#We find all primitive subgroups of $GL(16,3)$ with parameters $e=16$, $a=1$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 z:=Z(3);; gap> v:=[z,z^2,0*z,z^2,z,z,z^2,z^2,0*z,z,z,z^2,z,z^2,0*z,z^2];; gap> result:=[];; #Now we run the following loop, where gens is the list of generators from generators-GL(16,3)+.txt. Each entry of the list result has three items: the first is the #number of the group in the list gens, the second is the order of the group, and the third is the order of the stabilizer of v in H. #If the order of the stabilizer is 1, then |v^H=|H| and Corollary 2.5 can be applied. gap> for j in [1..Size(gens)] do > H:=Subgroup(G,gens[j]);; > n:=Size(H); > m:=Size(v^H); > result[j]:=[j,n,n/m]; > od; gap> result; [ [ 1, 4608, 1 ], [ 2, 4608, 1 ], [ 3, 4608, 1 ], [ 4, 4608, 1 ], [ 5, 7168, 1 ], [ 6, 12800, 1 ], [ 7, 9216, 1 ], [ 8, 9216, 1 ], [ 9, 9216, 1 ], [ 10, 9216, 1 ], [ 11, 9216, 1 ], [ 12, 9216, 1 ], [ 13, 9216, 1 ], [ 14, 9216, 1 ], [ 15, 9216, 1 ], [ 16, 9216, 1 ], [ 17, 9216, 1 ], [ 18, 9216, 1 ], [ 19, 9216, 1 ], [ 20, 13824, 1 ], [ 21, 13824, 1 ], [ 22, 13824, 1 ], [ 23, 13824, 1 ], [ 24, 13824, 1 ], [ 25, 13824, 1 ], [ 26, 13824, 1 ], [ 27, 13824, 1 ], [ 28, 13824, 1 ], [ 29, 14336, 1 ], [ 30, 15360, 1 ], [ 31, 15360, 1 ], [ 32, 15360, 1 ], [ 33, 15360, 1 ], [ 34, 15360, 1 ], [ 35, 15360, 1 ], [ 36, 21504, 1 ], [ 37, 25600, 1 ], [ 38, 25600, 1 ], [ 39, 25600, 1 ], [ 40, 18432, 1 ], [ 41, 18432, 1 ], [ 42, 18432, 1 ], [ 43, 18432, 1 ], [ 44, 18432, 1 ], [ 45, 18432, 1 ], [ 46, 18432, 1 ], [ 47, 18432, 1 ], [ 48, 18432, 1 ], [ 49, 18432, 1 ], [ 50, 27648, 1 ], [ 51, 27648, 1 ], [ 52, 27648, 1 ], [ 53, 27648, 1 ], [ 54, 27648, 1 ], [ 55, 27648, 1 ], [ 56, 27648, 1 ], [ 57, 27648, 2 ], [ 58, 27648, 1 ], [ 59, 27648, 1 ], [ 60, 27648, 1 ], [ 61, 27648, 1 ], [ 62, 27648, 1 ], [ 63, 27648, 1 ], [ 64, 27648, 1 ], [ 65, 27648, 1 ], [ 66, 27648, 1 ], [ 67, 27648, 1 ], [ 68, 27648, 1 ], [ 69, 27648, 1 ], [ 70, 27648, 1 ], [ 71, 27648, 1 ], [ 72, 27648, 1 ], [ 73, 27648, 1 ], [ 74, 27648, 1 ], [ 75, 27648, 1 ], [ 76, 27648, 1 ], [ 77, 27648, 1 ], [ 78, 27648, 1 ], [ 79, 27648, 1 ], [ 80, 27648, 1 ], [ 81, 27648, 1 ], [ 82, 27648, 1 ], [ 83, 27648, 1 ], [ 84, 27648, 1 ], [ 85, 27648, 1 ], [ 86, 27648, 1 ], [ 87, 27648, 1 ], [ 88, 27648, 1 ], [ 89, 30720, 1 ], [ 90, 30720, 1 ], [ 91, 30720, 1 ], [ 92, 30720, 1 ], [ 93, 30720, 1 ], [ 94, 30720, 1 ], [ 95, 30720, 1 ], [ 96, 30720, 1 ], [ 97, 30720, 1 ], [ 98, 30720, 1 ], [ 99, 41472, 1 ], [ 100, 41472, 1 ], [ 101, 41472, 1 ], [ 102, 41472, 1 ], [ 103, 41472, 1 ], [ 104, 41472, 1 ], [ 105, 41472, 1 ], [ 106, 43008, 1 ], [ 107, 51200, 1 ], [ 108, 51200, 2 ], [ 109, 51200, 1 ], [ 110, 51200, 2 ], [ 111, 51200, 1 ], [ 112, 51200, 1 ], [ 113, 51200, 2 ], [ 114, 36864, 1 ], [ 115, 36864, 1 ], [ 116, 36864, 1 ], [ 117, 36864, 1 ], [ 118, 55296, 2 ], [ 119, 55296, 1 ], [ 120, 55296, 2 ], [ 121, 55296, 2 ], [ 122, 55296, 2 ], [ 123, 55296, 2 ], [ 124, 55296, 1 ], [ 125, 55296, 2 ], [ 126, 55296, 1 ], [ 127, 55296, 1 ], [ 128, 55296, 1 ], [ 