#We find all primitive subgroups of $GL(4,47)$ with parameters $e=2$, $a=2$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=2;; p:=47;; d:=4;; a:=2;; #Now we generate the list of all primitive subgroups in $GL(4,47)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^a-1)*e*e)) = 0);; #In view of Lemma 5.3, we choose subgroups satisfying $\vert A/F\vert\in \{6\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^a-1)*e*e)) in [6,6*2]);; Size(l2); 9 #We define the vector $v$ and verify that $v^g$ is a regular orbit for all groups $g$ in l2, so Corollary 2.5 can be applied gap> v:=[Z(47),0*Z(47),0*Z(47),Z(47)];; gap> result:=[];; i:=0;; gap> for H in l2 do > n:=Size(H);; m:=Size(v^H);; i:=i+1;; > result[i]:=[i,n,n/m];; > Display(result[i]); > od; [ 1, 105984, 1 ] [ 2, 52992, 1 ] [ 3, 52992, 1 ] [ 4, 52992, 1 ] [ 5, 52992, 1 ] [ 6, 52992, 1 ] [ 7, 52992, 1 ] [ 8, 52992, 48 ] [ 9, 52992, 1 ] #Now we define a function which check, if the $2$-closure of a group $g$ acting on $v^g$ is equal to $g$, so that Lemma 4.4 can be applied. gap> twoc:=function(g,v) > local h,a; > h:=Action(g,v^g,OnRight); > a:=AutomorphismGroup(ColorGraph(h)); > return IsSubgroup(a,h) and IsSubgroup(h,a); > end; function( g, v ) ... end gap> twoc(l2[8],v); true