#We find all primitive subgroups of $GL(4,61)$ with parameters $e=2$, $a=2$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=2;; p:=61;; d:=4;; a:=2;; #Now we generate the list of all primitive subgroups in $GL(4,61)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^a-1)*e*e)) = 0);; #In view of Lemma 5.3, we choose subgroups satisfying $\vert A/F\vert\in \{6\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^a-1)*e*e)) in [6, 6*2]);; Size(l2); 8 #We define the vector $v$ and verify that $v^g$ is a regular orbit for all groups $g$ in l2, so Corollary 2.5 can be applied gap> v:=[Z(61),0*Z(61),0*Z(61),Z(61)^5];; gap> result:=[];; i:=0;; gap> for H in l2 do > n:=Size(H);; m:=Size(v^H);; i:=i+1;; > result[i]:=[i,n,n/m];; > Display(result[i]); > od; [ 1, 178560, 1 ] [ 2, 89280, 1 ] [ 3, 89280, 1 ] [ 4, 89280, 1 ] [ 5, 89280, 1 ] [ 6, 89280, 1 ] [ 7, 89280, 1 ] [ 8, 89280, 1 ] gap> so:=List(l2,x->[Size(v^x),Size(x)]); [ [ 89280, 89280 ], [ 89280, 89280 ], [ 89280, 89280 ], [ 89280, 89280 ], [ 89280, 89280 ], [ 89280, 89280 ], [ 29760, 29760 ], [ 29760, 29760 ], [ 29760, 29760 ], [ 29760, 29760 ], [ 29760, 29760 ], [ 29760, 29760 ], [ 29760, 29760 ], [ 89280, 89280 ], [ 29760, 29760 ] ] gap> Size(so); 15 gap> Number(so,x-> (x[2] <> x[1]) ); 0 gap>