#We find all primitive subgroups of $GL(18,2)$ with parameters $e=3$, $a=6$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=3;; p:=2;; d:=18;; a:=6;; #Now we generate the list of all primitive subgroups in $GL(18,2)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^a-1)*e*e)) = 0);; #In view of Lemma 5.3, we choose subgroups satisfying $\vert A/F\vert\in \{24\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^a-1)*e*e)) in [24,2*24,3*24,6*24]);; Size(l2); #Now we define a function which check, if the $2$-closure of a group $g$ aacting on $v^g$ is equal to $g$, so that Lemma 4.4 can be applied. This function uses #COCO2P package gap> twoc:=function(g,v) > local h,a; > h:=Action(g,v^g,OnRight); > a:=AutomorphismGroup(ColorGraph(h)); > return IsSubgroup(a,h) and IsSubgroup(h,a); > end; function( g, v ) ... end #We check that Lemma 4.4 is satisfied for all g in the list l2, i.e. that every subgroup g in the list l2 is 2-closed on v^g. gap> z1:=Z(2);; z0:=0*Z(2);; v:=[z0,z0,z1,z1,z0,z0,z0,z1,z1,z1,z1,z1,z1,z1,z1,z0,z1,z0];; gap> result:=[];; i:=0;; gap> for H in l2 do > i:=i+1;; n:=Size(H);; m:=Size(v^H);; > result[i]:=[i,n,n/m]; > Display(result[i]); > od; [ 1, 27216, 3 ] [ 2, 81648, 1 ] [ 3, 27216, 1 ] [ 4, 27216, 1 ] [ 5, 27216, 1 ] [ 6, 13608, 1 ] [ 7, 13608, 1 ] [ 8, 40824, 2 ] [ 9, 13608, 2 ] [ 10, 13608, 2 ] [ 11, 13608, 2 ] [ 12, 13608, 2 ] [ 13, 13608, 2 ] [ 14, 13608, 2 ] [ 15, 13608, 2 ] [ 16, 13608, 2 ] [ 17, 27216, 6 ] [ 18, 13608, 1 ] #Now we choose groups such that |v^H|<>|H| in the list res1 gap> res1:=Filtered(result,x->x[3]<>1);; Size(res1); 11 #We check that Lemma 4.4 is satisfied for all g in the list l2, i.e. that every subgroup g in the list l2 is 2-closed on v^g. gap> result1:=[];; i:=0;; gap> for j in res1 do > H:=l2[j[1]];; tf:=twoc(H,v);; n:=j[2];; i:=i+1;; > Append(result1,[[j[1],n,tf]]);; > Display([j[1],n,tf]); > od; [ 1, 27216, true ] [ 8, 40824, true ] [ 9, 13608, true ] [ 10, 13608, true ] [ 11, 13608, true ] [ 12, 13608, true ] [ 13, 13608, true ] [ 14, 13608, true ] [ 15, 13608, true ] [ 16, 13608, true ] [ 17, 27216, true ]