#We find all primitive subgroups of $GL(16,5)$ with parameters $e=8$, $a=2$ #In the notations of Theorem 5.1, if $H$ is a primitive solvable subgroup, then it possesses a series #$$1 e:=8;; p:=5;; d:=16;; a:=2;; b:=1;; #Since $b=1$ divides $a=2$, we use Lemma 5.5(i) to obtain the list of primitive solvable subgroups in GL(16,5) with parameters $e=8,a=2$. #Now we generate the list of all primitive subgroups in $GL(8,5)$, using standart function of the package IRREDSOL gap> l0:=AllIrreducibleSolvableMatrixGroups(Degree,d/a,Field,GF(p),IsPrimitiveMatrixGroup,true);; #In this list we choose subgroups, whose order is divisible by the order of $F$ in the notations of Theorem 5.1 gap> l1:=Filtered(l0,x-> (Order(x) mod ((p^b-1)*e*e)) = 0);; #In view of Lemma 5.4, we choose subgroups satisfying $\vert A/F\vert\in \{120, 42, 1296\}$ and collect these subgroups in the list l2. gap> l2:=Filtered(l1,x-> (Order(x)/((p^b-1)*e*e)) in [120, 42, 1296]);; gap> Size(l2); 4 #Now we need to make an embedding of the primitive solvable subgroups of GL(8,5) into GL(16,5). According to Lemma 5.5 (i), for every primitive solvable subgroup #G from the list l2 we take $I_2\otimes G$. gap> gens:=[];; gap> for j in l2 do > Append(gens,[GeneratorsOfGroup(j)]);; > od; gap> genS:=[];; gap> for i in [1..Size(gens)] do > genS[i]:=[]; > for j in gens[i] do > Append(genS[i],[KroneckerProduct(IdentityMat(2,Z(5)),j)]); > od; > od; #Now we add $t\otimes I_8$, $s\otimes I_8$ to the list of generators, where t is a Singer cycle of $GL(2,5)$, and $t^s=t^5$. gap> bas:= Basis(AsVectorSpace( GF(p),GF(p^a) ) );; gap> t:=BlownUpMat(bas,[[Z(p^a)]]);; gap> s:=RepresentativeAction(GL(a,p),t,t^p);; gap> I8:=IdentityMat(e,GF(p));; gap> t16:=KroneckerProduct(t,I8);; gap> s16:=KroneckerProduct(s,I8);; #Now we add generators t16 and s16 to the generators of subgroups in the list gap> for k in genS do gap> Append(k,[t16,s16]);; gap> od; #Now we run the following loop. Each entry of the list result has three items: the first is the #number of the group in the list genS, the second is the order of the group, and the third is the order of the stabilizer of v in H. #If the order of the stabilizer is 1, then |v^H=|H| and Corollary 2.5 can be applied. gap> z:=Z(5);; gap> v:=[z,z^2,z^3,0*z,z^2,z^3,z,z^3,0*z,z,z^2,z,z^3,z^2,z,z^3];; gap> result:=[];; gap> for j in [1..Size(genS)] do > H:=Subgroup(GL(d,p),genS[j]);; > n:=Size(H);; > m:=Size(v^H); > result[j]:=[j,n,n/m]; > Display(result[j]); > od; [ 1, 368640, 1 ] [ 2, 3981312, 1 ] [ 3, 129024, 1 ] [ 4, 3981312, 1 ]