#We find all primitive subgroups of $GL(6,3)$ with parameters $e=2$, $a=3$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=2;; p:=3;; d:=6;; a:=3;; #Now we generate the list of all primitive subgroups in $GL(6,3)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^a-1)*e*e)) = 0);; #In view of Lemma 5.3, we choose subgroups satisfying $\vert A/F\vert\in \{2,6\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^a-1)*e*e)) in [2,6,3*6]);; Size(l2); 4 #We choose vector v and check that the subgroup H from the list l2 acts regualrly on v^H, i.e. |H|=|v^H|, so Corollary 2.5 can be applied gap> v:=[Z(3),Z(3),0*Z(3),Z(3),Z(3),Z(3)];; gap> result:=[];; i:=0;; gap> for H in l2 do > i:=i+1;; n:=Size(H);; m:=Size(v^H);; > result[i]:=[i,n,n/m]; > Display(result[i]); > od; [ 1, 1872, 3 ] [ 2, 624, 1 ] [ 3, 208, 1 ] [ 4, 624, 1 ] #Now we define a function which check, if the $2$-closure of a group $g$ aacting on $v^g$ is equal to $g$, so that Lemma 4.4 can be applied. This function uses #COCO2P package gap> twoc:=function(g,v) > local h,a; > h:=Action(g,v^g,OnRight); > a:=AutomorphismGroup(ColorGraph(h)); > return IsSubgroup(a,h) and IsSubgroup(h,a); > end; function( g, v ) ... end #We check that Lemma 4.4 is satisfied for the first group in the list l2, i.e. that l2[1] in the list l2 is 2-closed on v^l2[1]. gap> twoc(l2[1],v); true