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Abstract

A generalised tetrahedron group is the colimit of a triangle of groups

whose vertex groups are generalised triangle groups and whose edge groups

are finite cyclic. We prove an improved Spelling Theorem for generalised

triangle groups which enables us to compute the precise Gersten-Stallings

angles of this triangle of groups, and hence obtain a classification of gen-

eralised tetrahedron groups according to the curvature properties of the

triangle. We also prove that the colimit of a negatively curved triangle

of groups contains a nonabelian free subgroup. Finally, we apply these

results to prove the Tits alternative for all generalised tetrahedron groups

where the triangle is non-spherical: with three abelian-by-finite excep-

tions, every such group contains a nonabelian free subgroup.
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1 Introduction

A generalised triangle group is a group with a presentation of the form

〈x, y |xp = yq = W (x, y)r = 1〉,

where W (x, y) is a cyclically reduced word in the free product 〈x |xp = 1〉 ∗
〈y | yq = 1〉 and p, q, r are integers greater than 1.

A generalised tetrahedron group is defined to be a group admitting the fol-
lowing presentation:

〈x, y, z |xℓ = ym = zn = W1(x, y)p = W2(y, z)q = W3(z, x)r = 1〉,
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where each Wi(a, b) is a cyclically reduced word involving both a and b and all
powers are integers greater than 1.

These groups appear in many algebraic and geometric questions, for exam-
ple, as subgroups of generalised triangle groups and as fundamental groups of
certain orbifolds. Important special cases arise when the words W or Wi are
each just the product of one of the two corresponding generators with the inverse
of the other. The triangle group

∆(p, q, r) = 〈x, y |xp = yq = (xy)r = 1〉

can be realised geometrically as a group generated by rotations through angles
2π/p and 2π/q about distinct points in the Euclidean, hyperbolic, or spherical
plane. It is an index 2 subgroup of the group

∆∗(p, q, r) = 〈x, y, z |x2 = y2 = z2 = (xy)p = (yz)q = (zx)r = 1〉

generated by reflections in the sides of a (Euclidean, hyperbolic or spherical)
triangle with angles π/p, π/q and π/r. (Note that ∆∗(p, q, r) is an example of
a generalised tetrahedron group.)

Similarly, if T is a tetrahedron in 3-dimensional Euclidean, hyperbolic or
spherical space whose dihedral angles are submultiples of π, then the reflections
in the faces of T generate a discrete group of isometries. The index 2 subgroup of
orientation-preserving isometries in this group is generated by rotations around
the edges of any one of the faces of T , and has a presentation of the form

〈x, y, z |xℓ = ym = zn = (xy−1)p = (yz−1)q = (zx−1)r = 1〉.

We refer to this group as an ordinary tetrahedron group. (In the case of hyper-
bolic space, it is convenient for us to allow one or more of the vertices of T to
lie on the boundary in this definition.)

A class of groups C is said to satisfy the Tits alternative if each group in C
either contains a non-abelian free group of rank two or is virtually soluble (i.e.,
has a soluble subgroup of finite index). This property is named after J. Tits, who
established [23] that it is satisfied by the class of linear groups. In particular,
every ordinary tetrahedron or triangle group is linear, and so satisfies the Tits
alternative.

The Tits alternative has been proved, for example, for the classes of one
relator groups [13], mapping class groups of compact surfaces [12, 17], the outer
automorphism groups of free groups of finite rank [1, 2], Coxeter groups [16, 18],
subgroups of Gromov hyperbolic groups [9].

Conjecture (Rosenberger). The class of generalised triangle groups satisfies
the Tits alternative.

This has been proved except in the case where p ≥ 2, q ≥ 2, r = 2, 1/p +
1/q > 1/2 and W (x, y) has length greater than eight in terms of the free product
〈x〉∗〈y〉 (see [8]). The same question can be asked about generalised tetrahedron
groups.
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Conjecture. The class of generalised tetrahedron groups satisfies the Tits al-
ternative.

In [5], Edjvet, Howie, Rosenberger and Thomas proved that if G is a finite
generalised tetrahedron group and at least one of p, q and r is greater than 3,
then the presentation of G is equivalent to a presentation of an ordinary (spheri-
cal) tetrahedron group. In [21] Rosenberger, Scheer and Thomas classified finite
generalised tetrahedron groups with a cubic relator, and in [20] Rosenberger and
Scheer extended this to an almost complete classification of finite generalised
tetrahedron groups.

There are also some sufficient conditions for generalised tetrahedron groups
to contain a free subgroup (see [7]). These results cover a large class of gener-
alised tetrahedron groups, but do not give the whole picture.

