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LARGE NILPOTENT SUBGROUPS OF FINITE SIMPLE GROUPS

E. P. Vdovin∗ 1 UDC 512.542.5
20D05, 20D25, 20E32

Orders and the structure of large nilpotent subgroups in all finite simple groups are determined.
In particular, it is proved that if G is a finite simple non-Abelian group, and N is some of its
nilpotent subgroups, then |N |2 < |G|.

INTRODUCTION

In the present article, we study into the structure and orders of large nilpotent subgroups in finite
simple groups and in finite groups that are close to simple, by which are meant finite groups of Lie type
and symmetric groups. Values for orders of large nilpotent subgroups of finite simple and close to simple
groups are given below, in Tables 1 and 3. In particular, it is proved that if G is some finite simple
non-Abelian group, and N is its nilpotent subgroup, then |N |2 < |G| (Thm. 2.2).

The main tool for dealing with nilpotent subgroups in finite groups of Lie type is the structure of
centralizers of semisimple elements, outlined in [1, 2]. Furthermore, in many finite simple groups, a large
nilpotent subgroup coincides with a Sylow subgroup. We therefore need additional data on how Sylow
subgroups of finite simple groups are structured.

The structure of Sylow subgroups in symmetric and alternating groups has been known for a rather
long period of time, and for finite Chevalley groups, it has been studied by a number of authors; see, e.g.,
[3-5]. In [6], Kabanov and Kondratiev pointed out the structure and orders for Sylow 2-subgroups in
all finite simple groups except sporadic. In [7], Zenkov and Mazurov proved that for any prime p, every
finite simple non-Abelian group contains two Sylow p-subgroups having a trivial intersection.

It is worth observing that the ways in which large solvable subgroups are structured and ordered
in finite simple and close to simple groups are well known. The structure and orders for large solvable
subgroups in symmetric and linear groups were dealt with in [8], and in all groups of Lie type — in [9].

The notation and definitions used in the present article can be found in [10-12]. If G is a group then
writing H ≤ G means that H is a subgroup of G and H � G means that H is a normal subgroup of
G. By |G : H| we denote the index of H in G; NG(H) is a normalizer of H in G. If the subgroup H is
normal in G then G/H denotes the factor group of G w.r.t. H. If M is a subset of G, 〈M〉 stands for a
subgroup generated by the set M ; |M | is the cardinality of M (or the order of an element, if an element
is taken in place of the set). Write CG(M) to denote the centralizer of M in G; CG(G) = ζ(G) is the
center of G. By writing xy = y−1xy we mean that an element x is conjugated by an element y in G.
A Fitting subgroup of G is denoted by F (G), and a Frattini subgroup — by Φ(G). If x and y are two
elements of G then [x, y] = x−1y−1xy is the commutator of x and y; [G, G] = G′ is a derived subgroup
of G. The exponent of G is denoted by exp(G). Let A× B be a direct product of groups A and B and
A ∗B be their central product.

Assume that π is some subset of the set of primes. For a finite group G, Oπ(G) then denotes a largest
normal subgroup of G whose order is divisible by the numbers in π only; Oπ(G) is a normal subgroup
generated by elements whose order is not divisible by the primes in π. By a large nilpotent subgroup of
a finite group G we always mean a nilpotent subgroup of greatest order.

If ϕ is an homomorphism of G, and g is an element of G, then Gϕ and gϕ are the images of G and g
w.r.t. ϕ. If ϕ is some automorphism of G, then Gϕ denotes the set of fixed points for ϕ.
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The notation that relates to finite Lie-type groups is borrowed from [11]. By a Chevalley group, unless
specified otherwise, we mean both a universal Chevalley group and any one of its factor groups w.r.t. a
subgroup in the center. In dealing with Chevalley groups, we assume that GF (q) stands for a field of
order q, p for its characteristic, and GF (q)∗ for a multiplicative group of GF (q). The Chevalley group
corresponding to a root system Φ over GF (q) is denoted by Φ(q). A Weyl group corresponding to the
root system Φ is denoted by W (Φ). For twisted groups, we write 2An(q2), 2Dn(q2), 2En(q2), 3D4(q3),
2B2(q), 2G2(q), and 2F2(q). Let Φ+ be a set of positive roots in Φ and ∆ = {r1, . . . , rk} be the set of
fundamental roots, where the numbering is chosen as in [11, (3.4)]. An element x of the Chevalley group
Φ(q) is said to be semisimple if its order is coprime to p. And we say that it is unipotent if its order is
the power of p. Likewise, a semisimple subgroup of Φ(q) is defined as one whose order is coprime to p
(a p′-subgroup). And a unipotent subgroup of Φ(q) is one whose order is the power of p. An extended
Dynkin diagram of the Chevalley group G is a diagram that obtains from the initial Dynkin diagram
by adding the root −r0 (here, r0 is the root of maximal weight) and then adjoining that root to other
vertices in the common way.

