#We find all primitive subgroups of $GL(6,11)$ with parameters $e=3$, $a=2$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=3;; p:=11;; d:=6;; a:=2;; #Now we generate the list of all primitive subgroups in $GL(6,11)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^a-1)*e*e)) = 0);; #In view of Lemma 5.3, we choose subgroups satisfying $\vert A/F\vert\in \{24\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^a-1)*e*e)) in [24, 2*24]);; Size(l2); 4 #Now we run the following loop. Each entry of the list result has three items: the first is the #number of the group in the list gens, the second is the order of the group, and the third is the order of the stabilizer of v in H. #If the order of the stabilizer is 1, then |v^H=|H| and Corollary 2.5 can be applied. gap> z1:=Z(11);; z0:=0*Z(11);; v:=[z1,z1,z0,z1,z1,z0];; gap> result:=[];; i:=0;; gap> for H in l2 do > i:=i+1;; n:=Size(H);; m:=Size(v^H);; > result[i]:=[i,n,n/m]; > Display(result[i]); > od; [ 1, 51840, 1 ] [ 2, 25920, 1 ] [ 3, 25920, 1 ] [ 4, 25920, 1 ]