As was pointed out in [7], a generalised tetrahedron group G can be naturally
realised as the colimit of a triangle of groups whose vertex groups are generalised
triangle groups and whose edge groups are finite cyclic (see Sections 2 and 3.2).
The class of generalised tetrahedron groups can thus be naturally subdivided
into three subclasses, which we call negatively curved, Euclidean, and spherical,
according to the curvature of the corresponding triangle of groups. In order to
determine to which subclass a given group belongs, it is necessary to compute
the Gersten-Stallings angles of the triangle [22].

In this paper, we present a spelling theorem (Theorem 3.2) for generalised
triangle groups which improves on that given in [5] and enables us to give the
precise values of the Gersten-Stallings angles as required. As a result, we are
able to list all Euclidean and spherical generalised tetrahedron groups.

The main result of our paper is the following theorem:

Theorem 1. The class C of generalised tetrahedron groups realised by non-
spherical triangle of groups satisfies the Tits alternative. More precisely, any
G ∈ C contains a non-abelian free subgroup unless G is isomorphic to the abelian-
by-finite group ∆∗(p, q, r) with 1

p + 1

q + 1

r = 1.

The paper is organised as follows. In Section 2 we discuss polygons of groups,
in particular, we prove that the colimit of any negatively curved triangle of
groups contains a non-abelian free subgroup. We also prove that the colimits
of certain non-positively curved triangles and squares of groups contain non-
abelian free subgroups.

Section 3 is devoted to results on generalised triangle groups. We prove
Theorem 3.2 and present a complete list of presentations for Euclidean and
spherical generalised tetrahedron groups.

Finally, in Section 4 we apply the results of Sections 2 and 3 to prove The-
orem 1.

Acknowledgement. We are grateful to Martin Bridson and to an anonymous
referee for insightful comments on earlier versions of the paper, which led to
significant improvements in our exposition.
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2 Polygons of groups

Given two subgroups A and B of a group G, the inclusions A → G and B → G
determine a homomorphism φ : A ∗ B → G. If φ is injective, the (Gersten-
Stallings) angle (G; A, B) is defined to be 0, otherwise (G; A, B) is defined to be
π/n, where 2n is the minimal length of a non-trivial element in Ker(φ).

Let Γ be a k-gon, to whose vertices are associated groups Gi and to whose
edges are associated groups Gij such that each Gij is a proper subgroup of
both Gi and Gj . The colimit, or polygonal product of Γ, is the group G given
by generators and relations of the vertex groups together with relations which
identify the subgroup Gij of Gi with the subgroup Gij of Gj .

In this paper, we are primarily concerned with the cases k = 3 and k = 4,
known as triangles of groups and squares of groups, respectively.

These are special cases of the more general concept of a complex of groups,
whose theory has been extensively developed in [4, 10, 11, 22] and in [3, Part
III C].

A k-gon of groups is said to be non-spherical if the sum over each vertex i
of the Gersten-Stallings angles (Gi; Gi,i−1, Gi,i+1) (subscripts modulo k) is at
most (k − 2)π. If the angle sum is strictly less than (k − 2)π then we call the
k-gon negatively curved.

Remark. The definition of a polygon of groups is often taken to include a face
group F associated to the 2-dimensional cell of the polygon. This is regarded as
a common subgroup of the edge groups. The Gersten-Stallings angles are then
defined using length in the amalgamated free product Gi,i−1 ∗F Gi,i+1 rather
than the free product Gi,i−1 ∗Gi,i+1,etc. Our definition corresponds to the case
F = {1}. While many of our arguments also hold in the more general setting,
we shall consider in this paper only polygons of groups with trivial face groups
for ease of exposition.

We will make frequent use of the well-known fact that non-spherical poly-
gons (or, with an appropriate definition, more general complexes) of groups are
developable, in the sense that each vertex group embeds into the colimit. Proofs
may be found, for example, in [3, 4, 10, 11] or (in the triangle case) [22].

Theorem 2.1. If Γ is a non-spherical k-gon of groups, then the vertex groups
Gi embed in the colimit of Γ.

Non-spherical triangles of groups

Consider a triangle of groups (see Figure 1).
Then such a triangle of groups is spherical if (G1; X, Y ) + (G2; Y, Z) +

(G3; Z, X) > π, and non-spherical otherwise. Among non-spherical triangles
we distinguish Euclidean and negatively curved triangles according to whether
the sum of the angles is equal to or less than π.

Proposition 2.2. Let Γ be a negatively curved triangle of groups. Then its
colimit G contains a non-abelian free subgroup.

4



G1

G2
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Y Z

Figure 1:

Proof. We use the ideas of [6]. Let G be the colimit of the triangle of groups
shown in Figure 1. If one of the edge groups, say X , is trivial, then Γ is in fact
a tree, i.e., G is a free amalgamation product G1 ∗Y G2 ∗Z G3 = (G1 ∗Y G2) ∗G2

(G2 ∗Z G3). Since Y and Z are proper subgroups of G2, G2 has infinite index in
both G1 ∗Y G2 and G2 ∗Z G3. Therefore, G contains a free subgroup of rank 2.