129, 55296, 1 ], [ 130, 55296, 1 ], [ 131, 55296, 1 ], [ 132, 55296, 1 ], [ 133, 55296, 2 ], [ 134, 55296, 2 ], [ 135, 55296, 1 ], [ 136, 55296, 2 ], [ 137, 55296, 1 ], [ 138, 55296, 1 ], [ 139, 55296, 2 ], [ 140, 55296, 2 ], [ 141, 55296, 1 ], [ 142, 55296, 1 ], [ 143, 55296, 2 ], [ 144, 55296, 1 ], [ 145, 55296, 1 ], [ 146, 55296, 1 ], [ 147, 55296, 1 ], [ 148, 55296, 1 ], [ 149, 55296, 1 ], [ 150, 55296, 1 ], [ 151, 55296, 1 ], [ 152, 55296, 1 ], [ 153, 55296, 1 ], [ 154, 55296, 1 ], [ 155, 55296, 1 ], [ 156, 55296, 1 ], [ 157, 55296, 1 ], [ 158, 55296, 1 ], [ 159, 55296, 1 ], [ 160, 55296, 1 ], [ 161, 55296, 1 ], [ 162, 55296, 2 ], [ 163, 55296, 1 ], [ 164, 55296, 1 ], [ 165, 55296, 1 ], [ 166, 55296, 1 ], [ 167, 55296, 1 ], [ 168, 55296, 1 ], [ 169, 55296, 1 ], [ 170, 55296, 2 ], [ 171, 55296, 1 ], [ 172, 55296, 1 ], [ 173, 55296, 1 ], [ 174, 55296, 1 ], [ 175, 55296, 1 ], [ 176, 61440, 1 ], [ 177, 61440, 1 ], [ 178, 61440, 1 ], [ 179, 61440, 1 ], [ 180, 61440, 1 ], [ 181, 61440, 1 ], [ 182, 61440, 1 ], [ 183, 82944, 1 ], [ 184, 82944, 1 ], [ 185, 82944, 1 ], [ 186, 82944, 1 ], [ 187, 82944, 1 ], [ 188, 82944, 1 ], [ 189, 82944, 2 ], [ 190, 82944, 1 ], [ 191, 82944, 1 ], [ 192, 82944, 1 ], [ 193, 82944, 1 ], [ 194, 82944, 1 ], [ 195, 82944, 1 ], [ 196, 82944, 1 ], [ 197, 82944, 1 ], [ 198, 82944, 1 ], [ 199, 82944, 1 ], [ 200, 82944, 1 ], [ 201, 82944, 1 ], [ 202, 82944, 1 ], [ 203, 82944, 1 ], [ 204, 82944, 1 ], [ 205, 82944, 1 ], [ 206, 82944, 1 ], [ 207, 82944, 1 ], [ 208, 82944, 1 ], [ 209, 82944, 1 ], [ 210, 82944, 1 ], [ 211, 82944, 1 ], [ 212, 82944, 1 ], [ 213, 102400, 1 ], [ 214, 102400, 2 ], [ 215, 102400, 1 ], [ 216, 102400, 1 ], [ 217, 102400, 2 ], [ 218, 102400, 1 ], [ 219, 102400, 1 ], [ 220, 124416, 1 ], [ 221, 73728, 1 ], [ 222, 110592, 1 ], [ 223, 110592, 2 ], [ 224, 110592, 2 ], [ 225, 110592, 2 ], [ 226, 110592, 1 ], [ 227, 110592, 2 ], [ 228, 110592, 2 ], [ 229, 110592, 2 ], [ 230, 110592, 2 ], [ 231, 110592, 1 ], [ 232, 110592, 1 ], [ 233, 110592, 2 ], [ 234, 110592, 1 ], [ 235, 110592, 2 ], [ 236, 110592, 2 ], [ 237, 110592, 2 ], [ 238, 110592, 2 ], [ 239, 110592, 2 ], [ 240, 110592, 2 ], [ 241, 110592, 2 ], [ 242, 110592, 2 ], [ 243, 110592, 2 ], [ 244, 110592, 2 ], [ 245, 110592, 2 ], [ 246, 110592, 2 ], [ 247, 110592, 2 ], [ 248, 110592, 1 ], [ 249, 110592, 1 ], [ 250, 110592, 1 ], [ 251, 110592, 2 ], [ 252, 110592, 2 ], [ 253, 110592, 2 ], [ 254, 110592, 2 ], [ 255, 110592, 2 ], [ 256, 110592, 2 ], [ 257, 110592, 2 ], [ 258, 110592, 2 ], [ 259, 110592, 2 ], [ 260, 110592, 2 ], [ 261, 110592, 1 ], [ 262, 110592, 1 ], [ 263, 110592, 1 ], [ 264, 110592, 1 ], [ 265, 110592, 2 ], [ 266, 110592, 1 ], [ 267, 110592, 1 ], [ 268, 110592, 1 ], [ 269, 110592, 1 ], [ 270, 110592, 1 ], [ 271, 110592, 2 ], [ 272, 110592, 2 ], [ 273, 110592, 1 ], [ 274, 110592, 1 ], [ 275, 110592, 1 ], [ 276, 110592, 1 ], [ 277, 110592, 1 ], [ 278, 110592, 1 ], [ 279, 122880, 1 ], [ 280, 165888, 2 ], [ 281, 165888, 1 ], [ 282, 165888, 1 ], [ 283, 165888, 2 ], [ 284, 165888, 2 ], [ 285, 165888, 2 ], [ 286, 165888, 2 ], [ 287, 165888, 2 ], [ 288, 165888, 1 ], [ 289, 165888, 1 ], [ 290, 165888, 1 ], [ 291, 165888, 1 ], [ 292, 165888, 2 ], [ 293, 165888, 1 ], [ 294, 165888, 2 ], [ 295, 165888, 1 ], [ 296, 165888, 1 ], [ 297, 165888, 1 ], [ 298, 165888, 1 ], [ 299, 165888, 1 ], [ 300, 165888, 2 ], [ 301, 165888, 1 ], [ 302, 165888, 1 ], [ 303, 165888, 1 ], [ 304, 165888, 2 ], [ 305, 165888, 2 ], [ 306, 165888, 1 ], [ 307, 165888, 2 ], [ 308, 165888, 1 ], [ 309, 165888, 1 ], [ 310, 165888, 1 ], [ 311, 165888, 1 ], [ 312, 165888, 1 ], [ 313, 165888, 1 ], [ 314, 165888, 1 ], [ 315, 165888, 1 ], [ 316, 165888, 2 ], [ 317, 165888, 2 ], [ 318, 165888, 1 ], [ 319, 165888, 1 ], [ 320, 165888, 1 ], [ 321, 165888, 1 ], [ 322, 165888, 1 ], [ 323, 165888, 1 ], [ 324, 165888, 1 ], [ 325, 165888, 1 ], [ 326, 165888, 1 ], [ 327, 165888, 1 ], [ 328, 165888, 1 ], [ 329, 165888, 1 ], [ 330, 204800, 2 ], [ 331, 204800, 1 ], [ 332, 204800, 1 ], [ 333, 248832, 1 ], [ 334, 248832, 1 ], [ 335, 248832, 1 ], [ 336, 248832, 1 ], [ 337, 248832, 1 ], [ 338, 248832, 1 ], [ 339, 248832, 1 ], [ 340, 221184, 1 ], [ 341, 221184, 2 ], [ 342, 221184, 1 ], [ 343, 221184, 1 ], [ 344, 221184, 2 ], [ 345, 221184, 2 ], [ 346, 221184, 2 ], [ 347, 221184, 2 ], [ 348, 221184, 2 ], [ 349, 221184, 2 ], [ 350, 221184, 2 ], [ 351, 221184, 2 ], [ 352, 221184, 2 ], [ 353, 221184, 1 ], [ 354, 221184, 1 ], [ 355, 221184, 1 ], [ 356, 221184, 1 ], [ 357, 221184, 2 ], [ 358, 221184, 1 ], [ 359, 221184, 2 ], [ 360, 221184, 2 ], [ 361, 221184, 2 ], [ 362, 221184, 2 ], [ 363, 221184, 1 ], [ 364, 331776, 2 ], [ 365, 331776, 2 ], [ 366, 331776, 1 ], [ 367, 331776, 4 ], [ 368, 331776, 2 ], [ 369, 331776, 2 ], [ 370, 331776, 1 ], [ 371, 331776, 2 ], [ 372, 331776, 2 ], [ 373, 331776, 1 ], [ 374, 331776, 2 ], [ 375, 331776, 2 ], [ 376, 331776, 2 ], [ 377, 331776, 2 ], [ 378, 331776, 2 ], [ 379, 331776, 2 ], [ 380, 331776, 2 ], [ 381, 331776, 2 ], [ 382, 331776, 2 ], [ 383, 331776, 1 ], [ 384, 331776, 1 ], [ 385, 331776, 2 ], [ 386, 331776, 2 ], [ 387, 331776, 2 ], [ 388, 331776, 2 ], [ 389, 331776, 1 ], [ 390, 331776, 1 ], [ 391, 331776, 1 ], [ 392, 331776, 2 ], [ 393, 331776, 2 ], [ 394, 331776, 2 ], [ 395, 331776, 2 ], [ 396, 331776, 2 ], [ 397, 331776, 1 ], [ 398, 331776, 2 ], [ 399, 331776, 1 ], [ 400, 331776, 1 ], [ 401, 331776, 1 ], [ 402, 331776, 2 ], [ 403, 331776, 2 ], [ 404, 331776, 2 ], [ 405, 331776, 1 ], [ 406, 331776, 2 ], [ 407, 331776, 2 ], [ 408, 331776, 1 ], [ 409, 331776, 1 ], [ 410, 331776, 2 ], [ 411, 331776, 1 ], [ 412, 331776, 1 ], [ 413, 331776, 2 ], [ 414, 331776, 2 ], [ 415, 331776, 2 ], [ 416, 331776, 2 ], [ 417, 331776, 2 ], [ 418, 331776, 2 ], [ 419, 331776, 2 ], [ 420, 331776, 2 ], [ 421, 331776, 1 ], [ 422, 331776, 2 ], [ 423, 331776, 2 ], [ 424, 331776, 2 ], [ 425, 331776, 2 ], [ 426, 331776, 1 ], [ 427, 331776, 2 ], [ 428, 331776, 1 ], [ 429, 331776, 1 ], [ 430, 331776, 1 ], [ 431, 331776, 2 ], [ 432, 331776, 1 ], [ 433, 331776, 1 ], [ 434, 331776, 1 ], [ 435, 331776, 2 ], [ 436, 331776, 1 ], [ 437, 331776, 1 ], [ 438, 