#We find all primitive subgroups of $GL(16,5)$ with parameters $e=8$, $a=2$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=4;; p:=13;; d:=8;; a:=2;; b:=1;; #Since $b=1$ divides $a=2$, we use Lemma 5.5(i) to obtain the list of primitive solvable subgroups in $GL(e,p^b)=GL(4,13)$ with parameters $e=4,a=1$ by using #standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree, e, Field, GF(p^b), IsPrimitiveMatrixGroup, true);; #In this list we choose subgroups, whose order is divisible by $(p^b-1)*e*e$. gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^b-1)*e*e)) = 0);; #In view of Lemma 5.4, we choose subgroups satisfying $\vert A/F\vert\in \{20,72\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^b-1)*e*e)) in [20,72]);; Size(l2); 2 #Now we need to make an embedding of the primitive solvable subgroups of $GL(e,p^b)=GL(4,13)$ into $GL(d,p)=GL(8,13)$. #According to Lemma 5.5 (i), for every primitive solvable subgroup #G from the list l2 we take $I_2\otimes G$. gap> gens:=[];; gap> for j in l2 do > Append(gens,[GeneratorsOfGroup(j)]);; > od; gap> genS:=[];; gap> for i in [1..Size(gens)] do > genS[i]:=[]; > for j in gens[i] do > Append(genS[i],[KroneckerProduct(IdentityMat(2,Z(p)),j)]); > od; > od; #Now we add $t\otimes I_e$, $s\otimes I_e$ to the list of generators, where t is a Singer cycle of $GL(a,p)$, and $t^s=t^p$. gap> bas:= Basis(AsVectorSpace( GF(p),GF(p^a) ) );; gap> t:=BlownUpMat(bas,[[Z(p^a)]]);; gap> s:=RepresentativeAction(GL(a,p),t,t^p);; gap> Ie:=IdentityMat(e,GF(p));; gap> td:=KroneckerProduct(t,Ie);; gap> sd:=KroneckerProduct(s,Ie);; #Now we add generators td and sd to the generators of subgroups in the list gap> for k in genS do gap> Append(k,[td,sd]);; gap> od; #Now we run the following loop. Each entry of the list result has three items: the first is the #number of the group in the list genS, the second is the order of the group, and the third is the order of the stabilizer of v in H. #If the order of the stabilizer is 1, then |v^H=|H| and Corollary 2.5 can be applied. gap> z:=Z(p);; v:=[z,z^3,z^4,z^5,z^7,z^11,z^8,0*z];; gap> result:=[];; i:=0;; gap> for k in genS do > H:=Subgroup(GL(d,p),k);; i:=i+1;; > n:=Size(H);; m:=Size(v^H);; > result[i]:=[i,n,n/m]; > Display(result[i]); > od; [ 1, 387072, 1 ] [ 2, 107520, 1 ]