#We find all primitive subgroups of $GL(6,17)$ with parameters $e=2$, $a=3$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=2;; p:=17;; d:=6;; a:=3;; b:=1;; #By Lemma 5.5(i) first we generate the list of all primitive subgroups in $GL(2,17)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,e,Field,GF(p^b),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by $(p^b-1)*e*e$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^b-1)*e*e)) = 0);; #In view of Lemma 6.3, we choose subgroups satisfying $\vert A/F\vert\in \{6\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^b-1)*e*e)) in [6]);; Size(l2); 1 gap> gens:=GeneratorsOfGroup(l2[1]);; #Now we need to make an embedding of the primitive solvable subgroups of $GL(e,p)=GL(2,17)$ into $GL(d,p)=GL(6,17)$. #According to Lemma 5.5 (i), for every primitive solvable subgroup #G from the list l2 we take $I_a\otimes G$. gap> Ia:=IdentityMat(a,GF(p));; gap> genS:=[];; gap> for k in [1..Size(gens)] do > genS[k]:=KroneckerProduct(Ia,gens[k]); > od; #Now we add $t\otimes I_e$, $s\otimes I_e$ to the list of generators, where t is a Singer cycle of $GL(a,p)$, and $t^s=t^p$. gap> bas:= Basis(AsVectorSpace( GF(p),GF(p^a) ) );; gap> t:=BlownUpMat(bas,[[Z(p^a)]]);; gap> s:=RepresentativeAction(GL(a,p),t,t^p);; gap> Ie:=IdentityMat(e,GF(p));; gap> td:=KroneckerProduct(t,Ie);; gap> sd:=KroneckerProduct(s,Ie);; #Now we make generators of H gap> Append(genS,[td,sd]);; #Now we take vector v, generate H and check that $|H|=|v^H|$, so that Corollary 2.5 can be applied gap> z:=Z(17);; v:=[z,z^2,z^7,z^11,z^13,0*z];; gap> H:=Subgroup(GL(6,17),genS);; gap> n:=Size(H);; m:=Size(v^H);; n/m; 1