#We find all primitive subgroups of $GL(8,3)$ with parameters $e=2$, $a=4$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=2;; p:=3;; d:=8;; a:=4;; #Now we generate the list of all primitive subgroups in $GL(8,3)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^a-1)*e*e)) = 0);; #In view of Lemma 5.3, we choose subgroups satisfying $\vert A/F\vert\in \{6\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^a-1)*e*e)) in [6,2*6,4*6]);; Size(l2); 30 #Now we define a function which check, if the $2$-closure of a group $g$ aacting on $v^g$ is equal to $g$, so that Lemma 4.4 can be applied. This function uses #COCO2P package gap> twoc:=function(g,v) > local h,a; > h:=Action(g,v^g,OnRight); > a:=AutomorphismGroup(ColorGraph(h)); > return IsSubgroup(a,h) and IsSubgroup(h,a); > end; function( g, v ) ... end #We check that Lemma 4.4 is satisfied for all g in the list l2, i.e. that every subgroup g in the list l2 is 2-closed on v^g. gap> v:=[Z(3),Z(3),0*Z(3),Z(3),Z(3),Z(3),Z(3),Z(3)];; gap> result:=[];; i:=0;; gap> for j in l2 do > tf:=twoc(j,v);; i:=i+1;; n:=Size(j);; > Append(result,[[i,n,tf]]);; > Display([i,n,tf]); > od; [ 1, 7680, true ] [ 2, 3840, true ] [ 3, 3840, true ] [ 4, 1920, true ] [ 5, 1920, true ] [ 6, 3840, true ] [ 7, 3840, true ] [ 8, 3840, true ] [ 9, 3840, true ] [ 10, 1920, true ] [ 11, 1920, true ] [ 12, 1920, true ] [ 13, 1920, true ] [ 14, 1920, true ] [ 15, 1920, true ] [ 16, 7680, true ] [ 17, 3840, true ] [ 18, 1920, true ] [ 19, 3840, true ] [ 20, 3840, true ] [ 21, 7680, true ] [ 22, 7680, true ] [ 23, 3840, true ] [ 24, 1920, true ] [ 25, 1920, true ] [ 26, 1920, true ] [ 27, 1920, true ] [ 28, 1920, true ] [ 29, 1920, true ] [ 30, 1920, true ]