#We find all primitive subgroups of $GL(4,59)$ with parameters $e=4$, $a=1$. #In the notations of Theorem 5.1, if $H\leq GL(4,59)$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=4;; p:=59;; d:=4;; a:=1;; #Now we generate the list of all primitive subgroups in $GL(4,59)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^a-1)*e*e)) = 0);; #In view of Lemma 5.3, we choose subgroups satisfying $\vert A/F\vert\in \{12,20,72\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^a-1)*e*e)) in [12,20,72]);; #Now we run the following loop. Each entry of the list result has three items: the first is the #number of the group in the list gens, the second is the order of the group, and the third is the order of the stabilizer of v in H. #If the order of the stabilizer is 1, then |v^H=|H| and Corollary 2.5 can be applied. gap> v:=[Z(59),0*Z(59),0*Z(59),Z(59)];; gap> result:=[];; i:=0;; gap> for j in l2 do > n:=Size(j);; m:=Size(v^j);; i:=i+1;; Append(result,[[i,n,n/m]]);; > Display([i,n,n/m]); > od; [ 1, 11136, 1 ] [ 2, 66816, 48 ] [ 3, 18560, 4 ] #Now we choose groups such that |v^H|<>|H| in the list res1 gap> res1:=Filtered(result,x->x[3]<>1);; Size(res1); 2 #Now we define a function which check, if the $2$-closure of a group $g$ aacting on $v^g$ is equal to $g$, so that Lemma 4.4 can be applied. This function uses #COCO2P package gap> twoc:=function(g,v) > local h,a; > h:=Action(g,v^g,OnRight); > a:=AutomorphismGroup(ColorGraph(h)); > return IsSubgroup(a,h) and IsSubgroup(h,a); > end; function( g, v ) ... end #We check that Lemma 4.4 is satisfied for all g in the list l2, i.e. that every subgroup g in the list l2 is 2-closed on v^g. gap> for j in res1 do > tf:=twoc(l2[j[1]],v);; n:=j[2];; i:=i+1;; Append(result1,[[j[1],n,tf]]);; > Display([j[1],n,tf]); > od; [ 2, 66816, true ] [ 3, 18560, true ]