1. AUXILIARY RESULTS FOR ALGEBRAIC GROUPS

Under this section, we give the necessary data on the structure of linear algebraic groups (for brevity,
the word “linear” will be dropped), and obtain some auxiliary statements which will be made use of
in evaluating orders of nilpotent subgroups. For the basic definitions and results on the structure and
properties of algebraic groups, we ask the reader to consult [12]. If G is an algebraic group, then G0

denotes a connected component in G. An algebraic group is said to be semisimple if its radical is trivial.
And we say that it is reductive if its unipotent radical is trivial (in either case, the algebraic group is not
assumed connected). It is well known that a connected, semisimple, algebraic group is a central product
of connected, simple, algebraic groups, and that a connected, reductive, algebraic group G is the product
of a torus S and a semisimple group M ; moreover, S = ζ(G)0, M = [R,R], and the group S∩M is finite;
see, e.g., [12].

Let G be a connected, reductive, algebraic group, T be its maximal torus (by a torus we always mean
a connected diagonable group), and B be a Borel subgroup containing T . There then exists a Borel
subgroup B− such that B ∩ B− = T . Let Φ be a root system w.r.t. T , ϕ : NG(T ) → NG(T )/T = W
be the canonical homomorphism onto the Weyl group W of G, and Xα be root subgroups w.r.t. T
(one-dimensional, T -invariant, unipotent subgroups of B and B−). The action of the Weyl group W on
the root system Φ is defined as follows (see [12, 24.1]). For every element w in W , we take its certain
representative nw in G. The Weyl group acts then on the roots in Φ by the rule αw(t) = α(tnw) for all
α ∈ Φ, t ∈ T . And the Weyl group acts on the weights of the representation π for G similarly. It is well
known that B = TU , where U = 〈Xα : α ∈ Φ+〉 is a maximal unipotent subgroup of G, and B− = TU−,
where U− = 〈Xα : α ∈ Φ−〉. If the order is induced on the positive roots of Φ, then every element of U
is uniquely represented as a product of elements in the root subgroups Xα (respecting the given order).

Let G be a connected reductive group. For every element w of W , we fix its representative nw in G.
Then every element of G is uniquely representable as unwtv, where v ∈ U , t ∈ T , and u ∈ U ∩nwU−n−1

w ;
see, e.g. [12, Thm. 28.3]. Such a representation of G’s elements is called the Bruhat decomposition.
Furthermore, in any connected reductive group, every semisimple element is contained in some maximal
torus and every unipotent element is contained in some maximal (and connected) unipotent subgroup.

Let G be a simple, connected, algebraic group, π be its rational faithful representation, and Γπ be a
lattice generated by weights of π. Denote by Γad a lattice generated by roots of Φ, and by Γsc a lattice
generated by the fundamental roots. Clearly, Γad ≤ Γπ ≤ Γsc.

For a root system of a given type, we know, there exist several distinct simple algebraic groups, which
are called isogenies. They differ by the structure of a group Γπ and by the order of a finite center. If it is
the case that the lattice Γπ coincides with Γsc, G is said to be one-connected and is denoted by Gsc. If
Γπ coincides with Γad, G is said to be of an adjoint type and is denoted by Gad. Every group with root
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system of a given type is obtained from Gsc, to appear as a factor group w.r.t. a subgroup in the center.
The center of Gad is trivial and Gad is trivial as an abstract group.

Let ci be a coefficient with which the fundamental root ri enters the decomposition of the root r0.
Prime numbers that divide the coefficients ci are called bad primes.

We proceed to recall a number of fundamental results concerning the structure of algebraic groups.
LEMMA 1.1 [12, Thm. 15.3]. Let G be an algebraic group. For any x ∈ G, there then exist

elements s, u ∈ G such that x = su = us, s is semisimple (we call s a semisimple part of x and denote it
hereafter by xs), u is unipotent (we call u a unipotent part of x and denote it hereafter by xu), and such
s and u are unique. (The representation of an element x as xsxu is called the Jordan decomposition.)

LEMMA 1.2 [12, Thms. 21.3, 21.2]. Let G be a connected algebraic group. Then the Borel sub-
groups of G are all conjugate. Moreover, maximal tori and maximal connected unipotent subgroups are
exactly maximal tori and maximal connected unipotent subgroups of the Borel groups. Again, all max-
imal tori and all maximal connected unipotent groups are conjugate, and every semisimple (unipotent)
element lies in a certain maximal torus (maximal connected unipotent subgroup).

