We find all primitive subgroups of $GL(8,11)$ with parameters $e=8$, $a=1$. Since in this case $b=2$ does not divide $a=1$, Lemma 5.3 implies that there exists two #nonconjugate subgroups $F_1$ and $F_2$ such that $N_{GL(8,11)}(F_1)/F_1\simeq O^+(6,2)$, while $N_{GL(8,11)}(F_2)/F_2\simeq O^-(6,2)$. This log-file contains #calculations for $F_2$. #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series $$1 z:=Z(11);; gap> v:=[z,z^3,z^2,0*z,z^4,z^5,z^7,z^9];; gap> result:=[];; gap> for j in [1..Size(gens)] do > H:=Subgroup(GL(8,11),gens[j]);; > n:=Size(H);; > m:=Size(v^H); > result[j]:=[j,n,n/m]; > Display(result[j]); > od; [ 1, 5760, 1 ] [ 2, 5760, 1 ] [ 3, 5760, 1 ] [ 4, 6400, 1 ] [ 5, 6400, 1 ] [ 6, 11520, 1 ] [ 7, 11520, 1 ] [ 8, 11520, 1 ] [ 9, 11520, 1 ] [ 10, 11520, 1 ] [ 11, 11520, 2 ] [ 12, 11520, 1 ] [ 13, 11520, 1 ] [ 14, 11520, 1 ] [ 15, 11520, 1 ] [ 16, 11520, 1 ] [ 17, 12800, 1 ] [ 18, 12800, 1 ] [ 19, 17280, 1 ] [ 20, 17280, 1 ] [ 21, 17280, 1 ] [ 22, 23040, 1 ] [ 23, 23040, 1 ] [ 24, 23040, 1 ] [ 25, 23040, 1 ] [ 26, 23040, 1 ] [ 27, 23040, 1 ] [ 28, 23040, 1 ] [ 29, 23040, 1 ] [ 30, 23040, 1 ] [ 31, 23040, 1 ] [ 32, 23040, 1 ] [ 33, 23040, 1 ] [ 34, 25600, 1 ] [ 35, 34560, 2 ] [ 36, 34560, 1 ] [ 37, 34560, 1 ] [ 38, 34560, 1 ] [ 39, 34560, 1 ] [ 40, 34560, 2 ] [ 41, 34560, 1 ] [ 42, 34560, 1 ] [ 43, 51840, 1 ] [ 44, 46080, 1 ] [ 45, 46080, 1 ] [ 46, 46080, 1 ] [ 47, 46080, 1 ] [ 48, 46080, 1 ] [ 49, 46080, 1 ] [ 50, 46080, 1 ] [ 51, 69120, 1 ] [ 52, 69120, 2 ] [ 53, 69120, 2 ] [ 54, 69120, 1 ] [ 55, 69120, 1 ] [ 56, 69120, 1 ] [ 57, 69120, 1 ] [ 58, 69120, 1 ] [ 59, 69120, 1 ] [ 60, 69120, 1 ] [ 61, 69120, 2 ] [ 62, 103680, 1 ] [ 63, 103680, 1 ] [ 64, 103680, 2 ] [ 65, 92160, 1 ] [ 66, 138240, 1 ] [ 67, 138240, 2 ] [ 68, 138240, 1 ] [ 69, 138240, 2 ] [ 70, 138240, 2 ] [ 71, 138240, 1 ] [ 72, 138240, 2 ] [ 73, 138240, 1 ] [ 74, 138240, 1 ] [ 75, 138240, 1 ] [ 76, 207360, 1 ] [ 77, 207360, 2 ] [ 78, 276480, 1 ] [ 79, 276480, 2 ] [ 80, 414720, 2 ] [ 81, 414720, 2 ] [ 82, 414720, 1 ] [ 83, 414720, 1 ] [ 84, 829440, 2 ] [ 85, 829440, 2 ] #Now we choose groups such that |v^H|<>|H| in the list res1 gap> res1:=Filtered(result,x->x[3]<>1);; gap> Size(res1); 17 #We choose another vector v and repeat the cycle for the remaining groups gap> v:=[z,z^3,z^2,0*z,z^4,z^5,0*z^7,0*z^9];; gap> result1:=[];; gap> for j in res1 do > n:=j[2];; > H:=Subgroup(GL(8,11),gens[j[1]]);; > m:=Size(v^H);; > Append(result1,[[j[1],n,n/m]]); > Display([j[1],n,n/m]); > od; [ 11, 11520, 1 ] [ 35, 34560, 1 ] [ 40, 34560, 1 ] [ 52, 69120, 1 ] [ 53, 69120, 2 ] [ 61, 69120, 1 ] [ 64, 103680, 1 ] [ 67, 138240, 1 ] [ 69, 138240, 2 ] [ 70, 138240, 1 ] [ 72, 138240, 1 ] [ 77, 207360, 1 ] [ 79, 276480, 1 ] [ 80, 414720, 2 ] [ 81, 414720, 1 ] [ 84, 829440, 1 ] [ 85, 829440, 1 ] #Now we choose groups such that |v^H|<>|H| in the list res1 gap> res2:=Filtered(result1,x->x[3]<>1);; gap> Size(res1); #We choose another vector v and repeat the cycle for the remaining groups gap> v:=[z,z^3,z^2,0*z,z^4,z^5,0*z^7,0*z^9];; gap> result1:=[];; gap> for j in res1 do > n:=j[2];; > H:=Subgroup(GL(8,11),gens[j[1]]);; > m:=Size(v^H);; > Append(result1,[[j[1],n,n/m]]); > Display([j[1],n,n/m]); > od; [ 53, 69120, 1 ] [ 69, 138240, 1 ] [ 80, 414720, 1 ]