We find all primitive subgroups of $GL(8,11)$ with parameters $e=8$, $a=1$. Since in this case $b=2$ does not divide $a=1$, Lemma 5.3 implies that there exists two #nonconjugate subgroups $F_1$ and $F_2$ such that $N_{GL(8,11)}(F_1)/F_1\simeq O^+(6,2)$, while $N_{GL(8,11)}(F_2)/F_2\simeq O^-(6,2)$. This log-file contains #calculations for $F_1$. #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series $$1 z:=Z(11);; gap> v:=[z,z^3,z^2,0*z,z^4,z^5,z^7,z^9];; gap> result:=[];; gap> for j in [1..Size(gens)] do > H:=Subgroup(GL(8,11),gens[j]);; > n:=Size(H);; > m:=Size(v^H); > result[j]:=[j,n,n/m]; > Display(result[j]); > od; [ 1, 3200, 1 ] [ 2, 6400, 1 ] [ 3, 6400, 1 ] [ 4, 6400, 1 ] [ 5, 8960, 1 ] [ 6, 9600, 1 ] [ 7, 11520, 1 ] [ 8, 11520, 1 ] [ 9, 11520, 1 ] [ 10, 11520, 1 ] [ 11, 12800, 1 ] [ 12, 12800, 1 ] [ 13, 12800, 1 ] [ 14, 19200, 1 ] [ 15, 19200, 1 ] [ 16, 19200, 1 ] [ 17, 26880, 1 ] [ 18, 23040, 1 ] [ 19, 23040, 1 ] [ 20, 23040, 1 ] [ 21, 23040, 1 ] [ 22, 23040, 1 ] [ 23, 23040, 1 ] [ 24, 23040, 1 ] [ 25, 23040, 1 ] [ 26, 25600, 1 ] [ 27, 38400, 1 ] [ 28, 38400, 1 ] [ 29, 38400, 1 ] [ 30, 46080, 1 ] [ 31, 46080, 1 ] [ 32, 46080, 1 ] [ 33, 46080, 1 ] [ 34, 46080, 1 ] [ 35, 46080, 1 ] [ 36, 76800, 1 ] [ 37, 92160, 1 ]