Now we recall how finite Lie-type groups are related to simple algebraic ones. Let G be a simple
algebraic group defined over an algebraically closed field of characteristic p > 0 and σ be an endomor-
phism of G such that its set of fixed points, Gσ, is finite. The endomorphism σ with this property will
further be called a Frobenius automorphism, though it may fail to coincide with the classical Frobenius
automorphism. It is worth mentioning that σ is an automorphism if G is treated as an abstract group,
and that σ is an endomorphism if G is treated as an algebraic one. Generally, σ has the form qσ0, where
q = pα is raising to the qth power and σ0 is a graph automorphism of orders 1, 2, or 3. It follows that
Op′(Gσ) is a Lie-type group over a finite field of characteristic p, and, note, every (normal or twisted)
Lie-type group can be obtained similarly.

Let T be a maximal σ-invariant torus of the connected, simple, algebraic group G. In what follows,
by a maximal torus of Gσ [resp., Op′(Gσ)] we mean a group Tσ [resp., Tσ ∩Op′(Gσ)].

Below we prove an auxiliary result which will be made use of in dealing with nilpotent subgroups of
finite Chevalley groups.

LEMMA 1.3. Let G be a connected, reductive, linear, algebraic group over an algebraically closed
field of characteristic p and R be its reductive (not necessarily connected) subgroup of maximal rank;
moreover, (|R : R0|, p) = 1, s ∈ R0 is some semisimple element, and T is an arbitrary maximal torus in R0

containing s. Then the group CR(s) is reductive (though not necessarily connected). It is generated by the
maximal torus T , together with those root subgroups Uα for which α(s) = 1, and by those representatives
of elements of the Weyl group nw ∈ NR(T ) that commute with s. The connected component CR(s)0 is
generated by T and by those Uα for which α(s) = 1. In particular, the group CR(s)/CR(s)0 is isomorphic
to some section of the Weyl group for G. Moreover, all unipotent elements of CR(s) lie in CR(s)0.

Proof. Fix a Borel subgroup B of the group R0 containing T . All the generators mentioned in the
lemma lie in CR(s). We prove that CR(x) is generated by the elements specified. First we claim that the
group R (which is not necessarily connected) admits the Bruhat decomposition. Let x be an arbitrary
element of R. Then Bx is some Borel subgroup of R0. By virtue of Lemma 1.2, there exists an element
s ∈ R0 such that Bx = Bs. The element xs−1 normalizes B. The torus T xs−1

is maximal in B. Since all
maximal tori in B are conjugate (cf. Lemma 1.2), there exists an element g of B such that T xs−1

= T g.
We can therefore assume that xs−1 normalizes T . Then xs−1 = nwt for some nw ∈ NR(T ), t ∈ T . Since
t normalizes B and xs−1 normalizes B, the element nw, too, normalizes B, and hence also U , a maximal
(connected) unipotent subgroup of B. For s lies in R0, its Bruhat decomposition exists, that is, s is
representable as u1nw1t1v1, where u1 ∈ U ∩nw1U

−n−1
w1

, nw1 ∈ NR0(T ), t ∈ T , and v1 ∈ U . Note that x is
representable as x = nwtu1nw1t1v1. Since the elements t and nw normalize U , we can write x in the form
x = u2nw2t2v2, where u2 ∈ U ∩ nw2U

−n−1
w2

, nw2 ∈ NR(T ), t2 ∈ T , and v2 ∈ U . And this decomposition
is unique, for it coincides with the Bruhat decomposition of x in G.

If x ∈ CR(s), using the Bruhat decomposition, we can write x = unwtv, where v ∈ U , t ∈ T , and
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u ∈ U ∩nwU−n−1
w . Since s normalizes U , N(T ), and U− and commutes with x, the decomposition being

unique implies that each of the u, nw, and v commutes with s. Moreover, since s normalizes every root
subgroup Uα, the uniqueness of the decomposition of U into a product of root subgroups Uα (α > 0)
implies that α(s) = 1 whenever u or v contains a non-trivial factor of Uα. In this way x lies in the group
generated by T and by those Uα and nw that permute with s.

Because T and all Uα with α(s) = 1 are connected, the subgroup H generated by these is closed,
connected, and normal in CR(s). The fact that the Weyl group is finite implies |CR(s) : H| < ∞. Thus
H = CR(s)0.

Since roots of the group CR(s) w.r.t. T appear in pairs (i.e., if α(s) = 1 then −α(s) = 1), CR(s)
is reductive. Indeed, if CR(s) has a non-trivial unipotent radical V , then that radical is normalized by
T and hence contains some root subgroup Uα. V is normalized by the root group U−α, which yields a
non-unipotent element in V , a contradiction.