331776, 1 ], [ 439, 409600, 2 ], [ 440, 497664, 2 ], [ 441, 497664, 1 ], [ 442, 497664, 1 ], [ 443, 497664, 1 ], [ 444, 497664, 1 ], [ 445, 497664, 1 ], [ 446, 497664, 1 ], [ 447, 497664, 1 ], [ 448, 497664, 1 ], [ 449, 442368, 2 ], [ 450, 442368, 1 ], [ 451, 663552, 2 ], [ 452, 663552, 4 ], [ 453, 663552, 2 ], [ 454, 663552, 2 ], [ 455, 663552, 2 ], [ 456, 663552, 4 ], [ 457, 663552, 2 ], [ 458, 663552, 2 ], [ 459, 663552, 1 ], [ 460, 663552, 1 ], [ 461, 663552, 4 ], [ 462, 663552, 2 ], [ 463, 663552, 2 ], [ 464, 663552, 2 ], [ 465, 663552, 4 ], [ 466, 663552, 2 ], [ 467, 663552, 2 ], [ 468, 663552, 2 ], [ 469, 663552, 2 ], [ 470, 663552, 2 ], [ 471, 663552, 2 ], [ 472, 663552, 2 ], [ 473, 663552, 2 ], [ 474, 663552, 2 ], [ 475, 663552, 2 ], [ 476, 663552, 2 ], [ 477, 663552, 2 ], [ 478, 663552, 4 ], [ 479, 663552, 2 ], [ 480, 663552, 1 ], [ 481, 663552, 2 ], [ 482, 663552, 2 ], [ 483, 663552, 2 ], [ 484, 663552, 2 ], [ 485, 663552, 2 ], [ 486, 663552, 2 ], [ 487, 663552, 2 ], [ 488, 663552, 2 ], [ 489, 663552, 1 ], [ 490, 663552, 1 ], [ 491, 663552, 2 ], [ 492, 663552, 1 ], [ 493, 663552, 1 ], [ 494, 663552, 2 ], [ 495, 663552, 2 ], [ 496, 663552, 1 ], [ 497, 663552, 2 ], [ 498, 663552, 2 ], [ 499, 663552, 2 ], [ 500, 663552, 1 ], [ 501, 663552, 2 ], [ 502, 663552, 1 ], [ 503, 663552, 1 ], [ 504, 663552, 2 ], [ 505, 663552, 1 ], [ 506, 663552, 2 ], [ 507, 663552, 1 ], [ 508, 995328, 2 ], [ 509, 995328, 2 ], [ 510, 995328, 2 ], [ 511, 995328, 2 ], [ 512, 995328, 2 ], [ 513, 995328, 2 ], [ 514, 995328, 1 ], [ 515, 995328, 2 ], [ 516, 995328, 1 ], [ 517, 995328, 1 ], [ 518, 995328, 2 ], [ 519, 995328, 1 ], [ 520, 995328, 1 ], [ 521, 1327104, 4 ], [ 522, 1327104, 2 ], [ 523, 1327104, 4 ], [ 524, 1327104, 4 ], [ 525, 1327104, 4 ], [ 526, 1327104, 4 ], [ 527, 1327104, 2 ], [ 528, 1327104, 4 ], [ 529, 1327104, 2 ], [ 530, 1327104, 4 ], [ 531, 1327104, 2 ], [ 532, 1327104, 4 ], [ 533, 1327104, 2 ], [ 534, 1327104, 2 ], [ 535, 1327104, 2 ], [ 536, 1327104, 4 ], [ 537, 1327104, 2 ], [ 538, 1327104, 2 ], [ 539, 1327104, 1 ], [ 540, 1327104, 2 ], [ 541, 1990656, 2 ], [ 542, 1990656, 2 ], [ 543, 1990656, 1 ], [ 544, 1990656, 2 ], [ 545, 1990656, 2 ], [ 546, 1990656, 2 ], [ 547, 1990656, 2 ], [ 548, 1990656, 2 ], [ 549, 1990656, 2 ], [ 550, 1990656, 1 ], [ 551, 1990656, 1 ], [ 552, 1990656, 2 ], [ 553, 2654208, 4 ], [ 554, 2654208, 4 ], [ 555, 2654208, 4 ], [ 556, 2654208, 4 ], [ 557, 2654208, 4 ], [ 558, 2654208, 4 ], [ 559, 2654208, 4 ], [ 560, 3981312, 4 ], [ 561, 3981312, 2 ], [ 562, 3981312, 2 ], [ 563, 5308416, 4 ], [ 564, 7962624, 4 ], [ 565, 7962624, 4 ], [ 566, 7962624, 4 ], [ 567, 15925248, 4 ] ] #Now we choose groups such that |v^H|<>|H| in the list res1 gap> res1:=Filtered(result,x->x[3]<>1);; #We choose another vector v and repeat the cycle for the remaining groups gap> v:=[z,z^2,0*z,z^2,z,z,z^2,z^2,0*z,z,z,z^2,0*z,0*z^2,0*z,0*z^2];; gap> result1:=[];; gap> for j in res1 do > H:=Subgroup(GL(16,3),gens[j[1]]);; > n:=j[2];; > m:=Size(v^H);; > Append(result1,[[j[1],j[2],n/m]]); > Display([j[1],j[2],n/m]); > od; [ 