#We find all primitive subgroups of $GL(4,71)$ with parameters $e=4$, $a=1$. Since in this case $b=2$ does not divide $a=1$, Lemma 5.3 implies that there exists #two nonconjugate subgroups $F_1$ and $F_2$ such that $N_{GL(4,71)}(F_1)/F_1\simeq O^+(4,2)$, while $N_{GL(4,71)}(F_2)/F_2\simeq O^-(4,2)$. This log-file contains #calculations for $F_1$. #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 z:=Z(71);; v:=[z,z^13,z^23,z^29];; gap> H:=Subgroup(GL(4,71),gens);; gap> n:=Size(H);; m:=Size(v^H);; gap> result:=[n,n/m]; [ 80640, 1 ]