Because (|R : R0|, p) = 1, all unipotent elements of the group R lie in R0, and so all unipotent
elements of CR(s) belong to CR0(s). It is well known that, for a connected reductive group R0, every
unipotent element of CR0(s) lies in CR0(s)0; see, e.g., [13, Thm. 2.2].

Let x ∈ G be a semisimple element. By the previous lemma, C0
G(x) is then a connected reductive

subgroup of maximal rank and [C0
G(x), C0

G(x)] is a semisimple group whose root system is an additively
closed subsystem of the root system for G. Below, such subgroups are said to be subsystem. In the
present article we are dealing with finite groups, so of specific interest to us are elements of prime order
r (6= p).

LEMMA 1.4 [14, 14.1]. Let G be a simple, connected, algebraic group and let x ∈ G be of prime
order r (6= p). Assume that C ′ = [C0

G(x), C0
G(x)] is a subsystem subgroup. If ∆ is Dynkin’s diagram of

the root system for C ′, then one of the following statements holds:
(1) ∆ obtains by dropping vertices from Dynkin’s diagram for G;
(2) ∆ obtains from an extended Dynkin diagram for G by dropping one vertex ri, where r = ci is the

coefficient of a root ri in the decomposiiton of the longest root r0.
In particular, if r is not a bad prime for G then dim(ζ0(C0

G(x))) > 1.

2. LARGE NILPOTENT SUBGROUPS

Here, we study large nilpotent subgroups of finite simple groups and of close to simple groups. The
section is divided into four parts. Under the first subsection, we deal with large nilpotent subgroups in
symmetric and alternating groups. Under the second and third subsections, we treat finite groups of
Lie type. And sporadic groups are the subject matter of the fourth. In the majority of cases, a large
nilpotent group coincides with some Sylow subgroup. If G is a finite group, then Sylp(G) denotes a set
of Sylow p-subgroups of G. The set of large nilpotent subgroups of a finite group G is denoted by N(G),
and the order of an arbitrary element of N(G) — by n(G).

2.1. Large Nilpotent Subgroups of Symmetric and Alternating Groups

Let G be a subgroup of Sn. Then the set {1, . . . , n}, under the action of G, is partitioned into disjoint
subsets (orbits) each of which the group G acts transitively on. First we prove the following technical
lemma.

LEMMA 2.1. Let N be a nilpotent subgroup of Sn and I1, I2, . . . be a set of orbits of the center
ζ(N) in N on a set {1, . . . , n}. Assume that J1 is a collection of sets Im of order 1, J2 is a collection
of Im of order 2, etc. Suppose that K1 =

⋃
|Im|=1

Im, K2 =
⋃

|Im|=2

Im, etc. Then the following statements

hold:
(1) the group N/ζ(N) permutes sets of one order, and consequently N 6 N1 × N2 × . . ., where

N1 ≤ SK1 , N2 ≤ SK2 , etc.;
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(2) if ki is the number of orbits under the action of N/ζ(N) on Ji then |ζ(N) ∩Ni| = iki ;
(3) if p1, . . . , ps are all primes by which i is divisible then the order of Ni is divisible only by p1, . . . , ps.
Proof. Let σ be an element of the group N which translates the element i of the set I1 into an

element of some set Ik. Then iστ = iτσ ∈ Ik for any τ ∈ ζ(N). Since ζ(N) acts transitively on I1, we
have {iτ : τ ∈ ζ(N)} = I1; consequently, Iσ

1 ⊆ Ik, that is, |I1| 6 |Ik|. On the other hand, the element σ−1

translates an element of Ik into the element i of I1; therefore, Iσ−1

k ⊆ I1, that is, |Ik| 6 |I1|. Combining
the inequalities obtained yields |I1| = |Ik|, proving (1).

We embark on (2). We may assume that Ki = {1, . . . , n} and the group N/ζ(N) acts transitively
on the orbits (under the action of the center ζ(N)) of Ji. Let {I1, . . . , Ik} be a set of all orbits of Ji

under the action of ζ(N). Then the order of each such orbit equals i, and i · k = n. Let l ∈ I1 be
some element of the orbit I1. Consider a stabilizer Stζ(N)(l) of an element l in the center ζ(N) and
assume that τ ∈ Stζ(N)(l). Let m ∈ Ki be an element lying in some orbit Ij . Since N/ζ(N) acts
transitively on I1, . . . , Ik, there exists an element σ ∈ N such that Iσ

j = I1. Further, the group ζ(N)
acts transitively on I1, and so there exists an element ϕ ∈ ζ(N) such that (mσ)ϕ = l. It follows that
mτ = ((lϕ

−1
)σ−1

)τ = ((lτ )ϕ−1
)σ−1

= m; consequently, τ = ε and Stζ(N)(l) = {ε}. By the Lagrange
theorem, |ζ(N)| = |ζ(N) : Stζ(N)(l)| · |Stζ(N)(l)| = i.