57, 27648, 1 ] [ 108, 51200, 1 ] [ 110, 51200, 1 ] [ 113, 51200, 1 ] [ 118, 55296, 1 ] [ 120, 55296, 1 ] [ 121, 55296, 1 ] [ 122, 55296, 1 ] [ 123, 55296, 1 ] [ 125, 55296, 1 ] [ 133, 55296, 1 ] [ 134, 55296, 1 ] [ 136, 55296, 1 ] [ 139, 55296, 1 ] [ 140, 55296, 1 ] [ 143, 55296, 1 ] [ 162, 55296, 1 ] [ 170, 55296, 1 ] [ 189, 82944, 1 ] [ 214, 102400, 1 ] [ 217, 102400, 1 ] [ 223, 110592, 1 ] [ 224, 110592, 1 ] [ 225, 110592, 1 ] [ 227, 110592, 1 ] [ 228, 110592, 1 ] [ 229, 110592, 1 ] [ 230, 110592, 1 ] [ 233, 110592, 1 ] [ 235, 110592, 2 ] [ 236, 110592, 1 ] [ 237, 110592, 1 ] [ 238, 110592, 1 ] [ 239, 110592, 1 ] [ 240, 110592, 1 ] [ 241, 110592, 1 ] [ 242, 110592, 1 ] [ 243, 110592, 1 ] [ 244, 110592, 1 ] [ 245, 110592, 1 ] [ 246, 110592, 1 ] [ 247, 110592, 2 ] [ 251, 110592, 1 ] [ 252, 110592, 1 ] [ 253, 110592, 1 ] [ 254, 110592, 2 ] [ 255, 110592, 2 ] [ 256, 110592, 1 ] [ 257, 110592, 1 ] [ 258, 110592, 1 ] [ 259, 110592, 2 ] [ 260, 110592, 2 ] [ 265, 110592, 1 ] [ 271, 110592, 2 ] [ 272, 110592, 1 ] [ 280, 165888, 2 ] [ 283, 165888, 1 ] [ 284, 165888, 1 ] [ 285, 165888, 1 ] [ 286, 165888, 1 ] [ 287, 165888, 1 ] [ 292, 165888, 1 ] [ 294, 165888, 1 ] [ 300, 165888, 1 ] [ 304, 165888, 1 ] [ 305, 165888, 1 ] [ 307, 165888, 1 ] [ 316, 165888, 1 ] [ 317, 165888, 1 ] [ 330, 204800, 1 ] [ 341, 221184, 1 ] [ 344, 221184, 2 ] [ 345, 221184, 1 ] [ 346, 221184, 1 ] [ 347, 221184, 1 ] [ 348, 221184, 1 ] [ 349, 221184, 1 ] [ 350, 221184, 1 ] [ 351, 221184, 1 ] [ 352, 221184, 2 ] [ 357, 221184, 2 ] [ 359, 221184, 2 ] [ 360, 221184, 2 ] [ 361, 221184, 2 ] [ 362, 221184, 1 ] [ 364, 331776, 2 ] [ 365, 331776, 2 ] [ 367, 331776, 2 ] [ 368, 331776, 2 ] [ 369, 331776, 2 ] [ 371, 331776, 1 ] [ 372, 331776, 1 ] [ 374, 331776, 1 ] [ 375, 331776, 1 ] [ 376, 331776, 1 ] [ 377, 331776, 1 ] [ 378, 331776, 1 ] [ 379, 331776, 2 ] [ 380, 331776, 2 ] [ 381, 331776, 2 ] [ 382, 331776, 2 ] [ 385, 331776, 2 ] [ 386, 331776, 2 ] [ 387, 331776, 1 ] [ 388, 331776, 1 ] [ 392, 331776, 2 ] [ 393, 331776, 2 ] [ 394, 331776, 1 ] [ 395, 331776, 1 ] [ 396, 331776, 1 ] [ 398, 331776, 1 ] [ 402, 331776, 1 ] [ 403, 331776, 1 ] [ 404, 331776, 1 ] [ 406, 331776, 1 ] [ 407, 331776, 1 ] [ 410, 331776, 1 ] [ 413, 331776, 1 ] [ 414, 331776, 2 ] [ 415, 331776, 1 ] [ 416, 331776, 1 ] [ 417, 331776, 1 ] [ 418, 331776, 1 ] [ 419, 331776, 2 ] [ 420, 331776, 2 ] [ 422, 331776, 1 ] [ 423, 331776, 1 ] [ 424, 331776, 2 ] [ 425, 331776, 2 ] [ 427, 331776, 1 ] [ 431, 331776, 1 ] [ 435, 331776, 1 ] [ 439, 409600, 1 ] [ 440, 497664, 1 ] [ 449, 442368, 2 ] [ 451, 663552, 2 ] [ 452, 663552, 4 ] [ 453, 663552, 2 ] [ 454, 663552, 2 ] [ 455, 663552, 2 ] [ 456, 663552, 2 ] [ 457, 663552, 2 ] [ 458, 663552, 2 ] [ 461, 663552, 2 ] [ 462, 663552, 2 ] [ 463, 663552, 2 ] [ 464, 663552, 2 ] [ 465, 663552, 2 ] [ 466, 663552, 2 ] [ 467, 663552, 2 ] [ 468, 663552, 2 ] [ 469, 663552, 2 ] [ 470, 663552, 2 ] [ 471, 663552, 2 ] [ 472, 663552, 2 ] [ 473, 663552, 2 ] [ 474, 663552, 2 ] [ 475, 663552, 2 ] [ 476, 663552, 2 ] [ 477, 663552, 2 ] [ 478, 663552, 