#We find all primitive subgroups of $GL(4,31)$ with parameters $e=4$, $a=1$. #In the notations of Theorem 5.1, if $H\leq GL(4,31)$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=4;; p:=31;; d:=4;; a:=1;; #Now we generate the list of all primitive subgroups in $GL(4,31)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^a-1)*e*e)) = 0);; #In view of Lemma 5.3, we choose subgroups satisfying $\vert A/F\vert\in \{12,20,72\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^a-1)*e*e)) in [12,20,72]);; #Now we run the following loop. Each entry of the list result has three items: the first is the #number of the group in the list gens, the second is the order of the group, and the third is the order of the stabilizer of v in H. #If the order of the stabilizer is 1, then |v^H=|H| and Corollary 2.5 can be applied. gap> v:=[Z(31),0*Z(31),0*Z(31),Z(31)^6];; gap> result:=[];; gap> i:=0;; gap> for j in l2 do > n:=Size(j);; > m:=Size(v^j); > i:=i+1; > Append(result,[[i,n,n/m]]); > Display([i,n,n/m]); > od; [ 1, 5760, 1 ] [ 2, 5760, 1 ] [ 3, 5760, 1 ] [ 4, 5760, 2 ] [ 5, 5760, 2 ] [ 6, 5760, 1 ] [ 7, 5760, 1 ] [ 8, 5760, 1 ] [ 9, 34560, 2 ] [ 10, 5760, 1 ] [ 11, 5760, 2 ] [ 12, 5760, 1 ] [ 13, 9600, 1 ] [ 14, 5760, 1 ] [ 15, 5760, 1 ] [ 16, 5760, 1 ] #Now we choose groups such that |v^H|<>|H| in the list res1 gap> res1:=Filtered(result,x->x[3]<>1);; gap> Size(res1); 4 #We choose another vector v and repeat the cycle for the remaining groups gap> v:=[Z(31),0*Z(31),Z(31)+Z(31),Z(31)^6];; gap> result1:=[];; gap> for j in res1 do > m:=Size(v^l2[j[1]]); > Append(result,[[j[1],j[2],j[2]/m]]); > Display([j[1],j[2],j[2]/m]); > od; [ 4, 5760, 1 ] [ 5, 5760, 1 ] [ 9, 34560, 1 ] [ 11, 5760, 1 ]