Further, Ji = {Ik : |Ik| = i} by definition. Assume that there exists a prime q /∈ {p1, . . . , ps}
which divides the order of Ni. Since Ni is a nilpotent group, there exists a central element τ of order
q. Because N is a direct product of groups N1, N2, . . ., the element τ lies in ζ(N). Clause (2) implies
that |ζ(N) ∩ Ni| = ik, where k > 1. Hence τ lies in ζ(N) ∩ Ni, but |τ | does not divide |ζ(N) ∩ Ni|, a
contradiction.

Note that the group N1 specified in the lemma is trivial. Now we are in a position to explicate the
structure of symmetric and alternating groups.

THEOREM 2.1. A large nilpotent subgroup in an alternating group is conjugate to one of the
following groups:

(1) 〈(1, 2, 3)〉 if n = 3;
(2) 〈(1, 2, 3, 4, 5)〉 if n = 5;
(3) 〈(1, 2, 3)〉 × 〈(4, 5, 6)〉 if n = 6;
(4) Syl2(An) if n 6= 2(2k + 1) + 1 for some natural k;
(5) Syl2(An−3)× 〈(n− 2, n− 1, n)〉 if n = 2(2k + 1) + 1, k > 1.
A large nilpotent subgroup in a symmetric group is conjugate to one of the following:
(1) Syl2(Sn) if n 6= 2(2k + 1) + 1 for some natural k;
(2) Syl2(Sn−3)× 〈(n− 2, n− 1, n)〉 if n = 2(2k + 1) + 1 for some natural k.
In all groups, a large nilpotent subgroup is unique up to conjugation.
Proof. Assume that the statement of the theorem fails and that n is the minimal natural number

yielding a counterexample to the hypothesis. Let P be a subgroup of Sn which is structured the same
way as is the nilpotent subgroup specified in Lemma 2.1. Suppose that N ∈ N(Sn) is a large nilpotent
subgroup which is not conjugate to p.

Under the action of ζ(N), the set {1, . . . , n} gets partitioned into orbits. There are two cases to
consider:

1. Among the orbits of the center ζ(N), there are subsets of different orders. By Lemma 2.1,
therefore, N(Sn) is a subgroup in the direct product of the groups N1 ≤ Sn1 and N2 ≤ Sn2 , in which
case n1 + n2 = n. Since n is the minimal natural number for which the statement of the theorem fails,
the groups of N(Sn1) and N(Sn2) are structured in the way specified by the lemma.

Let n1 6= 2(2k+1)+1; then |N1| 6 |S|, where S ∈ Syl2(Sn1). Depending on whether or not the number
n2 is representable as 2(2k + 1) + 1, we obtain the following values: |N2| 6 3|S1| or |N2| 6 |S2|, where
S1 ∈ Syl2(Sn2−3) and S2 ∈ Syl2(Sn2). For the first option, we have |N | 6 |N1| · |N2| 6 |Syl2(Sn1)| ·
3|Syl2(Sn2−3)| 6 3|Syl2(Sn−3)| 6 |P |, in which case the equality attains only if N1 ∈ Syl2(Sn1) and
N2 = S1 × 〈(k1, k2, k3)〉, that is, if N = P up to conjugation. Which is impossible, for n is the minimal
number delivering a counterexample. Similarly we can treat the situation where N2 ∈ Syl2(Sn2).
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TABLE 1

Group G n(G) Structure

A3 3 〈(1, 2, 3)〉

A5 5 〈(1, 2, 3, 4, 5)〉

A6 9 〈(1, 2, 3)〉 × 〈(4, 5, 6)〉

An, n 6= 2(2k + 1) + 1 1
22[n/2]+[n/22]+... S, where S ∈ Syl2(An)

An, n = 2(2k + 1) + 1 3
22[(n−3)/2]+[(n−3)/22]+... S × 〈(n− 2, n− 1, n)〉, S ∈ Syl2(An−3)

Sn, n 6= 2(k + 1) + 1 2[n/2]+[n/22]+... S, S ∈ Syl2(Sn)

Sn, n = 2(2k + 1) + 1 3 · 2[(n−3)/2]+[(n−3)/22]+... S × 〈(n− 2, n− 1, n)〉, S ∈ Syl2(Sn−3)

Let n1 = 2(2k1 + 1) + 1 and n2 = 2(2k2 + 1) + 1. Then |N(G)| 6 3|S3| · 3|S1| < |Syl2(Sn)| = |P |,
where S3 ∈ Syl2(Sn1−3), and we arrive at a contradiction. Thus the first case which holds that orbits
may contain subset of different orders is impossible.

