#We find all primitive subgroups of $GL(10,5)$ with parameters $e=2$, $a=5$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=2;; p:=5;; d:=10;; a:=5;; #Now we generate the list of all primitive subgroups in $GL(10,5)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^a-1)*e*e)) = 0);; #In view of Lemma 5.3, we choose subgroups satisfying $\vert A/F\vert\in \{6\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^a-1)*e*e)) in [6,5*6]);; Size(l2); 2 #We define the vector $v$ and verify that $v^g$ is a regular orbit for all groups $g$ in l2 gap> z1:=Z(5);; z0:=0*Z(5);; v:=[z1,z1,z1,z1,z1,z0,z0,z1,z1,z1];; gap> result:=[];; i:=0;; gap> for H in l2 do > n:=Size(H);; m:=Size(v^H);; i:=i+1;; > result[i]:=[i,n,n/m];; > Display(result[i]); > od; [ 1, 374880, 1 ] [ 2, 74976, 1 ]