#We find all primitive subgroups of $GL(2,3)$ with parameters $e=2$, $a=1$ gap> e:=2;; p:=3;; d:=2;; a:=1;; #Now we generate the list of all primitive subgroups in $GL(2,3)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 6.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^a-1)*e*e)) = 0);; #In view of Lemma 6.3, we choose subgroups satisfying $\vert A/F\vert\in \{2,6\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^a-1)*e*e)) in [2,6]);; #We define the vector $v$ and check that all groups in l2 are transitive on the nonzero vectors gap> v:=[Z(3),Z(3)^2];; gap> so:=List(l2,x->[Size(v^x),Size(x)]); [ [ 8, 48 ], [ 8, 16 ] ] gap>