2. Suppose that all orbits under the action of ζ(N) are of the same order k. Let I1, . . . , In/k all be
orbits of the set {1, . . . , n} under the action of ζ(N). If the action of the group N/ζ(N) on a set of orbits
I1, . . . , In/k is not transitive, N is a subgroup in the direct product of N1 and N2, each of which is a
nilpotent subgroup of a symmetric group of lesser degree. Similarly to the first case, we can show that
N is not a counterexample.

Now we let N act transitively on the orbits I1, . . . , In/k. In virtue of Lemma 2.1(2), the order of ζ(N)
equals k, the group N/ζ(N) can be treated as a nilpotent subgroup of Sn/k, and so |N | 6 k · |N3|, where
N3 ∈ N(Sn/k). It is not hard to verify that |N | 6 |Syl2(Sn)| except n = k = 3. We have thus proved the
theorem for symmetric groups.

We turn to alternating groups. Let n be the minimal number for which a counterexample to the
statement of the theorem exists. Let that counterexample be furnished by N ∈ N(An). Write R
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to denote a nilpotent subgroup of An which coincides with the large nilpotent group specified by the
theorem. Again we have two cases to consider:

1. The action of N/ζ(N) on a set of orbits of the center ζ(N) is not transitive. Hence, either N is
contained in a direct product of nilpotent groups N1 and N2 each of which is a nilpotent subgroup of
an alternating group in a lesser dimension, or it belongs to a direct product of two nilpotent groups N1

and N2, of which each is a nilpotent subgroup of a symmetric group in a lesser dimension, but does not
coincide with that product. Using the orders of large nilpotent subgroups in symmetric groups at hand,
it is not hard to verify that N fails as a counterexample in this case, too.

2. The group N/ζ(N) acts transitively on a set of orbits. Suppose that each orbit is of order k. By
Lemma 2.1, then, |ζ(N)| = k and N/ζ(N) can be treated as a nilpotent subgroup of Sn/k. It is not hard
to verify that k|N4| 6 (1/2)|S| 6 |R|, where N4 ∈ N(An/k) and S ∈ Syl2(Sn), holds for n > 7.

2.2. General Structure of Nilpotent Subgroups in Simple Algebraic Groups

We claim the validity of the following:
LEMMA 2.2. Let N be a closed nilpotent subgroup of a connected, simple, algebraic group G.

Then there exists a reductive subgroup R of maximal rank in G, containing a group N . Let W1 be a
Weyl group of R0. Then the following statements hold:

(1) N = Ns × Nu, that is, N is representable as a direct product of its subgroups consisting of
semisimple and unipotent elements;

(2) Nu ≤ R0 and ζ(Ns) ∩R0 ≤ ζ(R0);
(3) if N0 = N ∩R0 then N/N0 is isomorphically embeddable in the group NW (W1)/W1.
If N consists of σ-invariant elements under some Frobenius automorphism σ, then the group R is

σ-invariant.
Proof. Let N be a closed nilpotent subgroup of a connected, simple, algebraic group defined over

an algebraic closure of a field GF (q). Then N consists of elements of finite orders and is representable
as a direct product of its p-subgroups (cf. [10, Thm. 12.1.1]). In particular, N can be represented as
Ns ×Nu, which is a direct product of its semisimple and unipotent parts, respectively.

If the group Ns is non-trivial then its center is also. Clearly, ζ(Ns) = (ζ(N))s. Let x be some element
of ζ(Ns). Then N ⊆ CG(x), with Nu ⊆ R0. Denote by R the group CG(x). By Lemma 1.3, R is a
reductive subgroup of maximal rank in G. Suppose that there exists an element s of ζ(Ns) ∩ R0 which
does not lie in ζ(R0). Consider a group CR(s). Clearly, N ≤ CR(s) and Nu ≤ R0. Again, CR(s) is a
reductive subgroup of maximal rank in G. Since R decreases in dimension at each step, the process is
finite (the dimension of G is finite). Allowing a repetition of the above process yields a reductive subgroup
R of maximal rank in G containing N . If N consists of fixed points w.r.t. some Frobenius automorphism
σ, R will be σ-invariant. We have thus proved clauses (1) and (2) of the lemma.

We turn to (3). We have N/N0 = NR0/N0R
0 ≤ R/R0. The proof of Lemma 1.3 implies that

every element of R is representable as nx, where n ∈ NR(T ) for some maximal torus T of R0, and
x ∈ R0. Since R0 is normal in R, the group NR(T )/T is contained in the group NW (W1). This gives us
R/R0 ∼= NR(T )/NR0(T ) ≤ NW (W1)/W1.

