#In Short's notation solvable subgroup G of GL(4,67) with parameters e=2, a=2 #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=2;; p:=67;; d:=4;; a:=2;; #First we generate maximal primitive solvable subgroups of GL(2,67) gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree, e, Field, GF(p), IsPrimitiveMatrixGroup, true);; #In this list we choose subgroups, whose order is divisible by $(p-1)*e*e$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p-1)*e*e)) = 0);; #In view of Lemma 5.3, we choose subgroups satisfying $\vert A/F\vert\in \{6\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> ((Order(x)/((p-1)*e*e)) mod 6)=0);; Size(l2); 1 gap> gens:=GeneratorsOfGroup(l2[1]);; #Now we need to make an embedding of the primitive solvable subgroups of $GL(e,p)=GL(2,67)$ into $GL(d,p)=GL(4,67)$. #According to Lemma 5.5 (i), for every primitive solvable subgroup #G from the list l2 we take $I_2\otimes G$. gap> I2:=IdentityMat(2,GF(p));; gap> genS:=[];; gap> for k in [1..Size(gens)] do > genS[k]:=KroneckerProduct(I2,gens[k]); > od; #Now we add $t\otimes I_e$, $s\otimes I_e$ to the list of generators, where t is a Singer cycle of $GL(a,p)$, and $t^s=t^p$. gap> bas:= Basis(AsVectorSpace( GF(p),GF(p^a) ) );; gap> t:=BlownUpMat(bas,[[Z(p^a)]]);; gap> s:=RepresentativeAction(GL(a,p),t,t^p);; gap> Ie:=IdentityMat(e,GF(p));; gap> td:=KroneckerProduct(t,Ie);; gap> sd:=KroneckerProduct(s,Ie);; #Now we make generators of H gap> Append(genS,[td,sd]);; #Now we take vector v, generate H and check that $|H|=|v^H|$, so that Corollary 2.5 can be applied gap> z:=Z(67);; v:=[z,0*z,0*z,z];; gap> H:=Subgroup(GL(4,67),genS);; gap> n:=Size(H);; m:=Size(v^H);; n/m; 1