#We find all primitive subgroups of $GL(4,67)$ with parameters $e=4$, $a=1$. Since in this case $b=2$ does not divide $a=1$, Lemma 5.3 implies that there exists #two nonconjugate subgroups $F_1$ and $F_2$ such that $N_{GL(4,67)}(F_1)/F_1\simeq O^+(4,2)$, while $N_{GL(4,67)}(F_2)/F_2\simeq O^-(4,2)$. This log-file contains #calculations for $F_2$. #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 z:=Z(67);; v:=[z,z^13,z^23,z^29];; gap> result:=[];; gap> H:=Subgroup(GL(4,67),j);; gap> n:=Size(H);; m:=Size(v^H);; gap> Display([n,n/m]); [ 21120, 1 ]