#We find all primitive subgroups of $GL(6,2)$ with parameters $e=3$, $a=2$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 H:=Subgroup(GL(6,17),gens);; gap> n:=Size(H);; gap> z:=Z(17);; v:=[z,z^3,z^5,z^7,z^9,0*z];; gap> m:=Size(v^G);; n/m; 1