Suppose that X , Y and Z are non-trivial groups. Then we may choose
non-trivial elements x ∈ X , y ∈ Y and z ∈ Z. Since the triangle of groups is
negatively curved, there exists ε > 0 such that ε < π−((G1; X, Y )+(G2; Y, Z)+
(G3; Z, X)). Consider u = (xyz)p and v = (xzy)p, where p = 4[1/ε] + 1; then
we show that u and v generate a free subgroup of G.

Choose a presentation P for G which is a union of presentations Pi (i =
1, 2, 3) for the three vertex groups Gi, such that any two of these subpresenta-
tions intersect in a presentation for the appropriate edge group. Without loss of
generality, we assume that x, y, z are all generators of P , so that u, v are words
in the generators of P .

Assume that w(u, v) = 1 in G. Consider a van Kampen diagram K over P
whose boundary label is w(u, v). Let D be an extremal disk of K. We divide D
into G1, G2 and G3 regions, where a Gi-region is a connected union of 2-cells
labelled by the relations of Pi. If two Gi-regions intersect at least at one edge,
then we can amalgamate them into a single region. We continue in this way
as often as possible, and so get a division of D into maximal Gi-regions for
i = 1, 2, 3. (Note that the resulting division of D is not necessarily unique.)

Since the vertex groups embed, it can be assumed that the maximal regions
are simply connected. Let D̂ be the resulting diagram. We define an edge of D̂
to be a path whose edges are labelled by elements of either X , or Y , or Z.

Now place D̂ on the sphere and take its dual D∗. Let V0 be the vertex
corresponding to S2\D̂. We call a region of D∗ non-interior if it involves V0 and
interior otherwise. Observe that each interior region is at least a 3-gon.

We give each corner at a vertex of D∗ of degree d the angle 2π/d. The
curvature c(∆) of a region ∆ of degree k whose vertices have degrees d1, d2, . . . ,
dk is then defined by

c(∆) = (2 − k)π +

k∑

i=1

2π

di
.
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Then ∑

∆⊂D∗

c(∆) = 2πχ(S2) = 4π.

Let ∆ be an interior region of D∗ of degree 3. Then

c(∆) = −π+

(
2π

d1

+
2π

d2

+
2π

d3

)
≤ −π+(G1; X, Y )+(G2; Y, Z)+(G3; Z, X) < 0.

It is not difficult to see that the curvature of an interior region of degree k > 3
is also negative. Thus, the sum of the curvatures of interior regions is negative.

G2
G3 G1 G2

G2G3
G1

Figure 2:

Consider non-interior regions. Observe that a non-interior region can be a
2-gon. The maximal sum of the curvatures of non-interior regions is achieved
when the number of 2-gons is maximal.

Note that the cancellations in w can happen only in cases [u−1v]±1 =
[(z−1y−1x−1)p−1z−1y−1x−1xzy(xzy)p−1]±1. Consider a path labelled by
a part of w(u, v) where a cancellation takes place, for example,
(z−1y−1x−1)p−1z−1y−1zy. The curvature of such a chain S of non-interior
regions of D∗ along this path is maximal when z−1y−1zy is a part of a maximal
G2-region and regions of D∗ of degree 2 and 3 are arranged consecutively.

Since p is odd, the chain S starts with G2 and ends in G2 (see Figure 2).
Moreover, the number of 3-gons in S is N3 = 3(p − 1)/2 and the number of 2-
gons in S is N2 = 3(p−1)/2+2. The sum of angles at each vertex of S different
from V0, say labelled by G1, is not greater than 3(G1; X, Y ) and the sum of
angles at V0 is 2πNS/d0, where d0 is the degree of V0 and NS = N2 + N3. Note
that we have (p− 1)/2 maximal G1- and G3-regions and (p− 1)/2 + 1 maximal
G2-region for S. Then

c(S) ≤ −N3π +
3(p − 1)

2
((G1; X, Y ) + (G2; Y, Z) + (G3; Z, X))

+2(G2; Y, Z) +
2π

d0

NS

=
3(p − 1)

2
(−π + (G1; X, Y ) + (G2; Y, Z) + (G3; Z, X))

+2(G2; Y, Z) +
2π

d0

NS

< −
3(p− 1)

2
ε + 2

π

2
+

2π

d0

NS < −6 + π +
2π

d0

NS <
2π

d0

NS .
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For a chain S of regions of D∗ along a path which does not contain cancel-
lations c(S) < 2π

d0
NS. Furthermore, the number of non-interior regions of D∗ is

d0. Thus, ∑

∆⊂D∗

c(∆) < 2π.