2 ] [ 479, 663552, 2 ] [ 481, 663552, 1 ] [ 482, 663552, 2 ] [ 483, 663552, 2 ] [ 484, 663552, 2 ] [ 485, 663552, 2 ] [ 486, 663552, 1 ] [ 487, 663552, 1 ] [ 488, 663552, 4 ] [ 491, 663552, 1 ] [ 494, 663552, 4 ] [ 495, 663552, 2 ] [ 497, 663552, 2 ] [ 498, 663552, 2 ] [ 499, 663552, 2 ] [ 501, 663552, 2 ] [ 504, 663552, 2 ] [ 506, 663552, 1 ] [ 508, 995328, 2 ] [ 509, 995328, 1 ] [ 510, 995328, 1 ] [ 511, 995328, 1 ] [ 512, 995328, 2 ] [ 513, 995328, 2 ] [ 515, 995328, 1 ] [ 518, 995328, 2 ] [ 521, 1327104, 2 ] [ 522, 1327104, 2 ] [ 523, 1327104, 2 ] [ 524, 1327104, 4 ] [ 525, 1327104, 2 ] [ 526, 1327104, 2 ] [ 527, 1327104, 2 ] [ 528, 1327104, 2 ] [ 529, 1327104, 2 ] [ 530, 1327104, 2 ] [ 531, 1327104, 2 ] [ 532, 1327104, 4 ] [ 533, 1327104, 2 ] [ 534, 1327104, 2 ] [ 535, 1327104, 2 ] [ 536, 1327104, 4 ] [ 537, 1327104, 2 ] [ 538, 1327104, 4 ] [ 540, 1327104, 2 ] [ 541, 1990656, 4 ] [ 542, 1990656, 2 ] [ 544, 1990656, 4 ] [ 545, 1990656, 2 ] [ 546, 1990656, 2 ] [ 547, 1990656, 2 ] [ 548, 1990656, 2 ] [ 549, 1990656, 2 ] [ 552, 1990656, 4 ] [ 553, 2654208, 2 ] [ 554, 2654208, 2 ] [ 555, 2654208, 2 ] [ 556, 2654208, 4 ] [ 557, 2654208, 2 ] [ 558, 2654208, 4 ] [ 559, 2654208, 4 ] [ 560, 3981312, 6 ] [ 561, 3981312, 4 ] [ 562, 3981312, 4 ] [ 563, 5308416, 4 ] [ 564, 7962624, 6 ] [ 565, 7962624, 6 ] [ 566, 7962624, 12 ] [ 567, 15925248, 12 ] #Now we choose groups such that |v^H|<>|H| in the list res2 gap> res2:=Filtered(result1,x->x[3]<>1); #We choose another vector v and repeat the cycle for the remaining groups gap> v:=[z,z^2,0*z,z^2,z,z,z^2,z^2,0*z,0*z,z,z^2,0*z,0*z^2,0*z,0*z^2];; gap> result2:=[]; [ ] gap> for j in res2 do > H:=Subgroup(GL(16,3),gens[j[1]]);; > n:=j[2];; > m:=Size(v^H);; > Append(result2,[[j[1],j[2],n/m]]); > Display([j[1],j[2],n/m]); > od; [ 235, 110592, 1 ] [ 247, 110592, 1 ] [ 254, 110592, 1 ] [ 255, 110592, 1 ] [ 259, 110592, 1 ] [ 260, 110592, 1 ] [ 271, 110592, 1 ] [ 280, 165888, 1 ] [ 344, 221184, 1 ] [ 352, 221184, 1 ] [ 357, 221184, 1 ] [ 359, 221184, 1 ] [ 360, 221184, 1 ] [ 361, 221184, 1 ] [ 364, 331776, 1 ] [ 365, 331776, 1 ] [ 367, 331776, 2 ] [ 368, 331776, 1 ] [ 369, 331776, 2 ] [ 379, 331776, 1 ] [ 380, 331776, 1 ] [ 381, 331776, 1 ] [ 382, 331776, 1 ] [ 385, 331776, 1 ] [ 386, 331776, 1 ] [ 392, 331776, 1 ] [ 393, 331776, 1 ] [ 414, 331776, 1 ] [ 419, 331776, 1 ] [ 420, 331776, 1 ] [ 424, 331776, 1 ] [ 425, 331776, 1 ] [ 449, 442368, 1 ] [ 451, 663552, 1 ] [ 452, 663552, 2 ] [ 453, 663552, 2 ] [ 454, 663552, 1 ] [ 455, 663552, 1 ] [ 456, 663552, 2 ] [ 457, 663552, 1 ] [ 458, 663552, 2 ] [ 461, 663552, 2 ] [ 462, 663552, 1 ] [ 463, 663552, 1 ] [ 464, 663552, 1 ] [ 465, 663552, 2 ] [ 466, 663552, 2 ] [ 467, 663552, 1 ] [ 468, 663552, 2 ] [ 469, 663552, 1 ] [ 470, 663552, 1 ] [ 471, 663552, 1 ] [ 472, 663552, 1 ] [ 473, 663552, 1 ] [ 474, 663552, 1 ] [ 475, 663552, 1 ] [ 476, 663552, 1 ] [ 477, 663552, 1 ] [ 478, 663552, 2 ] [ 479, 663552, 2 ] [ 482, 663552, 2 ] [ 483, 663552, 1 ] [ 484, 663552, 1 ] [ 485, 663552, 1 ] [ 488, 663552, 2 ] [ 494, 663552, 2 ] [ 495, 