphism of a group of Lie type S contained in K (since graph
automorphisms of order 2 and 3 of Dy(¢q) does not commute, only one of them can be in K).
By A we denote a graph-field automorphism of D4(¢?), with the set of stable points isomorphic
to *Dy(¢**) for some k. If A does not contains a graph automorphism, then we suppose 7 = e.
By ¢ we denote a field automorphism of S of maximal order contained in A (it is a power of ¢,
but (1) can be different from (p)). If G is solvable, then by K (G) we denote a Carter subgroup
of G. In Table 3 by y the 2"-part of a field automorphism ¢ of 2A4,5(2%) is denoted. To check
the condition (ESyl2) in an almost simple group we use results from [7] and [8].

Table 1. Groups of automorphisms of alternating groups containing Carter subgroups.

Group S | Conditions for A | Structure of K
Alts A = Sym; K = P5(Sym;)
Alt,, n > 6 none K = N4(Py(9))

Table 2. Groups of automorphisms of cporadic groups containing Carter subgroups.
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Group S Coditions for A | Structure of K
Jo, J3, Suz, HN A = Aut(S) K = Py(A)
% Ji, Ja, J3, Suz, HN none K = Py(A)

Table 3. Groups of automorphisms of classical groups containing Carter subgroups.

Group S Conditions for A Structure of K
Ai(q), g = £1 (mod 8) none K = Na(P(9))

Ai(q), q_:|:3 (mod 8) S<A K = N4(Py(9))

A, 2N, t =2 ifn=1 peA K = (p,7) XS,

An(q), q odd, n>2 none K = Py(A) x K(O(Na(P2(A))))
2A5(2%), t odd 3t (\) KST<AL(x) XS K = (x) x (z)

31t, A= (x) XS where |z] =23 - 13
“A(2%) A = Aut(S) K = (¢) A P(Sg,)
2A.(¢%), q odd none K = Py(A) x K(O(NA(Py(A))))
2A,(2%), n >3 A = Aut(9) K = () AP(S,,)
By(q), ¢ = £1 (mod 8) none K = Py(A) x K(O(Na(FP2(A))))
By(2"), t > 2 peA K = (p,7) A P((57))
By(q), ¢ = £3 (mod 8) S<A K = Py(A) x K(O(Na(FP2(A))))
B,(q), g odd, n >3 none K = Py(A) x K(O(Na(FP2(A))))
Ch(q), ¢ = £1 (mod 8) none K = Py(A) x K(O(Na(P2(A))))
Cn(q), ¢ = £3 (mod 8) S<A K = Py(A) x K(O(Na(FP2(A))))
Cn(2),n >3 A = Aut(S) K = (p) x Py(S,,)
Dy4(q), q odd none if [7| <2 and A\ € A, then
K = Py(A) x K(O(Na(F2(4))));
if A= G X)), then
K = (\) A Py(Sh,);
if |7| = 3, then
K = <7—a ’QZ)> A PQ(ST)
Dy (2") peA if |7] < 2, then
K = (7, 0) K P(5,);
if |7| = 3, then
K = (1,0) A P((5-)p,)

D, (q), qodd, n =5 none K = Py(A) x K(O(Na(FP2(A))))
D,(2"),n>5 peA K = {(1,0) KA P(S,,)
an( %), q odd none K = Py(A) x K(O(Na(P2(A))))

2D, (2%) A = Aut(95) K = (p) K P(S,,)
Table 4. Groups of automorphisms of exceptional groups of Lie type containing Carter sub-
groups.
Group S Conditions for A Structure of K
By(22 ) n > 1 A = Aut(9) K = (p) x Py(*By(2))
((F4(2)) none K = Py(A)
2Fy22vh n > 1 A = Aut(S5) K = (p) x By(*Fy(2))
2G5(32 ) A = Aut(G) (p) X(2x P),




where |P| = 3l¢Is
others, ¢ is odd none K = Py(A) x K(O(N4(P2(95))))
others, g = 2 peA (1,0) X Py(S,,,)

As a corollary note the following interesting result.

Lemma 6. Let S be a known finite simple group, S # J; and G = Aut(S). Then G contains
a Carter subgroup.

Proof. By |7, Theorems 2 u 3], if S is not a group of Lie type and distinct from Jj, then the
group of its automorphisms Aut(S) satisfies (ESyl2) and contains a Carter subgroup. Now
if S is a group of Lie type in even characteristic, then Aut(S) contains a Carter subgroup in
view of 3(2). If S is a group of Lie type in odd characteristic and S % 2G5(32"*1), then S
satisfies (ESyl2), hence contains a Carter subgroup. By Theorem 4, Aut(S) contains a Carter
subgroup. Now, if S =~ 2G5(3*"*1), then Aut(S) contains a Carter subgroup in view of 3(4). [

The author thanks Mazurov Vicktor Danilovoch for discussings on this paper, that allow to
improve the paper.
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