We arrive at a contradiction.
The previous result is not true in general for non-spherical triangles of

groups. However, in many cases it is still possible to obtain free subgroups.
The following is an example of a result in that direction.

Proposition 2.3. Let Γ be a non-spherical triangle of groups, as in Figure 1.
Suppose that y 6= 1 and z 6= 1 are elements of the edge groups Y, Z respectively,
such that yz is not a subword of a relation of the vertex group G2 of minimal
length (as a word in the free product Y ∗ Z). Then the colimit G of Γ contains
a non-abelian free subgroup.

Sketch proof. Follow the proof of Proposition 2.2, but putting u = (xyz)p and
v = (xz−1y−1)p for some p ≫ 0.

The same analysis as in the proof of Proposition 2.2 works, with two differ-
ences. Firstly, we cannot assume that Γ is negatively curved, so possibly ε = 0.
But, to compensate, we can assume that the angles at the G2-vertices of S are
less than (G2; Y, Z), since neither yz nor z−1y−1 can be a subword of a minimal
length relation. The difference is at least π

6
− π

7
= π

42
, since (G2; Y, Z) ≥ π

6
.

Hence the inequality calculation for c(S) becomes

c(S) ≤ −
3(p − 1)π

84
+ π +

2π

d0

NS <
2π

d0

NS ,

provided we choose p ≥ 30.

Lemma 2.4. Let Γ be a triangle of groups shown in Figure 1 such that

(i) (G1; X, Y ) = (G2; Y, Z) = (G3; X, Z) = π/3;

(ii) there exist non-trivial elements x ∈ X, y ∈ Y such that x2 6= 1, y2 6= 1;

(iii) for all α, β, γ, xy2xyαxβyγ 6= 1 and yx2yxαyβxγ 6= 1 in G1.

If G is the colimit of Γ then G contains a non-abelian free subgroup.

Proof. We follow closely the proof of Proposition 2.2. If Z is trivial, then Γ is
a tree and G contains a free subgroup. Suppose Z is not trivial. Take x ∈ X ,
y ∈ Y as in the statement of the lemma and z ∈ Z \ {1}.

Let u = zxyzx−1y−1 and v = zx−1y−1zxy. We shall show that u and v
generate a free group. Suppose there is a nontrivial relation w(u, v) = 1 in G.

Consider an extremal disk D of a van Kampen diagram for w(u, v). Place the

diagram D̂ of maximal Gi-regions on the sphere and take its dual D∗. Clearly,
the curvature of the interior regions of D∗ is non-positive. Let us show that the
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curvature of non-interior regions is also non-positive. Note that a chain of non-
interior regions of D∗ corresponding to a path on the boundary of D̂ labelled
by uv and vu has non-positive curvature. Consider a chain S of non-interior
regions corresponding to a path labelled by uv−1 = zxyzx−1y−2x−1z−1yxz−1.
It is clear that c(S) is maximal when the number of 2-gons is maximal, i.e., the
regions are arranged as in Figure 3.

z x y z y x

A

−1x−1 y
−2

x−1 z
−1

z

Figure 3:

Since xy2x is not a part of a length 6 relation in G1, each angle at the vertex
A is not greater than π/4. Angles at other vertices of D∗ are not greater than
π/3. So, c(S) ≤ −5π+12π/3+4π/4+22π/d0 = 22π/d0, where d0 is the degree

of the vertex corresponding to S2\D̂. For a chain labelled by v−1u the argument
is similar. Then

∑
∆⊂D∗ ≤ 2π and we arrive at a contradiction.

Corollary 2.5. A group G = 〈x, y, z |xℓ = y2 = z2 = (xy)2 = (yz)3 =
(xzxηzx−ηz)2 = 1〉 with 3 ≤ ℓ ≤ 5 contains a free subgroup of rank 2.

Proof. The normal closure K of x has the presentation

K = 〈a, b, c | aℓ = bℓ = cℓ = abηaηb−1a−ηb−η = bcηbηc−1b−ηc−η

= acηaηc−1a−ηc−η = 1〉.

The group K can be realised as the colimit of a triangle of groups with the
vertex groups

K1 = 〈a, b | aℓ = bℓ = abηaηb−1a−ηb−η = 1〉,

K2 = 〈b, c | bℓ = cℓ = bcηbηc−1b−ηc−η = 1〉,

K3 = 〈a, c | aℓ = cℓ = acηaηc−1a−ηc−η = 1〉.