Remark. Lemma 2.2 implies that N0/ζ(N0) is a nilpotent subgroup in a direct product of simple
algebraic groups of lesser dimension — the group R0/ζ(R0). The lemma thus generalizes a result of [15]
concerning the structure of semisimple nilpotent subgroups in generalized linear groups over finite fields.

We know how reductive subgroups R of maximal rank in G, and also subgroups Rσ, are structured;
see [1, 2, 16]. To treat nilpotent subgroups of finite groups of Lie type, therefore, we are left to find
orders of large nilpotent subgroups in Weyl groups. The Weyl groups for types Bn, Cn, and Dn are a
wreath product of a 2-group and a symmetric group Sn. The data obtained on the structure of nilpotent
subgroups in symmetric groups can now be used to conclude that a large nilpotent subgroup in a Weyl
group for all the types mentioned is exactly a Sylow 2-group. Table 2 shows values for orders of large
nilpotent subgroups in Weyl groups for all classical groups, and their structure.
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TABLE 2

Type of system Φ Structure of groups N(W (Φ)) Value for n(W (Φ))

An cf. Table 1 2n+1

Bn and Cn lie in Syl2(W ) 22n

Dn lie in Syl2(W ) 22n−1

2.3. Large Nilpotent Subgroups of Finite Groups of Lie Type

Here, we work to apply the above-specified general properties of nilpotent subgroups to finite Lie-
type groups. In particular, we prove that a large nilpotent subgroup coincides, in most of the cases, with
a maximal unipotent subgroup. Finding large nilpotent subgroups in finite Chevalley groups proceeds
uniformly, so we treat An(q) to exemplify this process.

Let N be some nilpotent subgroup of An(q). We claim that its order does not exceed the order of
the greatest nilpotent group indicated in Table 3. We may assume that the center of An(q) is trivial.
By Lemma 2.2, then, the group N is contained in some proper reductive subgroup of maximal rank in a
connected, simple, algebraic group of type An.

First we recall the structure of reductive subgroups of maximal rank in a simple, connected, algebraic
group of type An, and also how are structured their fixed points under the Frobenius automorphism
σ; see [2]. Assume that G is of type An. The endomorphism σ of G induces an endomorphism of the
character group X of a torus T , which is also denoted by σ and has the form σ = qσ0, where q is the
power of p and σ0 is an isometry of X. The isometry σ0 has order 1 or 2, depending on whether Gσ

is normal or twisted. The group X contains the set Φ of roots, and Φ is conveniently represented as
Φ = {ei − ej : i 6= j, i, j ∈ {0, 1 . . . , n}}, where e0, e1, . . . , en form an orthonormal basis for an (n + 1)-
dimensional Euclidean space. The Weyl group W acts on that space by permuting the basis elements in
a way that fits the symmetric group Sn+1. The isometry σ0 acts on the roots either identically or as an
element of order 2.

The root system of any σ-invariant reductive subgroup of G is equivalent w.r.t. W to a system Φ1

of the following type. Let λ = (λ1, λ2, . . .) be the partition of n + 1 and I1, I2, . . . be disjoint subsets of
{0, 1, . . . , n} satisfying the condition that |I1| = λ1, |I2| = λ2, . . .. Assume Φ1 = {ei − ej ∈ Φ : i, j ∈ Iα

for some α}. Then Φ1 is a subsystem of Φ of type Aλ1−1 × Aλ2−1 × . . .. And it is σ-invariant on the
condition that if σ0 has order 2 then Φ1 is invariant under a linear transformation given by the rule
ei → −en−i.

LEMMA 2.3 [2, Prop. 7]. Let G be a group of type Al and let σ be an endomorphism such that
Gσ is of a normal type. Assume that G1 is a reductive subgroup of maximal rank in G complying
with the partition λ of l + 1. Suppose that Gg

1 is a σ-invariant subgroup of G obtained by twisting
G1 by an element w ∈ W given by the rule π(gσg−1) = w. Assume also that w is mapped into τ
under the homomorphism NW (W1) → AutW (∆1). Let ni be the number of parts in λ equal to i; then
AutW (∆1) ∼= Sn2 × Sn3 × . . . . Suppose that τ delivers partitions µ(2), µ(3), . . . of the respective numbers

n2, n3, . . .. Then simple components of a semisimple group (Mg)σ are of type Ai−1(qµ
(i)
j ), with exactly

one component for each i = 2, 3, . . . and for every part µ
(i)
j of the partition µ(i).

The order of a semisimple part (Sg)σ for the group (Gg
1)σ is defined by setting

(q − 1)|(Sg)σ| =
∏
i,j

(qµ
(i)
j − 1).

