#We find all primitive subgroups of $GL(12,3)$ with parameters $e=4$, $a=3$. #In the notations of Theorem 5.1, if $H\leq GL(12,3)$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=4;; p:=3;; d:=12;; a:=3;; #Now we generate the list of all primitive subgroups in $GL(12,3)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^a-1)*e*e)) = 0);; #In view of Lemma 5.3, we choose subgroups satisfying $\vert A/F\vert\in \{12,20,72\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^a-1)*e*e)) in [12,20,72,3*12,3*20,3*72]);; #Now we run the following loop. Each entry of the list result has three items: the first is the #number of the group in the list genS, the second is the order of the group, and the third is the order of the stabilizer of v in H. #If the order of the stabilizer is 1, then |v^H=|H| and Corollary 2.5 can be applied. gap> v:=[Z(3),0*Z(3),0*Z(3),Z(3),0*Z(3),0*Z(3),0*Z(3),Z(3),0*Z(3),0*Z(3),0*Z(3),2*Z(3)];; gap> result:=[];; gap> i:=0;; gap> for j in l2 do > n:=Size(j);; > m:=Size(v^j); > i:=i+1; > Append(result,[[i,n,n/m]]); > Display([i,n,n/m]); > od; [ 1, 14976, 1 ] [ 2, 89856, 1 ] [ 3, 24960, 1 ] [ 4, 4992, 1 ] [ 5, 14976, 1 ] [ 6, 29952, 1 ] [ 7, 14976, 1 ] [ 8, 14976, 1 ] [ 9, 8320, 1 ]