Since (G3; X, Z) = π/6, all angles of the triangle are π/3.
For 3 ≤ ℓ ≤ 5 and 1 ≤ η < ℓ, we can easily check that no word of the

form ab2a or ba2b is a subword of a length 6 identity in K1. In order to do
this, we map K1 onto one of the finite groups Sℓ or Zℓ and check if ab2abiajbk

presents the identity in the image. It turns out that φ(ab2abiajbk) 6= 1 for all
i, j, k = 1, . . . , ℓ for at least one φ : K1 → F , where F is Sℓ or Zℓ. Then ab2a is
also not a part of a length 6 identity in K1.

The same is true for K2 and K3. Then K, and therefore, G contains a free
subgroup by Lemma 2.4.
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Non-spherical squares of groups

Proposition 2.6. Let Γ be a square of groups such that

1. the edge groups are non-trivial;

2. at least one of the edge groups contains 3 or more elements;

3. all the Gersten-Stallings angles are at most π/2.

If G is the colimit of Γ, then G contains a non-abelian free subgroup.

Proof. Without loss of generality, assume that G12 has order at least 3. The
condition on Gersten-Stallings angles means, for example, that the intersection
of G12 and G23 in G2 is trivial. Similarly, the intersection of G23 and G34 in G3

is trivial. It follows that the subgroups G12 of G2 and G34 of G3 generate their
free product in the group

A = G2 ∗
G23

G3.

By a similar argument, G12 and G34 generate their free product in the group

B = G1 ∗
G41

G4.

Hence we may write the colimit G as a free product with amalgamation

G = A ∗
F

B,

where F ∼= G12 ∗G34. Since |G12| ≥ 3 and |G34| ≥ 2, F and hence G contains a
nonabelian free subgroup.

3 Generalised tetrahedron groups as triangles of

groups

3.1 Spelling theorem

In general, it is not easy to calculate angles between subgroups in a group. The
following theorem is very useful for this in the case of a generalised triangle
group.

Theorem 3.1 (Spelling theorem, [5]). Let H be the generalised triangle
group defined by the presentation

〈x, y | xp = yq = W (x, y)r = 1〉,

where
W (x, y) = xα1yβ1 . . . xαkyβk (0 < αi < p, 0 < βi < q),

and let
V (x, y) = xγ1yδ1 . . . xγℓyδℓ (0 < γi < p, 0 < δi < q)

be a nonempty word that is equal to 1 in H. Then ℓ ≥ k(r − 1) + 1.
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The proof of this is straightforward, but the idea behind it can be extended
to yield a strengthened version. To motivate this extended proof, we first recall
the proof of Theorem 3.1 from [5] (slightly modified).

Proof. Let

X =

(
eiπ/p λ

0 e−iπ/p

)
, Y =

(
eiπ/q 0

1 e−iπ/q

)

be two matrices in SL(2, C[λ]). Then tr(X) = 2 cos(π/p), tr(Y ) = 2 cos(π/q),
and tr(W (X, Y )) is a polynomial τ(λ) of degree k in λ. If Λ is any quotient ring
of C[λ] in which τ(λ) = 2 cos(mπ/r) for some m = 1, . . . , r − 1, then x 7→ X ,
Y 7→ Y defines a representation ρ : H → PSL(2, Λ). Moreover, the lower left
entry of V (X, Y ) is given by a polynomial σ(λ) of degree ℓ− 1, and necessarily
σ(λ) = 0 in Λ, since ρ is a representation.

We now take Λ = C[λ]/I, where I is the ideal generated by

f(λ) =

r−1∏

m=1

(τ(λ) − 2 cos(mπ/r)).

Since σ is a nonzero polynomial in C[λ] that belongs to I, it is divisible by f ,
and hence has degree greater than or equal to that of f . In other words

ℓ − 1 ≥ (r − 1)k,

as claimed.

Now we push the idea behind Theorem 3.1 a little further to improve the
lower bound on the length of V to length(V ) ≥ rk = length(W r) (which is
clearly sharp).

Theorem 3.2. Let H be a group with the following presentation:

〈x, y | xp = yq = W (x, y)r = 1〉,

where
W (x, y) = xα1yβ1 . . . xαkyβk (0 < αi < p, 0 < βi < q),

and let
V (x, y) = xγ1yδ1 . . . xγℓyδℓ (0 < γi < p, 0 < δi < q)

be a nonempty word that is equal to 1 in H. Then ℓ ≥ rk.

Proof. Let

X =

(
eiπ/p λ

0 e−iπ/p

)
and Y =

(
eiπ/q 0

1 e−iπ/q

)

be two matrices in SL(2, C[λ]). Then tr(X) = 2 cos(π/p), tr(Y ) = 2 cos(π/q),
and tr(W (X, Y )) is a polynomial τ(λ) of degree k in λ. Let

F1(λ) =
∏

m odd
m∈{1,...,r−1}

(τ(λ) − 2 cos(mπ/r)),
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F2(λ) =
∏

m even
m∈{1,...,r−1}

(τ(λ) − 2 cos(mπ/r)).

