We find all primitive subgroups of $GL(8,19)$ with parameters $e=8$, $a=1$. Since in this case $b=2$ does not divide $a=1$, Lemma 5.3 implies that there exists two #nonconjugate subgroups $F_1$ and $F_2$ such that $N_{GL(8,19)}(F_1)/F_1\simeq O^+(6,2)$, while $N_{GL(8,19)}(F_2)/F_2\simeq O^-(6,2)$. This log-file contains #calculations for $F_1$. #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series $$1 z:=Z(19);; gap> v:=[z,z^13,z^2,0*z,z^17,z^5,z^7,z^11];; gap> result:=[];; gap> for j in [1..Size(gens)] do > H:=Subgroup(GL(8,19),gens[j]);; > n:=Size(H);; > m:=Size(v^H); > result[j]:=[j,n,n/m]; > Display(result[j]); > od; gap> result; [ 2, 11520, 1 ] [ 3, 11520, 1 ] [ 4, 11520, 1 ] [ 5, 16128, 1 ] [ 6, 17280, 1 ] [ 7, 20736, 1 ] [ 8, 20736, 1 ] [ 9, 20736, 1 ] [ 10, 20736, 1 ] [ 11, 23040, 1 ] [ 12, 23040, 1 ] [ 13, 23040, 1 ] [ 14, 34560, 1 ] [ 15, 34560, 1 ] [ 16, 34560, 1 ] [ 17, 48384, 1 ] [ 18, 41472, 1 ] [ 19, 41472, 1 ] [ 20, 41472, 1 ] [ 21, 41472, 1 ] [ 22, 41472, 1 ] [ 23, 41472, 1 ] [ 24, 41472, 1 ] [ 25, 41472, 1 ] [ 26, 46080, 1 ] [ 27, 69120, 1 ] [ 28, 69120, 1 ] [ 29, 69120, 1 ] [ 30, 82944, 1 ] [ 31, 82944, 1 ] [ 32, 82944, 1 ] [ 33, 82944, 1 ] [ 34, 82944, 1 ] [ 35, 82944, 1 ] [ 36, 138240, 1 ] [ 37, 165888, 1 ]