663552, 1 ] [ 497, 663552, 1 ] [ 498, 663552, 1 ] [ 499, 663552, 1 ] [ 501, 663552, 1 ] [ 504, 663552, 1 ] [ 508, 995328, 1 ] [ 512, 995328, 2 ] [ 513, 995328, 1 ] [ 518, 995328, 1 ] [ 521, 1327104, 4 ] [ 522, 1327104, 2 ] [ 523, 1327104, 2 ] [ 524, 1327104, 2 ] [ 525, 1327104, 2 ] [ 526, 1327104, 2 ] [ 527, 1327104, 2 ] [ 528, 1327104, 2 ] [ 529, 1327104, 1 ] [ 530, 1327104, 4 ] [ 531, 1327104, 1 ] [ 532, 1327104, 2 ] [ 533, 1327104, 2 ] [ 534, 1327104, 2 ] [ 535, 1327104, 1 ] [ 536, 1327104, 4 ] [ 537, 1327104, 1 ] [ 538, 1327104, 2 ] [ 540, 1327104, 4 ] [ 541, 1990656, 2 ] [ 542, 1990656, 1 ] [ 544, 1990656, 2 ] [ 545, 1990656, 1 ] [ 546, 1990656, 2 ] [ 547, 1990656, 1 ] [ 548, 1990656, 2 ] [ 549, 1990656, 1 ] [ 552, 1990656, 2 ] [ 553, 2654208, 4 ] [ 554, 2654208, 4 ] [ 555, 2654208, 2 ] [ 556, 2654208, 2 ] [ 557, 2654208, 2 ] [ 558, 2654208, 4 ] [ 559, 2654208, 2 ] [ 560, 3981312, 4 ] [ 561, 3981312, 2 ] [ 562, 3981312, 4 ] [ 563, 5308416, 4 ] [ 564, 7962624, 4 ] [ 565, 7962624, 4 ] [ 566, 7962624, 8 ] [ 567, 15925248, 8 ] #Now we choose groups such that |v^H|<>|H| in the list res3 gap> res3:=Filtered(result2,x->x[3]<>1); [ [ 367, 331776, 2 ], [ 369, 331776, 2 ], [ 452, 663552, 2 ], [ 453, 663552, 2 ], [ 456, 663552, 2 ], [ 458, 663552, 2 ], [ 461, 663552, 2 ], [ 465, 663552, 2 ], [ 466, 663552, 2 ], [ 468, 663552, 2 ], [ 478, 663552, 2 ], [ 479, 663552, 2 ], [ 482, 663552, 2 ], [ 488, 663552, 2 ], [ 494, 663552, 2 ], [ 512, 995328, 2 ], [ 521, 1327104, 4 ], [ 522, 1327104, 2 ], [ 523, 1327104, 2 ], [ 524, 1327104, 2 ], [ 525, 1327104, 2 ], [ 526, 1327104, 2 ], [ 527, 1327104, 2 ], [ 528, 1327104, 2 ], [ 530, 1327104, 4 ], [ 532, 1327104, 2 ], [ 533, 1327104, 2 ], [ 534, 1327104, 2 ], [ 536, 1327104, 4 ], [ 538, 1327104, 2 ], [ 540, 1327104, 4 ], [ 541, 1990656, 2 ], [ 544, 1990656, 2 ], [ 546, 1990656, 2 ], [ 548, 1990656, 2 ], [ 552, 1990656, 2 ], [ 553, 2654208, 4 ], [ 554, 2654208, 4 ], [ 555, 2654208, 2 ], [ 556, 2654208, 2 ], [ 557, 2654208, 2 ], [ 558, 2654208, 4 ], [ 559, 2654208, 2 ], [ 560, 3981312, 4 ], [ 561, 3981312, 2 ], [ 562, 3981312, 4 ], [ 563, 5308416, 4 ], [ 564, 7962624, 4 ], [ 565, 7962624, 4 ], [ 566, 7962624, 8 ], [ 567, 15925248, 8 ] ] #We choose another vector v and repeat the cycle for the remaining groups gap> v:=[z,z^2,0*z,z^2,0*z,z,z^2,z^2,0*z,0*z,z,z^2,0*z,0*z^2,0*z,0*z^2];; gap> result3:=[];; gap> for j in res3 do > H:=Subgroup(GL(16,3),gens[j[1]]);; > n:=j[2];; > m:=Size(v^H);; > Append(result3,[[j[1],j[2],n/m]]); > Display([j[1],j[2],n/m]); > od; [ 367, 331776, 1 ] [ 369, 331776, 1 ] [ 452, 663552, 1 ] [ 453, 663552, 1 ] [ 456, 663552, 1 ] [ 458, 663552, 1 ] [ 461, 663552, 1 ] [ 465, 663552, 1 ] [ 466, 663552, 1 ] [ 468, 663552, 1 ] [ 478, 663552, 1 ] [ 479, 663552, 1 ] [ 482, 663552, 4 ] [ 488, 663552, 1 ] [ 494, 663552, 1 ] [ 512, 995328, 1 ] [ 521, 1327104, 2 ] [ 522, 1327104, 1 ] [ 523, 1327104, 1 ] [ 524, 1327104, 1 ] [ 525, 1327104, 1 ] [ 526, 1327104, 1 ] [ 527, 1327104, 1 ] [ 528, 1327104, 1 ] [ 530, 1327104, 2 ] [ 532, 1327104, 1 ] [ 533, 1327104, 