We take Λi to be C[λ]/Ii, where Ii is the ideal generated by Fi, i = 1, 2. Then
ρ1 : H → PSL(2, Λ1), ρ2 : H → PSL(2, Λ2) are two representations of H
defined by x 7→ X and y 7→ Y .

Split V (X, Y ) into two parts: V (X, Y ) = V1(X, Y )V2(X, Y ),
where V1(X, Y ) = Xγ1Y δ1 . . . Xγ[r/2]kY δ[r/2]k and V2(X, Y ) =
Xγ[r/2]k+1Y δ[r/2]k+1 . . . XγℓY δℓ .

Let f(λ) and g(λ) be the lower left entries of V1(X, Y ) and V2(X, Y ), re-
spectively. Then

deg(f(λ)) = [r/2]k − 1 and deg(g(λ)) = ℓ − [r/2]k − 1.

Suppose that, for i = 1, 2 we have V (X, Y ) = εiI in SL(2, Λi) (where εi = ±1).
Rewriting this as V1(X, Y ) = εiV2(X, Y )−1, we see that f(λ) = −εig(λ) in Λi,
and so, for some Ai(λ) ∈ C[λ],

f(λ) + εig(λ) = Ai(λ)Fi(λ) in C[λ].

If r = 2t is even, then since deg(F1(λ)) = tk, deg(F1(λ)) > deg(f(λ)), so
either A1(λ) = 0 or deg(f(λ)) < deg(g(λ)). In either case ℓ ≥ 2tk = rk.

Hence we may assume that r = 2t + 1 is odd. In this case deg(F1(λ)) =
deg(F2(λ)) = tk > deg(f(λ)).
If deg(f(λ)) ≥ deg(g(λ)) then ℓ ≤ 2tk = (r−1)k which contradicts Theorem 3.1.
Hence, deg(f(λ)) < deg(g(λ)). In particular, f(λ) 6= ±g(λ), so A1(λ) 6= 0 6=
A2(λ).

If ε1 = ε2 then A1(λ)F1(λ) = A2(λ)F2(λ) in C[λ]. Since F1 and F2 have
no common root in C, they are coprime in the unique factorization domain
C[λ]. It follows from the equation A1F1 = A2F2 that A1 is a multiple of F2, so
deg(A1(λ)) ≥ deg(F2(λ)) = tk. Hence

deg(g(λ)) = deg(f(λ) + ε1g(λ)) = deg(A1(λ)F1(λ)) ≥ 2tk.

Thus ℓ = deg(g(λ)) + tk + 1 ≥ 3tk + 1 > rk.
Hence we are reduced to the case where r = 2t+1 is odd, A1(λ) 6= 0 6= A2(λ),

and ε1 6= ε2. Now we have

2f(λ) = A1(λ)F1(λ) + A2(λ)F2(λ)

= (A1(λ) + A2(λ))F2(λ) + A1(λ)(F1(λ) − F2(λ)). (1)

Note that F1(λ) − F2(λ) has degree (t − 1)k. Therefore, from (1),

deg((A1(λ) + A2(λ))F2(λ)) ≤ max{deg(f(λ)), deg(A1(λ)(F1(λ) − F2(λ)))}

= max{tk − 1, ℓ − tk − k − 1}.

If A1(λ) + A2(λ) 6= 0 then

tk = deg(F2(λ)) ≤ deg((A1(λ) + A2(λ))F2(λ)) ≤ ℓ − tk − k − 1,

ℓ ≥ 2tk + k + 1 = rk + 1.
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If, however, A1(λ) + A2(λ) = 0 then 2f(λ) = A1(λ)(F1(λ) − F2(λ)) and

deg(f(λ)) = deg(A1(λ)) + deg(F1(λ) − F2(λ));

tk − 1 = ℓ − tk − k − 1;

ℓ = 2tk + k = rk.

Thus, ℓ ≥ rk.

Corollary 3.3. Let G = 〈a, b, c | aℓ = bm = cn = (aαbβ)p = W2(b, c)
q =

W3(c, a)r = 1〉 be a generalised tetrahedron group realised as a non-spherical
triangle of groups, where ℓ ≤ m. If any of the following conditions hold, then G
contains a non-abelian free subgroup.

1. β is not coprime to m;

2. α is not coprime to ℓ;

3. ℓ ≥ 3;

4. m ≥ 4 and n ≥ 3.

Proof. We apply Proposition 2.3, with G2 = 〈a, b | aℓ = bm = (aαbβ)p = 1〉.