Since the center of An(q) is assumed trivial, the order of the centralizer specified in Lemma 2.3 should
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be multiplied by 1/(n + 1, q − 1). Indeed, if G is not one-connected, the finite group Op′(Gσ) does not
coincide with Gσ, and so the order of the centralizer is less than the one specified in the lemma. In
this case Gσ = ĤOp′(Gσ), and also |Ĥ : H| = d1/d. Here, Ĥ is a maximal torus of the group Gσ,
H is one in Op′(Gσ), d1 is the order of the center of Op′(Gσ), and d is the one in (Gsc)σ. To find
the order of a centralizer in Op′(Gσ), therefore, the order of the centralizer given in the lemma ought
to be multiplied by d1/d. In fact, the centralizer of any semisimple element contains a maximal torus
of the Chevalley group, and so (CG(s)0)σ = ĤCOp′ (Gσ)(s). Hence |(CG(s)0)σ : COp′ (Gσ)(s)| = d1/d;
consequently, |COp′ (Gσ)(s)| = (d1/d)|(CG(s)0)σ|. Thus the order of the centralizer should be multiplied
by (d1/d), but in our case d1 = 1 and d = (n + 1, q − 1).

By Lemma 2.3, there exists a subgroup N0 of N lying in some σ-invariant, connected, reductive
subgroup R of maximal rank in G. Furthermore, |N : N0| 6 2n+1; see Table 2. Since the center of
An(q) is assumed trivial, the group R is a proper subgroup of G. In this way N0 is representable as a
central product of nilpotent subgroups of groups in a lesser dimension and the group that is a fixed-point
subgroup of some torus. Therefore, the order of N is estimated thus:

(q − 1)|N | 6 n(Sn+1)
1

(n + 1, q − 1)

∏
i,j

(qµ
(i)
j − 1)

∏
i,j

(i, qµ
(i)
j − 1)n(Ai−1(qµ

(i)
j )). (1)

Here, as Ai−1(qµ
(i)
j ) we consider a group with trivial center. Using induction on the Lie rank of a

group, we can prove that the following hold:

(qk − 1)(i, qk − 1)n(Ai−1(qk)) 6 (q − 1)(ik, q − 1)n(Aik−1(q)), (2)

(q − 1)(i, q − 1)n(Ai−1(q))(q − 1)(k, q − 1)n(Ak−1(q)) 6 (q − 1)(ik, q − 1)n(Aik−1(q). (3)

Using (2) and (3), the right part of (1) can be written either in the form

(q − 1)2n(Sn+1)(n1, q − 1)n(An1−1(q))(n2, q − 1)n(An2−1(q)), (4)

where n1 + n2 = n + 1, or in the form

(q2 − 1)n(Sn+1)((n + 1)/2, q2 − 1)n(A(n+1)/2−1(q
2)). (5)

It is not hard to verify that (4) and (5) do not exceed the values indicated in Table 3. Other finite
groups of Lie type can be treated in a similar way.

Table 3 exhibits the structure of large unipotent subgroups for the case where a finite group G of
a given type has trivial center. For groups with an arbitrary center, a large nilpotent subgroup is the
preimage of a large nilpotent subgroup in the group with trivial center under the natural homomorphism.

2.4. Large Nilpotent Subgroups of Sporadic Groups

In dealing with large nilpotent subgroups, we make use of the information in [17]. For all sporadic
groups, a large nilpotent subgroup is a Sylow subgroup, and so finding large nilpotent groups calls for a
uniform argument. We just outline the idea.

If N is a nilpotent subgroup of G, and p1, . . . , pk are all primes dividing the order of N , then N
contains a central element of order p1 · . . . · pk. The study of orders of centralizers of such elements
using [17] shows that the order of N , in this case, is less than the order of a Sylow subgroup. An easy
consequence of this is the following:

THEOREM 2.2. Let G be a finite simple non-Abelian group and N be its nilpotent subgroup.
Then |N |2 < |G|.
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TABLE 3

Group G Structure of groups in N(G) n(G)

A1(2n) cyclic group 2n + 1

A1(q), q − 1 = 2n lies in Syl2(A1(q)) 2n

2A2(22) lies in Syl3(2A2(22)) 27

2A2(32) lies in Syl2(2A2(32)) 32

for all other G a large unipotent group

Proof. If N(G) coincides with Sylp(G) for some prime p, the statement of the theorem follows from
[7, Thm. 2]. If G = An, n = 2(2k+1)+1 for some natural k, it is easy to see that N(G)2 < 22(n−1) < |G|.
Finally, if G coincides with A1(2n), then the group N(G) is Abelian, and by [18], N(G)2 < |G|.
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