2 ] [ 534, 1327104, 2 ] [ 536, 1327104, 2 ] [ 538, 1327104, 1 ] [ 540, 1327104, 4 ] [ 541, 1990656, 2 ] [ 544, 1990656, 4 ] [ 546, 1990656, 1 ] [ 548, 1990656, 1 ] [ 552, 1990656, 2 ] [ 553, 2654208, 2 ] [ 554, 2654208, 2 ] [ 555, 2654208, 1 ] [ 556, 2654208, 1 ] [ 557, 2654208, 1 ] [ 558, 2654208, 2 ] [ 559, 2654208, 1 ] [ 560, 3981312, 2 ] [ 561, 3981312, 2 ] [ 562, 3981312, 4 ] [ 563, 5308416, 2 ] [ 564, 7962624, 2 ] [ 565, 7962624, 2 ] [ 566, 7962624, 4 ] [ 567, 15925248, 4 ] #Now we choose groups such that |v^H|<>|H| in the list res4 gap> res4:=Filtered(result3,x->x[3]<>1); [ [ 482, 663552, 4 ], [ 521, 1327104, 2 ], [ 530, 1327104, 2 ], [ 533, 1327104, 2 ], [ 534, 1327104, 2 ], [ 536, 1327104, 2 ], [ 540, 1327104, 4 ], [ 541, 1990656, 2 ], [ 544, 1990656, 4 ], [ 552, 1990656, 2 ], [ 553, 2654208, 2 ], [ 554, 2654208, 2 ], [ 558, 2654208, 2 ], [ 560, 3981312, 2 ], [ 561, 3981312, 2 ], [ 562, 3981312, 4 ], [ 563, 5308416, 2 ], [ 564, 7962624, 2 ], [ 565, 7962624, 2 ], [ 566, 7962624, 4 ], [ 567, 15925248, 4 ] ] # All the groups N for which |v^H|\ne |H| from the list result3 are computed to the list res4 #For the remaining groups we search for vectors v such that H on v^H is 2-closed. #Now we define a function which check, if the $2$-closure of a group $g$ aacting on $v^g$ is equal to $g$, so that Lemma 4.4 can be applied. This function uses #COCO2P package gap> twoc:=function(g,v) > local h,a; > h:=Action(g,v^g,OnRight); > a:=AutomorphismGroup(ColorGraph(h)); > return IsSubgroup(a,h) and IsSubgroup(h,a); > end; function( g, v ) ... end #We check that Lemma 4.4 is satisfied for all g in the list l2, i.e. that every subgroup g in the list l2 is 2-closed on v^g. gap> v:=[z^3,0*z^2,0*z,0*z^2,0*z,0*z,0*z^2,0*z^2,0*z,0*z,0*z,0*z^2,0*z,0*z^2,0*z,0*z^2];; gap> result4:=[];; gap> for j in res4 do > H:=Subgroup(GL(16,3),gens[j[1]]);; > tf:=twoc(H,v);; > Append(result4,[[j[1],j[2],tf]]);; > Display([j[1],j[2],tf]);; > od; [ 482, 663552, true ] [ 521, 1327104, true ] [ 530, 1327104, true ] [ 533, 1327104, true ] [ 534, 1327104, true ] [ 536, 1327104, true ] [ 540, 1327104, true ] [ 541, 1990656, true ] [ 544, 1990656, true ] [ 552, 1990656, true ] [ 553, 2654208, true ] [ 554, 2654208, true ] [ 558, 2654208, true ] [ 560, 3981312, false ] [ 561, 3981312, true ] [ 562, 3981312, true ] [ 563, 5308416, true ] [ 564, 7962624, false ] [ 565, 7962624, false ] [ 566, 7962624, true ] [ 567, 15925248, true ] #Now we choose groups such that the restriciton of H on v^H is not 2-closed in the list res5 res5:=Filtered(result4,x->not x[3]); [ [ 560, 3981312, false ], [ 564, 7962624, false ], [ 565, 7962624, false ] ] #We choose another vector v and check, if the restriction of H on v^H is 2-closed gap> v:=[z,0*z^2,0*z,0*z^2,0*z,0*z,0*z^2,0*z^2,0*z,0*z,0*z,0*z^2,0*z,0*z^2,0*z,z^2];; gap> result5:=[];; gap> for j in res5 do > H:=Subgroup(GL(16,3),gens[j[1]]);; > tf:=twoc(H,v);; > Append(result4,[[j[1],j[2],tf]]);; > Display([j[1],j[2],tf]);; > od; [ 560, 3981312, true ] [ 564, 7962624, true ] [ 565, 7962624, true ] gap>