1. Put y = a, z = b. In this case G2 is a free product with amalgamation

G2 = 〈a, d | ap = ds = (aαd)t = 1〉 ∗
d=bγ

〈b | bq = 1〉

for some s, t, γ. Combining the Spelling Theorem 3.2 with the Normal
Form Theorem for free products with amalgamation (see for example [15,
Section I.11]), it is not difficult to see that any minimal length relation in
G2 must be a word in a and d, so cannot contain a subword ab. Hence
Proposition 2.3 applies.

2. Similar to Part 1.

3. By Parts 1 and 2, we may assume that α = β = 1, so that G2 is a triangle
group. Since 3 ≤ ℓ ≤ m, the only relations of minimal length in G2 are
cyclic conjugates of (ab)±p, so no such relation contains a2b as a subword.
Hence Proposition 2.3 applies.

4. Again, we may assume that α = β = 1 and G2 is a triangle group. By
Part 3 we may assume that ℓ = 2. Since n ≥ 3, the only minimal length
relations in G2 are cyclic conjugates of (ab)±p, and since m ≥ 4 no such
word has ab2 as a subword. Hence Proposition 2.3 applies.
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3.2 Generalised tetrahedron groups realised by Euclidean

and spherical triangles of groups

A generalised tetrahedron group

G = 〈x, y, z | xℓ = ym = zn = W1(x, y)p = W2(y, z)q = W3(x, z)r = 1〉

can be realised as the colimit of a triangle of groups with generalised triangle
vertex groups

G1 = 〈x, y | xℓ = ym = W1(x, y)p = 1〉,

G2 = 〈y, z | ym = zn = W2(y, z)q = 1〉,

G3 = 〈x, z | zn = xℓ = W3(x, z)r = 1〉,

and with edge groups X =
〈
x |xℓ = 1

〉
, Y = 〈y | ym = 1〉 and Z = 〈z | zn = 1〉.

Let

W1(x, y) = xα1yβ1 . . . xαk1 yβk1 ,

W2(y, z) = yγ1zδ1 . . . yγk2 zδk2 ,

W3(x, z) = xη1zθ1 . . . xηk3 zθk3 .

By Theorem 3.2, if V (x, y) = 1 in G1, then V (x, y) has length at least p k1.
Then the angle between the two edge groups in G1 is

(G1; X, Y ) =
π

p k1

.

Similarly, we have

(G2; Y, Z) =
π

q k2

and (G3; X, Z) =
π

r k3

.

Hence,

(G1; X, Y ) + (G2; Y, Z) + (G3; X, Z) =
π

p k1

+
π

q k2

+
π

r k3

.

Therefore, if the triangle of groups is spherical or Euclidean, then

(G1; X, Y ) + (G2; Y, Z) + (G3; X, Z) ≥ π

gives
π

p k1

+
π

q k2

+
π

r k3

≥ π.

So we can determine p, q, r and ki that give spherical or Euclidean triangles of
groups. We have the following lists of presentations:
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Euclidean.

E1. 〈x, y, z |xℓ = ym = zn = (xαyβ)2 = (yγzδ)3 = (xηzθ)6 = 1〉

E2. 〈x, y, z |xℓ = ym = zn = (xαyβ)2 = (yγzδ)4 = (xηzθ)4 = 1〉

E3. 〈x, y, z |xℓ = ym = zn = (xαyβ)3 = (yγzδ)3 = (xηzθ)3 = 1〉

E4. 〈x, y, z |xℓ = ym = zn = (xαyβ)2 = (yγzδ)3 = (xη1zθ1xη2zθ2)3 = 1〉

E5. 〈x, y, z |xℓ = ym = zn = (xαyβ)2 = (yγzδ)4 = (xη1zθ1xη2zθ2)2 = 1〉

E6. 〈x, y, z |xℓ = ym = zn = (xαyβ)2 = (yγ1zδ1yγ2zδ2)2 = (xη1zθ1xη2zθ2)2 =
1〉

E7. 〈x, y, z |xℓ = ym = zn = (xαyβ)2 = (yγzδ)3 = (xη1zθ1xη2zθ2xη3zθ3)2 = 1〉

Spherical.

S1. 〈x, y, z |xℓ = ym = zn = (xαyβ)2 = (yγzδ)2 = W3(x, z)r = 1〉

S2. 〈x, y, z |xℓ = ym = zn = (xαyβ)2 = (yγzδ)3 = (xηzθ)r = 1〉, r = 3, 4, 5

S3. 〈x, y, z |xℓ = ym = zn = (xαyβ)2 = (yγzδ)3 = (xη1zθ1xη2zθ2)2 = 1〉

4 Proof of Theorem 1

Theorem 1. The class C of generalised tetrahedron groups realised by non-
spherical triangle of groups satisfies the Tits alternative. More precisely, any
G ∈ C contains a non-abelian free subgroup unless G is isomorphic to the abelian-
by-finite group ∆∗(p, q, r) with 1

p + 1

q + 1

r = 1.

