#We find all primitive subgroups of $GL(9,7)$ with parameters $e=9$, $a=1$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 z:=Z(17);; v:=[z,z^3,z^5,0*z,z^7,z^9,z^11,z^13];; #Now we run the following loop, where gens is the list of generators from generators-GL(8,17).txt. Each entry of the list result has three items: the first is the #number of the group in the list gens, the second is the order of the group, and the third is the order of the stabilizer of v in H. #If the order of the stabilizer is 1, then |v^H=|H| and Corollary 2.5 can be applied. gap> result:=[];; i:=0;; gap> for k in gens do > H:=Subgroup(GL(8,17),k);; i:=i+1;; > n:=Size(H);; m:=Size(v^H);; > result[i]:=[i,n,n/m]; > Display(result[i]); > od; [ 1, 9216, 1 ] [ 2, 9216, 1 ] [ 3, 14336, 1 ] [ 4, 15360, 1 ] [ 5, 18432, 1 ] [ 6, 18432, 1 ] [ 7, 18432, 1 ] [ 8, 18432, 1 ] [ 9, 27648, 1 ] [ 10, 27648, 1 ] [ 11, 27648, 1 ] [ 12, 30720, 1 ] [ 13, 30720, 1 ] [ 14, 30720, 1 ] [ 15, 43008, 1 ] [ 16, 36864, 1 ] [ 17, 55296, 1 ] [ 18, 55296, 1 ] [ 19, 55296, 1 ] [ 20, 55296, 1 ] [ 21, 55296, 1 ] [ 22, 55296, 1 ] [ 23, 55296, 1 ] [ 24, 55296, 1 ] [ 25, 61440, 1 ] [ 26, 61440, 1 ] [ 27, 61440, 1 ] [ 28, 82944, 1 ] [ 29, 110592, 1 ] [ 30, 110592, 1 ] [ 31, 110592, 1 ] [ 32, 110592, 1 ] [ 33, 110592, 1 ] [ 34, 110592, 1 ] [ 35, 110592, 1 ] [ 36, 110592, 1 ] [ 37, 110592, 1 ] [ 38, 110592, 2 ] [ 39, 110592, 1 ] [ 40, 122880, 1 ] [ 41, 165888, 1 ] [ 42, 165888, 1 ] [ 43, 165888, 1 ] [ 44, 221184, 1 ] [ 45, 221184, 1 ] [ 46, 221184, 1 ] [ 47, 221184, 2 ] [ 48, 221184, 1 ] [ 49, 221184, 1 ] [ 50, 221184, 1 ] [ 51, 221184, 2 ] [ 52, 221184, 1 ] [ 53, 221184, 1 ] [ 54, 331776, 1 ] [ 55, 331776, 1 ] [ 56, 442368, 1 ] [ 57, 442368, 2 ] [ 58, 663552, 1 ] [ 59, 663552, 1 ] [ 60, 663552, 1 ] [ 61, 663552, 1 ] [ 62, 1327104, 2 ] [ 63, 1327104, 1 ] #Now we choose groups such that |v^H|<>|H| in the list res1 gap> res1:=Filtered(result,x->x[3]<>1);; Size(res1); 5 #We choose another vector v and repeat the cycle for the remaining groups gap> v:=[7*z,z^3,z^5,3*z,0*z^7,0*z^9,0*z^11,6*z^13];; gap> result1:=[];; gap> for k in res1 do > H:=Subgroup(GL(8,17),gens[k[1]]);; > n:=k[2];; m:=Size(v^H);; > Append(result1,[[k[1],n,n/m]]); > Display([k[1],n,n/m]); > od; [ 38, 110592, 1 ] [ 47, 221184, 1 ] [ 51, 221184, 1 ] [ 57, 442368, 1 ] [ 62, 1327104, 1 ]