#We find all primitive subgroups of $GL(4,19)$ with parameters $e=2$, $a=2$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=2;; p:=19;; d:=4;; a:=2;; #Now we generate the list of all primitive subgroups in $GL(4,19)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^a-1)*e*e)) = 0);; #In view of Lemma 5.3, we choose subgroups satisfying $\vert A/F\vert\in \{2,6\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^a-1)*e*e)) in [2,6,2*2,6*2]);; Size(l2); 19 #Now we define a function which check, if the $2$-closure of a group $g$ aacting on $v^g$ is equal to $g$, so that Lemma 4.4 can be applied. This function uses #COCO2P package gap> twoc:=function(g,v) > local h,a; > h:=Action(g,v^g,OnRight); > a:=AutomorphismGroup(ColorGraph(h)); > return IsSubgroup(a,h) and IsSubgroup(h,a); > end; function( g, v ) ... end #We check that Lemma 4.4 is satisfied for all g in the list l2, i.e. that every subgroup g in the list l2 is 2-closed on v^g. gap> v:=[Z(19),Z(19),0*Z(19),Z(19)];; gap> result:=[];; i:=0;; gap> for j in l2 do > tf:=twoc(j,v);; i:=i+1;; n:=Size(j);; > Append(result,[[i,n,tf]]);; > Display([i,n,tf]); > od; [ 1, 17280, true ] [ 2, 8640, true ] [ 3, 8640, true ] [ 4, 8640, true ] [ 5, 8640, true ] [ 6, 8640, true ] [ 7, 8640, true ] [ 8, 5760, true ] [ 9, 2880, true ] [ 10, 2880, true ] [ 11, 2880, true ] [ 12, 2880, true ] [ 13, 2880, true ] [ 14, 2880, true ] [ 15, 2880, true ] [ 16, 5760, true ] [ 17, 2880, true ] [ 18, 8640, true ] [ 19, 2880, true ]