Proof. If G is realised by a negatively curved triangle of groups, then the the-
orem follows from Proposition 2.2. Hence we may assume that the triangle is
Euclidean, that is we are in one of the cases E1-E7.

Clearly ℓ = m = n = 2 implies that G = ∆∗(p, q, r) is abelian-by-finite.
Hence we can assume that at least one of ℓ, m, n is greater than 2. It is con-
venient to group the seven cases E1 to E7 according to the distribution of
Gersten-Stallings angles.

Case E3

Corollary 3.3 implies that G has a free subgroup, except possibly if ℓ, m, n are
(in some order) 2, 2, 3. But then G is an ordinary tetrahedron group acting on
hyperbolic 3-space and hence contains a non-abelian free subgroup.
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Cases E2, E5, E6

G = 〈x, y, z|xℓ = ym = zn = R1(x, y)2 = R2(y, z)2 = R3(z, x)2 = 1〉,

for some words R1, R2 and R3, where R1, R2 and R3 have free-product lengths
2, 4 and 4 in Zℓ ∗ Zm, Zm ∗ Zn and Zn ∗ Zℓ respectively.

If n = 2 then the normal closure of x and y can be expressed as the colimit
of a non-spherical square of two-generator groups, where the edge groups are
cyclic, generated by x, y, zxz and zyz respectively. Since at least one of ℓ, m
is greater than 2 by hypothesis, we see by Proposition 2.6 that G contains a
nonabelian free subgroup.

Hence we may assume that n ≥ 3. If ℓ = m = 2, then the normal closure
of z can be expressed as the colimit of a non-spherical square of groups, with
edge-groups generated by conjugates of z. Hence G contains a free subgroup by
Proposition 2.6.

On the other hand, if ℓ ≥ 3 and m ≥ 3, then G contains a free subgroup
by Corollary 3.3. Hence we may assume that ℓ = 2 and m ≥ 3. By results
of Rosenberger [19], the vertex group G2, and hence also G, contains a free
subgroup unless n = 3. But then the normal closure of y and z in G is again
a generalised tetrahedron group, of type E2 or E6, with all three generators of
order 3. By Corollary 3.3 again, there is a free subgroup.

Cases E1, E4, E7

Corollary 3.3 implies that G has a free subgroup, except possibly if m = 3 and
ℓ = n = 2 (possible only in case E1) or if m = 2 and n ≤ 3.

If m = 3 and ℓ = n = 2 then G is an ordinary tetrahedron group acting on
hyperbolic 3-space and hence the result follows.

Suppose then that m = 2 and n ≤ 3. We treat the cases E1, E4 and E7
separately.

In E1, we must have {ℓ, n} = {2, 3}. Again, G is an ordinary tetrahedron
group acting on hyperbolic space, and so contains a nonabelian free subgroup.
In case E4, we again have {ℓ, n} = {2, 3}. There are two possibilities:

(i) G = 〈x, y, z |x2 = y2 = z3 = (xy)2 = (yz)3 = (xzxz2)3 = 1〉.

In this case the normal closure of y and z is again a generalised tetrahedron
group, of type E3, with generators of orders 2, 3, 3, so G contains a free subgroup.

(ii) G = 〈x, y, z |x3 = y2 = z2 = (xy)2 = (yz)3 = (xzx2z)3 = 1〉.

In this case the normal closure of x and w = yz is a generalised triangle group
〈x, w |x3 = w3 = (xwx2w2)3 = 1〉, which contains a free subgroup by [19].

In case E7, using the results of [14], G3 and hence G contains a free subgroup
except in a small number of cases. Combining this with Corollary 2.5, and with
our assumption that m = 2 and n ≤ 3, we are reduced to two cases:
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(i) G = 〈x, y, z |x2 = y2 = z3 = (xy)2 = (yz)3 = (xzxzxz2)2 = 1〉.

(ii) G = 〈x, y, z |x4 = y2 = z2 = (xy)2 = (yz)3 = (xzxzx2z)2 = 1〉.

In (i) we note that the subgroup generated by y, z and w = xz2x is the
colimit of a triangle of groups with all three Gersten-Stallings angles equal to
π/3, where the edge groups are generated by y, z and w respectively, and one
of the vertex groups is the binary octahedral group

H = 〈z, w | z3 = w3 = zwz2wzw2 = 1〉.

Noting that neither zw2z nor wz2w is a subword of a length six relation in H ,
we apply Lemma 2.4 to see that G contains a nonabelian free subgroup.

In (ii) we can add the relation x2 = 1 to get an epimorphism onto a free
product with amalgamation that contains a free subgroup.
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